The Application of Binary Tree in a Simple Spell
Checker

Kevin Sendjaja, 13517023
Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, JI. Ganesha 10 Bandung 40132, Indonesia
13517023@std.stei.ith.ac.id
kevin.sendjaja@gmail.com

Abstract — A Spell Checker is an application or
program that is often implemented within word
processors. Spell checker is used to compare a word
with its correct spelling that is recorded within the
dictionary. This paper will cover about the concept of
binary trees and its implementation in creating a simple
spell checker.

Keywords—Binary Tree, Program, Spell Checker,
Spelling

I. INTRODUCTION

There are various languages that are being used in the
world. Languages are used as a method to communicate
between two or more parties, may it be in verbal or written
forms. In writing documents, especially formal documents,
spelling is an important factor and sometimes neglected.
It’s not rare to find a document with a spelling error or
often referred as a typo, whether it is caused by a typing a
wrong letter by mistake, or simply because the writer didn’t
know about the correct spelling which has been recorded
within a dictionary.

Spell checkers were created to reduce the possibility of
misspell. Usually, spell checkers will point out the words
that have a spelling error, and in more advanced versions,
Spell checkers will offer some word possibilities that may
or may not be the word that the document writer wanted to
write, in its correct spelling, or better yet, automatically
change the words with spelling mistakes into its correct
spelling.

Through this paper, the author would like to explain and
implement the concept of binary trees to create a simple
spell checker. The spell checker that will be explained is a
simple version, which function is limited to simply
showing whether the spelling is correct or incorrect

II. TREE

A. Definition

A Tree is a specialized form of a graph, which is a
connected, undirected graph, which consists of no simple
circuits. As such, a tree may not have multiple edges or
loops in any of its vertices.

Let G = (V, E) is a simple, undirected graph, with the
number of vertices n. The following statements are
considered to be valid:

1. Gisatree.

2. Every vertex that is a member of G is connected
to its root by a single path.

3. Gis connected and has n-1 edges.

4. Adding a single edge to the graph G will cause a
circuit to be formed.

root

7 : °

Figure 1: An example of a tree
(Source: http://www.studyalgorithms.com/tree/the-
tree-data-structure/)

B. Terminology
Below is a list of important terms which are connected to
trees:
1. Root (4kar)

A root or root node is the uppermost node of a
tree, which has no parent node. A tree may or
may not have a root. A tree with a root node is
called a Rooted Tree. Figure 1 is an example of
a rooted tree with node A as its root.

2. Parent (Orangtua) and Child (4nak)

Let vertex v is a vertex within a tree. Then for v,
there is a unique vertex u, such that there is a
directed edge from u to v. u is called the parent
of v, and at the same time, v is called the child
of u. A tree consists of minimal one parent and
may or may not have any children. In Figure 1,
node G is the child of node C, while node C is
the parent of node G.

3. Siblings (Saudara Kandung)
Two or more nodes which have the same parent
are called siblings. In Figure 1, node B, C, and

Makalah IF 2120 Matematika Diskrit — Sem I Tahun 2018/2019

D are siblings, for they have the same parent,
which is node A.

4. Path (Lintasan)
A path is a series of vertices between a vertex
and another vertex, one being the origin and the
other being the destination. The length of a path
is the number of edges between a vertex and
another vertex. In Figure 1, the path from node
A tonode E is A-B-E, which has the length 2.
5. Ancestor and Descendant
(Keturunan)
Apart from the root, the ancestor of a vertex v
within a tree is all vertices within a path from
the root to v. At the same time, all vertices which
have v as its ancestor are called descendants of
v. In Figure 1, node A is the ancestor of node C,
and node G and K are descendants of node C.

(Leluhur)

6. Subtree (Upapohon)
The subtree of a tree T consists of a vertex in T
and all of its descendants in T. The uppermost
vertex in a subtree becomes the root of that
subtree. A subtree may consist of a single vertex
or may form another tree.

7. Degree (Derajat)
The degree of a vertex is the number of subtrees
that belong to that vertex. In Figure 1, node A
has the degree 3, while node B has the degree 2.

8. Leaf (Daun)
A leaf is a vertex which has the degree 0. In
other words, a leat is a vertex without any
children. In Figure 1, node E, H, I, J, and K are
leaves.

9. Internal Vertices (Simpul Dalam)
Internal vertices are vertices that have at least a
single child. The root of a tree is included as an
internal vertex, unless it is the only vertex
within a tree, in which case it is included as a
leaf.

10. Level (4ras)
The root of a tree has the level 0, while the level
of other vertices is the length of the path from
the root to each vertex, respectively. In Figure
1, the level of node G is 2, while the level of
node K is 3.

11. Height / Depth (Tinggi / Kedalaman)
The height or the depth of a tree is the maximum
level of that tree. In Figure 1, the height of the
tree is 3.

12. Skew Tree
A tree is a skew tree if and only if each vertex,
with the exception of the leaf, have exactly one
child. If every node has only left child, then it is

called as a left skew tree. Similarly, if every
node has only right child, then it is called as a
right skew tree.

&) - ()
° Left Skew Tree ° Right Skew Tree o

Figure 2: Examples of Skew Tree
(Source: http://www.studyalgorithms.com/tree/the-
tree-data-structure/)

13. n-ary Trees
n-ary tree is a tree where each vertex has a
maximum number of children n. An n-ary tree
is called a full n-ary tree if and only if each
vertex has exactly » children.

C. Binary Tree

A Binary Tree is a type of n-ary tree which has a
maximum of two children. A binary tree must have a root
node, and the children of each node is classified into left
child and right child respectively. A balanced binary tree is
a binary tree where the difference of height between left
and right subtrees is not greater than 1.

Ao

Balanced Binary Tree Unbalanced Binary Tree

Figure 3: Comparison between Balanced and
Unbalanced Binary Trees
(Source: https://www.chegg.com/homework-
help/questions-and-answers/python-3-binary-search-tree-
algorithm-copy-pastable-code-pasteee-p-tfzww-problem-
write-fun-q29685661)

A full binary tree is a binary tree where each node has
either 0 or 2 children. A complete binary tree is a binary
tree where all levels are completely filled with the possible
exception of the last level, and all the leaves on last level is
placed as left as possible. In other words, in a complete
binary tree with height n, for i from 0 to n-1, level i have
exactly 2/ nodes.

Makalah IF 2120 Matematika Diskrit — Sem I Tahun 2018/2019

Neither complete nor full Complete but not full

Ak

Full but not complete Complete and full

LK Lo

Figure 4: Comparison between Full and Complete Trees
(Source: http://code.cloudkaksha.org/binary-
tree/types-binary-tree)

A binary tree is called a perfect binary tree if and only if
all internal nodes/ vertices have exactly two children,
which in result, will cause all leaves to be on the same
level. A perfect binary tree with height n will have exactly
2" — 1 nodes. A full and complete binary tree may or may
not be a perfect binary tree. However, a perfect binary tree
will always be a full and complete binary tree.

Figure 5: Example of a Perfect Binary Tree
(Source: http://code.cloudkaksha.org/binary-
tree/types-binary-tree)

Data contained within each node may or may not be
sorted in an increasing order. Binary trees with sorted data
are called Binary Search Trees (BST). Such trees, as the
name imply, are often used in data sorting and searching.
With the data stored in order, searching for a specific
datum within the tree can be done faster by comparing the
datum value with the current node value and follow the
path corresponding to the comparison result.

III. SPELL CHECKER

Figure 6: Example of a portable Spell Checker
(Source: https://images-na.ssl-images-
amazon.com/images/I/918irSgirWL. SL1500 .jpg)

A spell checker is an application, program, or a function
which determines whether the spelling of a given word
based on a language set, is correct or incorrect. It can be a
standalone program, which can be implemented into a
device such as in Figure 6. It can also be a part of a greater
program which operates on blocks of texts. The most
common example is the spell corrector on word processors
such as Microsoft Word. Other examples include search
engines and email client.

“/ Home Insert Page Layout References Mailings Review View

=4 Calibri (Body) ri16 - A/ % 2
B . B I U v she % % |[2

g A A S S Qo g8

Clipboard Font Styles

K’Comextual Spelling Error

Deer Sir Grammatical Error

The market is divided ifito different segments of buyers on the basis of
geography. There is mainly three geographical variables for
geographical segmentation. The first variable is region or location that
includes village, town, city and country. The second is population
density that helps focus on densely populated regions. The third one is

climate that helps to focs on regions with similar climatic conditions.

Spelling Error

Figure 7: An example of spelling check on Microsoft
Word
(Source: https://www.javatpoint.com/to-correct-
errors-in-ms-word)

It can be seen from Figure 7, that the spell checker in
Microsoft Word is already quite advanced, as not only it
underline the word with spelling error, it also underline the
words with both grammatical error and contextual spelling
error, each with a different color.

While spell checker is often taken for granted these days,
it was considered an important research in 1957, under the
branch of Artificial Intelligence (AI). The first official spell
checker application was created by Ralph Gorin in the
Artificial Intelligence Laboratory at Stanford University in
February 1971. The application was called Spell for DEC
PDP-10 and became widely available for mainframe
computers during that decade. In 1980, the first spell
checkers for personal computers were available for the
TRS-80 and CP/M computers, followed by IBM computers
in the following year.

The process of spell checking are as follows:

e The program scans a block of text and
separates each individual word.

e The program compares each word with known
words within a language set, which are
contained within a dictionary file of correctly
spelled words. The dictionary file may also
include punctuation and grammatical rules.

e The program marks the word with incorrect
spelling. The program may also offer the

Makalah IF 2120 Matematika Diskrit — Sem I Tahun 2018/2019

e correct spelling or even automatically correct
the word.

IV. IMPLEMENTATION OF BINARY TREE FOR
SPELL CHECKING

A. Application

First, it is necessary to construct the binary tree prior to
the spelling check. Each nodes contain exactly one letter,
starting from any alphabet as the root. The left child and
right child contain a second letter that will lead to a
possible valid word. The pattern repeats until it reaches the
last letter of a valid word. The last letter of a valid word
serves as the leaves of the tree.

Figure 8: An example of a binary tree for spell checking
(Source: Author’s documentation)

Figure 8 is an example of a simple binary tree for several
3-letter words starting from the letter ‘A’. The nodes
passed from the root to each respective leaf shows the word
that can be checked using this particular binary tree. The
words that are verified to be correctly spelled are “ARM”,
“ARE”, “ALE”, and “ALL”.

The binary tree and the checking process uses the Binary
Tree Abstract Data Type (ADT) in its process. As the ADT
uses recursive processing, the checking process also use
recursive to check whether the word is correctly spelled or
not.

For example, let T is a binary tree containing data exactly
as pictured in Figure 8, and C is the first letter of the input
obtained using the getchar () function. The checking
process is as follows:

function SpellCheck (T
char) -> boolean

BinTree, C

LOCAL VARIABLE

D : char
ALGORITHM
D <- getchar ()
if ((Info(T) = C) and (IsDaun(T)) and
(D = *\n’)) then
return true
else if((Info(T) = C) and (IsDaun(T))

and (D <> *\n’)) then
return false

else if ((Info(T) = C) and (!IsDaun(T))
and (D = *\n’)) then
return false
else if (Info(T) <> C) then
return false
else
return
SpellCheck (Left (T), D)
or

SpellCheck (Right (T), D)
Figure 9: Pseudocode for the spell checker
(Source: Author’s documentation)

The first conditional is the condition for the word to be
correctly spelled, which are as follows:

e The word reaches the end at the same
time as the current node in the binary tree
reaches any leaf

e Everyletter within the word matches with
the value of the nodes passed by the path
from the root until any leaf.

The next three conditionals are the conditions for the
word to be spelled incorrectly, which are as follows:

e The word reaches the end before the
current node in the binary tree reaches
any leaf.

e The word hasn’t ended, but the current
node in the binary tree is a leaf.

e The current letter in the word doesn’t
match the value of the current node.

The last two conditionals are meant to continue the
recursive process. The functions repeat the same process
using the next letter and both the left and right subtree at
the same time. Even should one return a false value, if the
other return a true value, then the word will be considered
spelled correctly. The word will be considered spelled
incorrectly if and only if both the left and right subtree
return a false value, which implies that the next letter
doesn’t match the root of either left or right subtree.

For example, we have the input “ARM?”, the process
begin by matching the first letter of the input, which is ‘A’,
with the value of the root of the tree, which is also ‘A’.
Since it matches, then the process continues with the next
letter of the input, which is ‘R’. The letter matches the root
of the left subtree, but since the node R is not a leaf, the
process continues once again with the next letter, which is
‘M’. The letter matches the root of the left subtree, and
since node M is a leaf and the letter ‘M’ is the last letter of
the word as well, the function returns a true value,
considering the word to be spelled correctly.

Another example, let the input be “ARN”, which has one
letter difference from the previous example. The process
goes through exactly as the previous example until it
reaches node R. When the function checks both of the left
subtree of the node R, none of them matches the letter ‘N’
from the input. As such, the function returns a false value,
and the word is considered to be spelled incorrectly.

Yet another example, this time let the input be “AR”. The
process also exactly the same until the node R. Node R is
not a leaf, but there’s no more letter in the word (in C

Makalah IF 2120 Matematika Diskrit — Sem I Tahun 2018/2019

program, we use the character “\n’ to define a new line,
meaning the end of input within a line). And so, function
returns a false value, and the word is considered to be
spelled incorrectly as well.

One final example, let the input be “ARMA”. The
process is similar to the first example until the node M.
This time, the node M is a leaf, but there’s still another
letter within the word, which is ‘A’. And because of that,
the function returns a false value, and the word is also
considered to be spelled incorrectly.

B. Advantages and Disadvantages

The advantage of using this method is that should the
word is spelled incorrectly, the function will stop
immediately as it finds a letter that didn’t match the value
on the binary tree. With this, the efficiency of the program
can be increased for cases that include misspelled words.
By using this method, the program too, doesn’t have to
search the dictionary file for the matching word. As there
could be more than a million words within the file, even a
word beginning with letter ‘B’ would need to pass a lot of
checking before the program could check whether the word
is spelled correctly or not.

The disadvantage of this method is that a binary tree
could not include all words that are spelled correctly.
There’s more than a million words that are recorded in the
dictionary for English alone, and a binary tree which
consists of only two children couldn’t possibly be used to
store each and every single word. One possible solution for
this problem, is to change binary tree to n-ary tree, which
could contain much more data than a binary tree. That way,
more data could be stored within the tree, and more words
could be checked for its spelling.

Another disadvantage is, as the previous paragraph
described, there is a lot of words that needs to be recorded
into the tree before the spell checking could be initiated. If
it’s only a few words, then the recording process wouldn’t
take much time. But the same couldn’t be said for a million
words, since it would take a very long time to finish
recording every last word into the tree. Since this is a
mandatory process, unfortunately there’s no other solution
to increase the efficiency in recording the data beforehand.

Another disadvantage that could be pointed is that a word
that ended before the current node reaches a leaf node
could be a word that is correctly spelled.

Figure 10: Another example of binary tree for spell
checking
(Source: Author’s documentation)

Figure 10 is a similar to Figure 8 with a slight change on
the right subtree. On Figure 10, it could be seen that input
“AND” will be considered correctly spelled by the
function. However, if we use the function for the input
“AN”, it will return a false value and will be considered to
be spelled incorrectly, when the word “AN” is recorded in
the dictionary and is spelled correctly. This is caused by the
Abstract Data Type itself, since it would be difficult to
differentiate the comparison between a word that ends
when the current node reaches a leaf and a word that ends
before the current node reaches a leaf, if both case are
words that is correctly spelled. A possible solution for this
problem is to modify the data type BinTree from the ADT
as well as the function SpellCheck. It is possible to add
another element within the struct Node, for example we
could add an element named Valid, which is a boolean type
element. This element could be assigned with true and false
value, which could be used to show whether the word is
correctly spelled or not, should the node is not a leaf node
and have at least one child. The function SpellCheck could
be modified as well so that it includes checking the value
of the element Valid from each node, to make additional
checking if the word ended before the current node reaches
a leaf. That way, the word “AN” from the previous
example could be considered to be spelled correctly.

V. CONCLUSION

A binary tree is a data type which can be used for various
purposes. One possible use of binary tree is for spell
checking. Using a binary tree, simple spell checking could
be done more efficiently.

A thorough spell checking would require more data to be
recorded before the checking. In this case, using n-ary trees
and modifying the Abstract Data Type for Binary Tree
could help in making the process more accurate.

VI. ACKNOWLEDGMENT

First of all, the author would like to thank God for His
blessing, because without it, the author would not be able
to finish this paper. The author would also like to thank
Mrs. Harlili, as the lecturer for class 02 for the course
IF2120 Matematika Diskrit, for the knowledge that was
taught during the class, which helped the author to finish
this paper. The author also would like to thank the authors
parents and friends which have given the author their
support, may it be directly or indirectly. Lastly, the author
would like to apologize for any mistakes that may have
been made accidentaly. May this paper be useful for future
references and research purposes.

REFERENCES
[1] Rosen, Kenneth H., Discrete Mathematics and Its

Applications, T ed, New York: McGraw-Hill
International, 2012.

Makalah IF 2120 Matematika Diskrit — Sem I Tahun 2018/2019

[2] http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/
2013-2014/Pohon%20(2013).pdf accessed on
December 9™, 2018.

[3] https://www.techopedia.com/definition/12396/spell-
checker accessed on December 9%, 2018.

[4] http://code.cloudkaksha.org/binary-tree/types-binary-
tree accessed on December 9™, 2018.

[5] http://www.studyalgorithms.com/tree/the-tree-data-
structure/ accessed on December 9, 2018.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 9 Desember 2018

Kevin Sendjaja / 13517023

Makalah IF 2120 Matematika Diskrit — Sem I Tahun 2018/2019

