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Abstract—The Resistance is a social deduction game in which 

players have secret identities, and are divided into factions which 

has separate goals. Players will then go on missions to be able to get 

a chance to achieve those goals. In order to certainly achieve those 

goals, players have to understand the concept of the game, and the 

strategies which can be involved in the game. By using Graphs, 

Decision Tree and Combinatorial Theorem, we can understand the 

game better than by playing without them. 
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I.   INTRODUCTION 

 
Figure 1.1. The Resistance game [3] 

“The Resistance”, a social deduction game in which the 

players have secret identities. Players are then divided into two 

factions that are involved in this game. One is the “Resistance”, 

which are attempting to overthrow a malignant government. The 

other is the “Spies”, which are attempting to thwart the 

“Resistance”.  

Players are faced with five missions in which a “Mission 

Team”, comprised of a certain number of players, must go on 

the mission. The “Leader” will attempt to organize which 

players will join the “Mission Team”. After the “Leader” 

attempts to organize the players which will join the “Mission 

Team”, the players will then vote for the “Mission Team” to be 

approved or not. For the mission to be successfully approved, 

the majority of players have to approve the mission. The 

”Leader” is decided randomly at first, then it is changed in a 

clockwise rotation, if the “Mission Team” that the “Leader” 

organized is not approved. If five “Leaders” fail to organize an 

approved “Mission Team” then the “Resistance” is labeled to be 

unable to organize an approved “Mission Team”  

After the “Mission Team” is organized and approved, players 

that are on the “Mission Team” will have to play a “Mission 

Card”. The members of the “Resistance” will only be able to 

play a “Mission Success” card, while the members of the 

“Spies” will be able to play both a “Mission Success” card and 

a “Mission Fail” card. 

The mission is declared “completed successfully” if the 

number of “Mission Fail” cards that are played, are lower than 

the required number “Mission Fail” cards needed to be played 

for the mission to fail.  

 

The objective of the game is different for each faction. The 

“Resistance” wins if three missions are completed successfully, 

and the “Spies” win if three missions fail or the “Resistance” is 

unable to organize an approved “Mission Team”. 

In order to better understand “The Resistance” game, Graph, 

Decision Tree and Combinatorial Theorem can be used. 

Therefore, in this paper, I will elaborate on the applications of 

Graph, Decision Tree and Combinatorial Theorem in the game. 

 

II.  BASIC THEORY 

A. Definition of Graph 

According to reference [1], graphs are discrete structures that 

consist of vertices and edges that connect the vertices. 

Mathematically, a graph is represented as  

𝐺 = (𝑉, 𝐸) 

in which G is graph, V is nonempty set of vertices (or nodes) 

and E is set of edges. Each edge of a graph has either one or two 

vertices associated with it, which is called its endpoints. Also, 

the edge of a graph connects its endpoints.  

 

B. Types of Graphs 

Reference [1] and [2] shows that there are multiple types of 

graphs. The types of graph are differentiated by multiple 

categories.  
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The types of graphs which are differentiated by the number of 

vertices and/or edges include: 

1. Infinite graph: A type of graph in which the number of 

vertices and/or the number of edges is infinite. 

2. Finite graph: A type of graph in which the number of 

vertices and the number of edges is finite. 

3. Null Graph: A Graph that doesn’t contain any edge. 

 
Figure 2.B.1. An example of a Finite Graph [2] 

 
Figure 2.B.2. An example of Null Graph [2] 

The types of graphs which are differentiated by the 

connection of its edges include: 

1. Simple graph: A type of graph in which each of its edges 

connect two different vertices and there are no two edges 

that connect the same pair of vertices. 

2. Multigraph: A type of graph in which some of the edges 

connect the same pair of vertices. 

3. Pseudograph: A type of graph in which it may include 

loops, and/or multiple edges that connect the same pair 

of vertices. 

 
Figure 2.B.3. (a) Simple Graph, (b) Multigraph, (c) 

Pseudograph [2] 

The types of graphs which are differentiated by the direction 

of its edges include: 

1. Undirected graph: A type of graph in which its edges are 

undirected. 

2. Directed graph: A type of graph in which each of its 

edges are directed and are associated with an ordered pair 

of vertices. The ordered pair of vertices (u,v) is said to 

start at u and end at v. 

3. Multi-Directed Graph: A special type of directed graph 

in which it has edges that have multiple directions. 

4. Mixed graph: A type of graph in which includes directed 

and undirected edges. Much like the directed edges in 

directed graphs, the directed edges in mixed graphs are 

also associated with an ordered pair of vertices. The 

ordered pair of vertices (u,v) is also said to start at u and 

end at v. 

 
Figure 2.B.4. (a) Directed Graph, (b) Multi-Directed Graph 

[2] 

The types of graphs which are classified based on its unique 

characteristics are 

1. Complete Graph: A type of graph in which each of its 

vertices is adjacent to every other vertices in the graph. 

Graphs which fall into this type are denoted by Kn, in 

which n represents the number of vertices. 

 
Figure 2.B.5. Complete Graphs [2] 

2. Regular Graph: A type of graph in which every vertex 

has the same degree. A regular graph with n-degree for 

each vertex. 

 
Figure 2.B.6. Regular Graph [2] 

3. Cyclic Graph: A type of graph which contains at least one 

cycle. 

4. Connected Graph: A type of graph in which every pair of 

vertex u and v in set of vertex V have at least one path 

from vertex u and v.  

 
Figure 2.B.5. Connected Graph [2] 

5. Weighted Graph: A type of graph in which every edge 

has a respective weight. 
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Figure 2.B.6. Weighted Graph [2] 

 

C. Basic Terminologies in Graphs 

Reference [1] and [2] shows that there are some terminologies 

in Graphs. These include: 

1. Adjacent: Two vertices u and v in an undirected graph G 

are called adjacent in G if u and v are endpoints of an 

edge e of G. 

2. Incident: An edge e in a graph G is called incident with 

the vertices u and v if u and v are endpoints of the edge 

e. 

3. Connect: Two vertices u and v in a graph G connect in G 

if u and v are endpoints of the edge e. 

4. Neighborhood: The set of all neighbors of a vertex v of 

G = (V,E), denoted by N(v), which is the set of all 

vertices in G that are adjacent to vertex v. 

5. Degree: The number of edges incident with a vertex, 

except that a loop at a vertex contributes twice to the 

degree of that vertex, which is denoted by deg(v). 

 
Figure 2.B.7. Graph with degrees 2,3,3,4,4 [2] 

6. Isolated vertex: A vertex with a degree of zero is isolated. 

7. Pendant vertex: A vertex that has a degree of one. 

8. Path: A path with length n from the start, which is vertex 

V0, to the destination, which is vertex Vn, in graph G is a 

sequence v0, e1, v1, e2, …,vn-1, en, vn such that e1 = (v0, 

v1), e2 = (v1, v2), …, en = (vn-1, vn). 

9. Cycle/Circuit: A Circuit or a cycle is a path of graph 

which starts and finishes in the same vertex. 

10. Bridge: A bridge is an edge of a graph such that if it is 

deleted from the graph, it will separate the graph into two 

components. 

11. Subgraph: A graph G = (V, E) has a subgraph G1 = (V1, 

E1) if and only if V1 ⊆ V and E1 ⊆ E. A subgraph G1 is 

called spanning subgraph if V = V1. 

12. Subgraph Complement: A graph G = (V,E) which has a 

subgraph G1 = (V1, E1) has a Subgraph Complement of 

G2 = (V2, E2) such that E2 = E - E1 and V2 are the set of 

vertices which are incident. 

 
Figure 2.B.8. (a) Graph G1, (b) Subgraph of G1, (c) 

Complement of G1 [2] 

13. Spanning Subgraph: A graph G = (V, E) which has a 

subgraph G1 = (V1, E1), has a spanning subgraph of G1 if  

V1 = V, or in other words, G1 contains all vertices of G. 

 
Figure 2.B.9. (a). Graph G, (b) Spanning Subgraph of G, (c) 

Not a Spanning Subgraph of G [2] 

14. Cut-Set: A graph G has a cut-set which is the set edge of 

bridges. 

 
Figure 2.B.10. On the left, Graph G. On the right, Cut-set of 

Graph G [2] 

 

D. Definition of Tree 

According to reference [1], trees are connected undirected 

graphs which contain no simple circuits. More completely, 

graph G = (V,E) with number of nodes n is a tree if 

1. It’s a simple undirected graph. 

2. Every pair of nodes in G is connected with a single edge. 

3. G has no simple circuits and the addition of an edge to 

the graph will result to the formation of only one circuit. 

4. G is connected and has a number of edges of m = n -1. 

5. G has no simple circuit and has a number of edges of m 

= n - 1. 

6. G is connected, and all of its edges are bridges. 

E. Types of Trees 

According to reference [1] and [2], there are some types of 

trees. These include: 

1. Rooted Tree: A type of tree in which one vertex has been 

designated as the root, and every edge is directed away 

from the root. 
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Figure 2.E.1 : An example of a rooted tree [2] 

2. Ordered tree: A type of tree in which the order of its 

children are important. 

 
Figure 2.E.2 : Two different ordered trees [2] 

3. Decision Tree: A type of tree in which it models 

decisions and their possible consequences. Each inside 

vertex denotes the decision, and each leaf denotes the 

solution. 

 
Figure 2.E.3 : A decision tree to arrange 3 elements [2] 

4. M-ary tree: A type of tree in which every vertex of its 

branches have the most of m number of children. 

 

 

Figure 2.E.4. : An example of a 3-ary tree [2] 

5. Expression tree: A type of 2-ary tree (binary tree) in 

which the leaf denotes the operand and internal vertices 

states the operator. 

 
Figure 2.E.5. : Expression tree of (a+b)*(d(d+e)) [2] 

6. Huffman tree: A full 2-ary tree (binary tree) in which 

each leaf of the tree corresponds with each symbol. 

 
Figure 2.E.6 : Huffman tree for the message [2] 

‘ABACCDA’ 

7. Search Tree: A type of tree used to locate specific keys 

from within a set. An example is binary search tree, 

illustrated in figure 2.E.7. In a binary search tree, all the 

vertices on the left subtree has a key that is smaller than 

Key(R), and all the vertices on the right subtree has a 

key that is larger than Key(R). 

 
Figure 2.E.7 : Binary Search Tree [2] 

 

F. Terminologies in Trees 

According to reference [1] and [2], even though tree are also 

graphs, there are some terminologies which are limited to trees,. 
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Figure 2.F.1: A tree to demonstrate terminologies in trees [2] 

These include: 

1. Child: Vertex v is the child of vertex x if there is an 

edge from vertex u to v. For example: In figure 2.F.1, 

b is a child of a. 

2. Parent: Vertex u is the parent of vertex y if there is an 

edge from vertex u to v. For example: In figure 2.F.1, 

a is the parent of b. 

3. Descendant: If there is a path from vertex u to vertex v 

in a tree, then vertex v is the descendant of vertex u. 

For example: in figure 2.F.1, h is the descendant of b. 

4. Ancestor: If there is a path from vertex u to vertex v in 

a tree, then vertex u is the ancestor of vertex v. For 

example: In figure 2.F.1, b is the ascendant of h. 

5. Sibling: Vertices which have the same parent is a 

sibling of one another. For example: in figure 2.F.1, i 

is the sibling of h. 

6. Subtree: Assume that x is a vertex in a tree T. Subtree 

with x as its root is the subtree T’ = (V’, E’) such as V’ 

contains x and all its descendants and E’ contains 

vertices in all paths that are originated from x. For 

example: T ' = ( V', E') is the subtree of the tree in figure 

2.F.1 with V' = {b, e, f, h, i, j}, E’ = {(b, e), (b, j), (e, 

h), (e, i), (e, j)} and b is the root, shown in figure 2.F.2. 

 
Figure 2.F.2: Subtree T’ = (V, E’) with b as its root. 

[2] 

7. Degree: Degree of a vertex in a tree is the number of 

child on that vertex. In figure 2.F.1, the degree of e is 

3, the degree of k is 2, the degree of g is 1 and the 

degree of m is 0. 

8. Leaf: Leaf is a vertex that has a degree of zero. Vertices 

h, i, j, f, c, l, m are all leaves. 

9. Internal vertices: Vertices which have a child or 

children is called internal vertices. In figure 2.F.1, 

vertices d, e, g and k are all internal vertices. 

10. Level: The level of a vertex is 1 + the number of 

connections between the vertex and the root. The root 

has a level of zero. As a convention, we start 

numbering levels from zero. 

 
Figure 2.F.3: Defining the height each vertex in the tree 

[2] 

11. Height or depth: Height or depth of a tree is the 

maximum level of that tree. Figure 2.F.3 has a height 

of 4. 

G. Definition of Combinatorics 

According to reference [2], combinatorics is a branch in 

mathematics that studies how objects are arranged. By using 

combinatorics, we can tell the possibilities of arrangement of 

objects. For example, we can count the possibilities of a number 

that is shown on the top of the dice, or the possibilities of chess 

moves. 

H. Basic Rule in Combinatorics 

According to reference [2], in combinatorics, we have to 

count all possibilities of arrangements. Two basics that are 

known are: 

1. Rule of Product: If an experiment 1 has p outcomes that 

might happen, an experiment 2 has q outcomes that might 

happen, then if experiment 1 AND experiment 2 is done, 

then there will be p x q number of outcomes. This rule 

can then be expanded. If n number of experiments that 

doesn’t depend on each other, each denoted by p1, p2, …, 

pn, then if all experiments are done, there will be p1 x p2 

x … x pn number of possible outcomes. 

2. Rule of Sum: If an experiment 1 has p experiment results 

that might happen, an experiment 2 has q experiment 

results that might happen, then if only 1 experiment is 

done, EITHER experiment 1 OR experiment 2, then there 

will be p + q number of experiment results. If n number 

of experiments that doesn’t depend on each other, each 

denoted by p1, p2, …, pn, then either one of those 

experiments are done, there will be p1 + p2 + … + pn 

number of possible outcomes. 

 

I. Inclusion-Exclusion Principle 

  According to reference [2], in combinatorics, there is a 

principle called inclusion-exclusion principle, which are used 

to count combinatorials. This principle is used when a case in 
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which two numbers of possibilities are needed to be joined 

together, which may result in an inclusion of non-duplicate 

cases, and/or exclusion of duplicate cases. For example, to 

add the number of possible outcome of a binary string that 

ends with ‘11’ and a string that begins with ‘11’, we have to 

exclude duplicate cases which both sets already cover, and 

include the others. This case can be demonstrated with a Venn 

Diagram, which is shown below. 

 
Figure 2.I.1 : Venn Diagram representation for the example 

above. (Author’s document) 

 

J. Permutation 

According to reference [2], permutation is the number of 

possible combinations of the arrangement of objects. It is a 

special case of the Rule of Products. For instance, there is n 

number of objects, the first arrangement is chosen from n 

objects, the second arrangement is chosen from n-1 objects, the 

third arrangement is chosen from n-2 objects, and so on, and the 

last arrangement is chosen from the last object that is left. 

According to the Rule of Product, the permutation of n objects 

are: 

n(n − 1)(n − 2) … (2)(1) = 𝑛! 
Permutation r of n objects are the number of possible 

arrangements of r number of objects which are chosen from n 

number of objects, with r ≤ n, which in this case, in each possible 

arrangements there are no same objects. This can be 

demonstrated by the equation 

P(n, 𝑟) = 𝑛(𝑛 − 1)(𝑛 − 2) … (𝑛 − (𝑟 − 1)) =
𝑛!

(𝑛 − 𝑟)!
 

Circling permutation of n objects is the arrangement of 

objects which create a circle. The number of arrangements 

which create a circle is (n-1)!. 

 

K. Combination 

According to reference [2], combination is a special case of 

permutation. If in a permutation the order of appearance is 

considered, then in combination, the order of appearance is 

disregarded. For instance, the arrangements acb, bca and acb is 

considered same and are only counted as one. 

Combination of r elements from n elements is the number of 

unordered arrangement of r elements which are taken from n 

number of elements. This statement can be demonstrated by the 

equation 

C(n, r) =  
𝑛!

𝑟! (𝑛 − 𝑟)!
 

In combination, there is a term which is called generalized 

combination, which is combination that regards all combination 

with the same item as only one. It is the same with generalized 

permutation. It can be demonstrated with the equation 

P(n; 𝑛1, 𝑛2, … , 𝑛𝑘) = 𝐶(𝑛; 𝑛1, 𝑛2, … , 𝑛𝑘) =
𝑛!

𝑛1! 𝑛2! … 𝑛𝑘!
 

There is also a term which is called combination with 

repetition, which is combination that regards each combination 

with the same item differently. It can be demonstrated with the 

equation 

C(n + r − 1, r) = 𝐶(𝑛 + 𝑟 − 1, 𝑛 − 1) 

 

III.   ANALYSIS ON THE RESISTANCE GAME 

A. The Setup of the Game 

Using the information from reference [3]. 

The number of members of the Resistance and Spies that will 

be in the game changes depending on the number of players that 

are playing the game. The chart that will be used to determine 

the number of members of the Resistance and Spies that will be 

in the game are shown below: 

 
Table III.A.I. The number of members of the Resistance and 

Spies that will be in the game. [3] 

 

The number of players that must be on the Mission Team also 

changes depending on the number of players that are playing the 

game, and depending on the order of Missions that are currently 

played. The chart that will be used to determine the number of 

players that will be on the Mission Team is shown below 

 
Table III.A.II. The number of players that must be on the 

Mission Team [3] 

Spies know the other members of their team, while the 

members of the Resistance do not. 

B. The Optimal Mission Team 

The Optimal Mission Team, for players that are members of 

the Resistance players, is a Mission Team which consists of less 

number of Spies than the required number of mission fail cards 

needed to be played for the mission to fail, because even if the 

Spies that are in the Mission Team plays a Mission Fail card, the 

Mission will still be a success. Therefore, it is impossible to fail 

a Mission if the Captain organizes the Mission Team in such a 

way. 

Let’s assume that there are 5 players, 2 of them are Spies and 

3 of them are members of the Resistance. If they are playing 

Mission 1, in which 2 players have to form the Mission Team, 

then with combinatorics theory, we know that there will be 

C(5,2) numbers of missions that can be made. 

For that mission to be successful, there must be no Mission 

Fail cards that are played. Therefore, there must be no Spies in 

the Mission Team for it to be optimal. To make it easier to 

Set of 

strings 

that 

begin 

with ‘11’ 

Set of 

strings 

that end 

with ‘11’ 

Set of 

strings 

that 

begins 

and ends 

with ‘11’ 
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calculate, we can differentiate the types of cases that we will find 

into 3 types, which are 

1. There are no spies on the Mission Team, or in another 

way, all the players that are on the Mission Team are 

members of the Resistance. 

2. There is 1 spy and 1 member of the Resistance on the 

team. 

3. There are 2 spies on the Mission Team, or in another way, 

there are no members of the Resistance on the Team. 

With the combinatorics theory, there are two ways that we can 

use to calculate the number of missions that will certainly be 

successful. One is by calculating the missions that have less 

number of Spies than the required number of mission fail 

cards needed to be played for the mission to fail, which is 

demonstrated below: 

𝐶(3,2) = 3 

Another way to calculate is by subtracting the missions that 

have equal number or more Spies than the required number of 

mission fail cards needed to be played, which is demonstrated 

below: 

𝐶(5,2) − (𝐶(2,1) ∗ 𝐶(3,1) + 𝐶(3,2)) = 3 

 By dividing the number of Optimal Missions that we can 

organize with the total number of Mission Teams that we can 

organize, we can calculate the chance in which optimal missions 

will be produced. 

𝐶(3,2)

𝐶(5,2)
=

𝐶(5,2) − (𝐶(2,1) × 𝐶(3,1) + 𝐶(3,2))

𝐶(5,2)
=

3

10
 

Therefore, in this case, there is a 
3

10
 chance that an optimal 

Mission Team for the members of the Resistance will be 

organized, if the members of the Mission Team are chosen 

randomly.  

However, there is a better strategy. If you are a member of the 

Resistance, you can increase the chance of optimal Mission 

Team that will organized by putting yourself in the Mission 

Team. We can illustrate this using graphs. 

 

 
Figure 3.B.1. Illustration of the Mission Team. (a) includes 

you on the team, (b) doesn’t include you on the team. The blue 

square denotes members of the Resistance, the red square 

denotes Spies. The blue line denotes the edge that only has 

members of the Resistance as its endpoints, and the red line 

denotes the edge that has spies on either of its endpoints. 

(Author’s Documents) 

 

  Using those graphs, we can see that there are 2 Spies and 2 

members of the Resistance left that can be chosen, either if you 

are put on the team, or not. If you are put on the Mission Team, 

the captain only needs to choose 1 other player to be put in the 

Mission Team. However, if you are not put on the Mission 

Team, the captain needs to choose 2 other players to be put on 

the team. We can also see that, if we create a path of 2 players 

(Spies or members of the Resistance) on Figure 3.B.1. (a), there 

are 2 out of 4 possible paths that include less number of spies 

than the number of mission fail cards needed for the mission to 

fail, and that, if we create a path of 2 players (Spies or members 

of the Resistance), on Figure 3.B.2. (b), there is only 1 out of 6 

possible paths that include less number of spies than the number 

of mission fail cards needed for the mission to fail. Therefore, in 

this case, there are more compositions of Optimal Mission 

Teams if you are on the team.  

We can also demonstrate this by using Combinatorics, like 

before, we can calculate the chance that an optimal Mission 

Team for the members of the Resistance will be organized. If 

you are on the Mission Team, the calculation will be as follows: 
𝐶(2,1) × 𝐶(2,0)

𝐶(4,1)
=

1

2
 

or 

1 −
𝐶(2,1) × 𝐶(2,0)

𝐶(4,1)
=

1

2
 

If you are not on the Mission Team, the calculation will be as 

follows: 
𝐶(2,2) × 𝐶(2,0)

𝐶(4,2)
=

1

6
 

or 

1 −
𝐶(2,1) × 𝐶(3,1)

𝐶(4,2)
−

𝐶(2,2) × 𝐶(3,0)

𝐶(4,2)
=

1

6
 

 

From those two calculations, in this case, we can see that it is 

better for you to be on the Mission Team to create the most 

Optimal Mission Team for the Resistance, rather than not being 

on the Mission Team, if you are a member of the Resistance, 

since it is more likely for the organized Mission Team to be an 

Optimal Team rather than not. 

Let’s look at another case. Assume that there are 5 players, 2 

of them are Spies and 3 of them are members of the Resistance.  

But this time, they are playing Mission 2, in which 3 players 

must form the Mission Team. With combinatorics theory, we 

know that there will be C(5,3) numbers of missions that can be 

made. 

For that mission to be successful, there must be no Mission 

Fail cards that are played. Therefore, there must be no Spies in 

the Mission Team for it to be optimal. To make it easier to 

calculate, we can differentiate the types of cases that we will find 

into 3 types, which are: 

1. There are no spies on the Mission Team, or in another 

way, all the players that are on the Mission Team are 

members of the Resistance. 

2. There are 2 members of the Resistance and 1 Spy on the 

Mission Team. 

3. There are 1 member of the Resistance and 2 Spies on the 
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Mission Team. 

With the combinatorics theory, just like in the previous case, 

there are two ways that we can use to calculate the number of 

missions that will certainly be successful, which is by 

calculating the missions that have less number of Spies than the 

required number of mission fail cards needed to be played for 

the mission to fail: 

𝐶(3,3) × 𝐶(3,0) = 1 

Another way to calculate is by subtracting the missions that 

have equal number or more Spies than the required number of 

mission fail cards needed to be played from the total number of 

Mission Teams that can be organized, which is demonstrated 

below: 

𝐶(5,3) − (𝐶(2,1) × 𝐶(3,2) + 𝐶(2,2) × 𝐶(3,1)) = 1 

 By dividing the number of Optimal Missions that we can 

organize with the total number of Mission Teams that we can 

organize, we can calculate the chance in which optimal missions 

will be produced. 

𝐶(3,3) × 𝐶(3,0)

𝐶(5,3)
=

1

10
 

or 

𝐶(5,3) − (𝐶(2,1) × 𝐶(3,2) + 𝐶(2,2) × 𝐶(3,1))

𝐶(5,3)
=

1

10
 

Therefore, in this case, there is a 
1

10
 chance that an optimal 

Mission Team for the members of the Resistance will be 

organized, if the members of the Mission Team are chosen 

randomly.  

We can also find a better strategy than randomly choosing the 

members of the Mission Team. If you are a member of the 

Resistance, just like in the previous case, you can increase the 

chance of optimal Mission Team that will organized by putting 

yourself in the Mission Team. We can illustrate this using 

graphs. 

 

 
Figure 3.B.2. Illustration of the Mission Team. (a) includes 

you on the team, (b) doesn’t include you on the team. The blue 

square denotes members of the Resistance, the red square 

denotes Spies. The blue line denotes the edge that only has 

members of the Resistance as its endpoints, and the red line 

denotes the edge that has spies on either of its endpoints. 

(Author’s Documents) 

 

  Using those graphs, we can see that there are 2 Spies and 2 

members of the Resistance left that can be chosen, either if you 

are put on the team, or not. If you are put on the Mission Team, 

the captain only needs to choose 2 other players to be put in the 

Mission Team. However, if you are not put on the Mission 

Team, the captain needs to choose 3 other players to be put on 

the team. We can also see that, if we create a path of 3 players 

(Spies or members of the Resistance) on Figure 3.B.2. (a), there 

are 1 out of 6 possible paths that include less number of spies 

than the number of mission fail cards needed for the mission to 

fail, and that, if we create a path of 3 players (Spies or members 

of the Resistance), on Figure 3.B.2. (b), there are no possible 

paths that include less number of spies than the number of 

mission fail cards needed for the mission to fail. Therefore, in 

this case, there are also more compositions of Optimal Mission 

Teams if you are on the team.  

Using those graphs, we can see that there are only 2 Spies and 

2 members of the Resistance left that can be chosen, either if 

you are put on the team, or not. If you are put on the Mission 

Team, the captain only needs to choose 2 other players to be put 

in the Mission Team. However, if you are not put on the Mission 

Team, the captain needs to choose 3 other players to be put on 

the team. 

In this case, by using Combinatorics, like before, we can 

calculate the chance that an optimal Mission Team for the 

members of the Resistance will be organized. If you are on the 

Mission Team, the calculation will be as follows: 

𝐶(2,2) × 𝐶(2,0)

𝐶(4,2)
=

1

6
 

or 

1 −
𝐶(2,1) × 𝐶(2,1)

𝐶(4,1)
−

𝐶(2,2) × 𝐶(2,0)

𝐶(4,2)
=

1

6
 

If you are not on the Mission Team, the calculation is a bit 

interesting, since there are less number of agents as the number 

of players needed to be put on the Mission Team. In this case, 

you cannot calculate the missions that have less number of Spies 

than the required number of mission fail cards needed to be 

played for the mission to fail. The method will be demonstrated 

below: 
𝐶(2,3) × 𝐶(2,0)

𝐶(4,2)
= 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 

The calculation is invalid because C(2,3) is invalid. C(2,3) is 

invalid because in this case, n < r for C(n, r). It fails to fulfill the 

requirement of combinations which is n ≥ r for C(n, r). 

On the other hand, the other method, which is subtracting the 

missions that have equal number or more Spies than the required 

number of mission fail cards needed to be played from the total 

number of Mission Teams that can be organized, is valid. The 

method is demonstrated below: 

1 −
𝐶(2,1) × 𝐶(2,1)

𝐶(4,2)
−

𝐶(2,2) × 𝐶(3,0)

𝐶(4,2)
= 0 

Therefore, only 1 method can be used to calculate the chance 

of organizing an Optimal Mission Team in every case of the 

Resistance game, which is subtracting the missions that have 

equal number or more Spies than the required number of mission 

fail cards needed to be played from the total number of Mission 

Teams that can be organized. 

From those calculations, in this case, we can also see that it is 
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better for you to be on the Mission Team to create the most 

Optimal Mission Team for the Resistance, rather than not being 

on the Mission Team, if you are a member of the Resistance, 

since it is more likely for the organized Mission Team to be an 

Optimal Team rather than not. 

By looking at the above calculations, we can generally 

assume that if there are w number of spies, x number of agents, 

y number of players in the Mission Team, and it takes z mission 

fail cards to be played for the mission to fail, the calculation will 

be as follows. 

1 −
𝐶(𝑤, 𝑧) × 𝐶(𝑥, 𝑦 − 𝑧)

𝐶(𝑤 + 𝑥, 𝑦)
−

𝐶(𝑤, 𝑧 + 1) × 𝐶(𝑥, 𝑦 − (𝑧 + 1))

𝐶(𝑤 + 𝑥, 𝑦)

− ⋯ −
𝐶(𝑤, 𝑦) × 𝐶(𝑥, 𝑦 − 𝑦)

𝐶(𝑤 + 𝑥, 𝑦)
 

= 1 − (
𝐶(𝑤, 𝑧) × 𝐶(𝑥, 𝑦 − 𝑧)

𝐶(𝑤 + 𝑥, 𝑦)
+

𝐶(𝑤, 𝑧 + 1) × 𝐶(𝑥, 𝑦 − (𝑧 + 1))

𝐶(𝑤 + 𝑥, 𝑦)

+ ⋯ +
𝐶(𝑤, 𝑦) × 𝐶(𝑥, 𝑦 − 𝑦)

𝐶(𝑤 + 𝑥, 𝑦)
) 

= 1 − (∑
𝐶(𝑤, 𝑣) × 𝐶(𝑥, 𝑦 − 𝑣)

𝐶(𝑤 + 𝑥, 𝑦)
)

𝑦

𝑣=𝑧

 

Also, we can generally assume that it is better for you to be on 

the Mission Team to create the most Optimal Mission Team for 

the Resistance, rather than not being on the Mission Team, if 

you are a member of the Resistance, since it is more likely for 

the organized Mission Team to be an Optimal Team rather than 

not. 

The Optimal Mission team for the Spies are having equal 

number or more Spies than the required number of mission fail 

cards needed to be played from the total number of Mission 

Teams that can be organized. 

The complement of the equation for the Optimal Mission Team 

for members of the Resistance, produces the chance that an Optimal 

Mission Team for the opposition of the Resistance, which are the 

Spies, will be organized. The calculation is shown below: 

𝐶(𝑤, 𝑧) × 𝐶(𝑥, 𝑦 − 𝑧)

𝐶(𝑤 + 𝑥, 𝑦)
+

𝐶(𝑤, 𝑧 + 1) × 𝐶(𝑥, 𝑦 − (𝑧 + 1))

𝐶(𝑤 + 𝑥, 𝑦)
+ ⋯

+
𝐶(𝑤, 𝑦) × 𝐶(𝑥, 𝑦 − 𝑦)

𝐶(𝑤 + 𝑥, 𝑦)
 

= ∑
𝐶(𝑤, 𝑣) × 𝐶(𝑥, 𝑦 − 𝑣)

𝐶(𝑤 + 𝑥, 𝑦)

𝑦

𝑣=𝑧

 

Since the Spies know the identities of the other Spies, Spies can 

approve the Mission Team if the team is optimal, with any Spies are 

on the Mission Team. 

C. Combinatorics on Nonoptimal Mission Teams 

In the case of the organized Mission Team is nonoptimal for 

players that are members of the Resistance players, which means 

that the Mission Team consist of more number of Spies than the 

required number of mission fail cards needed to be played for 

the mission to fail, there is still a chance that the mission will 

still be successful. 

Using combinatorics, we can calculate the chance for the 

mission to be successful, and for the mission to fail. 

If there are at least 1 mission fail cards that are needed to be 

played for the members of the Resistance to lose, and there are 

1 spy in the mission, we can calculate the chance for the 

missions that succeed, shown below: 

𝐶(1,1)

(𝐶(2,1))
1 =

1

2
 

Or calculate the number for the missions that fail, then 

subtract 1 with that number, shown below: 

1 −
𝐶(1,1)

𝐶(2,1)
=

1

2
 

Since the spy have two choices, which is to play a mission 

success card or play a mission fail card, and for the mission to 

be successful, the Spy must play the mission success card, which 

is one out of two cards, therefore the chance of the mission being 

successful is 
1

2
. 

Let’s look at another case. If there are at least 2 Mission Fail 

cards that are needed to be played for the members of the 

Resistance to lose, and there are 3 spies in the mission, we can 

calculate the chance for the missions that are able to succeed, 

there are 2 combinations in which we need to have for the 

mission to be successful, which are 

1. All spies play the mission success card. 

2. Only 1 spy plays the mission fail card. 

To calculate the chance, we have to add the combinations for 

these cases and divide them by the total number of possible 

combinations, which is shown below 

𝐶(3,0) +  𝐶(3,1)

(𝐶(2,1))
3 =

4

8
=

1

2
 

We can also calculate this by adding the combinations for the 

cases in which the mission ends up in a failure and subtract 1 

with that sum. 

1 − (
𝐶(3,2) +  𝐶(3,3)

(𝐶(2,1))
3 ) = 1 −

4

8
=

4

8
=

1

2
 

By looking at the above calculations, we can generally 

assume that if there are w number of spies in the mission, and it 

takes z number of mission fail cards to be played for the mission 

to fail, the calculation for the chance that the mission will be 

successful is shown below: 

𝐶(𝑤, 0) +  𝐶(𝑤, 1) + ⋯ +  𝐶(𝑤, 𝑧 − 1) 

(𝐶(2,1))
𝑤  

= ∑
𝐶(𝑤, 𝑣)

(𝐶(2,1))
𝑤

𝑧−1

𝑣=0

 

or 

1 −
𝐶(𝑤, 𝑧) + 𝐶(𝑤, 𝑧 + 1) + ⋯ + 𝐶(3, 𝑤)

(𝐶(2,1))
𝑤  

 

= 1 − ∑
𝐶(𝑤, 𝑣)

(𝐶(2,1))
𝑤

𝑤

𝑣=𝑧

 

The complement of this is the chance that the mission will 

fail. The calculation is shown below: 

1 −  
𝐶(𝑤, 0) +  𝐶(𝑤, 1) + ⋯ +  𝐶(𝑤, 𝑧 − 1) 

(𝐶(2,1))
𝑤  

= 1 − ∑
𝐶(𝑤, 𝑣)

(𝐶(2,1))
𝑤

𝑧−1

𝑣=0

 

or 
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𝐶(𝑤, 𝑧) + 𝐶(𝑤, 𝑧 + 1) + ⋯ + 𝐶(3, 𝑤)

(𝐶(2,1))
𝑤  

= ∑
𝐶(𝑤, 𝑣)

(𝐶(2,1))
𝑤

𝑤

𝑣=𝑧

 

 

D. Decision Tree for the Result of the Game 

There are five missions in the game. The “Resistance” wins if 

three missions are completed successfully, and the “Spies” win 

if three missions fail or the “Resistance” is unable to organize 

an approved “Mission Team”. In this case, I am going to 

elaborate on the “Resistance” winning if three missions are 

completed successfully, and the “Spies” winning three missions 

fail. 

By using the decision tree, we can decide which of the faction 

that won the game. The decision tree that can be illustrated is 

shown on Figure 3.D.1. 

 

 

IV.   CONCLUSION 

In conclusion, we can use Graph, Decision Tree and 

Combinatorics to understand the Resistance game. Graph and 

Combinatorics can be used to find optimal Mission Teams, 

calculate chances of winning for optimal and nonoptimal 

Mission Teams, and Decision Tree can be used to determine the 

result of the game.  
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