
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Graph Modeling on Intercity Transportation Modes

and the Application of Bellman-Ford Algorithm in

Determining the Route of Two Cities at Lowest Cost

Aidil Rezjki Suljztan Syawaludin 13517070

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

riskisultan@yahoo.com

Abstract—Transportation has always been one of the vital

aspects in human lives. Moreover, human, as social creatures,

needs other humans. However, most people are separated by

geographical features. This encourages transportation to develop.

In this modern era, transportation systems have become more

complex as technology progresses. This paper will create a

simplistic graph model of intercity transportation modes and

determine the route of two cities in the system that has the lowest

cost. The model will be based on weighted and directed graph, with

a few adjustments. To determine the route of two cities at the lowest

cost, Bellman-Ford algorithm will be used.

Keywords—Graph, human, lowest cost, transportation

I. INTRODUCTION

Transportation has always been one of the vital aspects in

human lives. In this era, people are living more connected than

ever before. Most people on earth are living geographically

separated. However, this proves to not be an obstacle as

mankind progresses. The invention of various transportation

means, from the use of animals such as horses, the invention of

wheels, the first sailing boat, to the sophisticated means of travel

such as airplanes, allows people from all around the world to

travel from places far away.

Human is by nature a social creature. That is, human needs

other humans. This simple reason might be the one that mostly

encourages transportation. Most people are disconnected by

geographic features. This is where transportation comes into

play. To allow people to get to different places that is either too

far away to walk, or is just simply disconnected geographically,

people need means of transportation.

Trade is also a factor. As people are separated in different

kind of locations, resources available are also different,

depending on the location. For example, people living in

Indonesia might be able to obtain woods and logs easily but

might not be able to get much crude oil and gas. Since those

resources are needed, yet is not obtainable locally, people need

to trade. Transportation is needed for people to trade easily,

since it allows people to move goods from different places.

Naturally, transportation comes with a cost. Most of the time,

the distance needed to be traveled matters the most in deciding

the cost of transportation. The further it is, the higher the cost

gets. Other factors that may influence the cost are namely speed,

safety, and comfort.

As of the current time, there are various modes of

transportation available for people to use, with different

advantages and disadvantages, at different costs. Thus, a way to

help people determine the most suitable mode of transportation

is needed. This will be useful in applications that need to present

its users the cheapest route, for example in applications that

specializes on selling tickets of transportation modes.

On this paper, will be discussed the modeling of intercity

transportation modes on a weighted graph. The graph model will

represent several different cities with edges that represent

connection between cities and type of transportation, and

weights that represent cost of travel. In determining the route

between two different cities at the lowest cost, will be used the

Bellman-Ford Algorithm.

II. DEFINITION AND TYPES OF GRAPHS

A. Definition of Graph [1], [2]

A graph consists of a nonempty set of vertices V (or nodes)

and a set of edges E. An edge may connect either one vertex or

two vertices. Those vertices are called endpoints of an edge. A

graph is represented by a couple of sets, a set of vertices and a

set of edges. In this case, we may define a graph G = (V, E). This

means that graph G consists of a set of vertices V and a set of

edges E. The number of vertices in a graph is called as graph’s

cardinality, which is denoted as n = |V|, and the number of edges

in a graph is denoted as m = |E|.

As defined before, a graph consists of a nonempty set of

vertices, which means that a graph must consist of at least one

vertex. However, a graph may consist of an empty set of edges.

A graph that consist of one vertex and an empty set of edges is

called as trivial graph.

Vertices of a graph may be denoted by alphabet letters, such

as a, b, c, …, by natural numbers, such as 1, 2, 3, …, or by a

combination of both. An edge is expressed by a pair of vertices.

For example, an edge that connects vertex a to vertex b is

expressed as (a, b). An edge may also be denoted as e1, e2, e3, …

with each edge representing a pair of vertices. In this case, we

may define e1 = (a, b), which means that edge e1 connects vertex

a to vertex b. The order of vertices pair with same vertices in an

edge might differentiate an edge if the graph is a directed graph.

This will be discussed in the next part.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

B. Types of Graph [2]

There are several ways to classify a graph. The first

classification of graphs is based on the edges. Based on its edges,

a graph may be classified into two types:

1. Simple graph

A graph which consists of no loops and no multi-edge is

considered as a simple graph. A simple graph consists of

unordered pair edges, which means that any edges in a simple

graph has no direction. This also means that in a simple graph,

an edge (a, b) is the same edge as (b, a). Based on this definition,

we may define a graph G = (V, E) that consists of a nonempty

set of vertices V and a set of unordered pairs of vertices referred

as edges E.

2. Unsimple graph

A graph which consists of at least a loop or at least a multi-

edge, or both, is considered as an unsimple graph. A loop itself

is an edge that has the same endpoints. For example, an edge (a,

a) is a loop. Multi-edge itself means that in a set of edges, there

is at least two edges that connects the same vertices. For

example, a set of edges E that contains edge (a, b) and (a, b) is

considered a multi-edge set. There are two types of unsimple

graph (not mutually exclusive, a graph may be both type) which

are multigraph and pseudograph. A multigraph is a graph that

consists of at least one multi-edge, while a pseudograph is a

graph that consists of at least one loop.

Fig. 1 Graph (a) simple graph, (b) multigraph, (c) pseudograph

The second classification of graphs is based on the

orientation of the edges. Based on the direction of its edges, a

graph may be classified into two types:

1. Undirected graph

A graph that consists of edges with no directions is

considered as an undirected graph. In this type of graph, the

edges are a set of unordered pairs. This means that if given two

edges (a, b) and (b, a), both edges are considered as same.

2. Directed graph (digraph)

A graph that consists of edges with direction orientation is

considered as a directed graph. These directed edges may be

referred to as arcs. In a directed graph, the set of edges E consists

of ordered pairs. This means that if given two edges (a, b) and

(b, a), those edges are considered different, which also means

that (a, b) ≠ (b, a). In an arc (a, b), vertex a is called as initial

vertex while vertex b is called as terminal vertex. A directed

graph may contain a loop edge, but it cannot contain multi-

edges.

Fig.2 Graph (a) undirected graph, (b) directed graph

III. FINDING PATH OF TWO VERTEX WITH LOWEST

TOTAL WEIGHT USING BELLMAN-FORD ALGORITHM

A. Bellman-Ford Algorithm [3]-[5]

Bellman-Ford algorithm is used to find a path from a single

vertex in a weighted-directed graph (single source shortest path)

to any other vertices in the graph. This algorithm allows for

negative weights on the edges of the graph. However, there

cannot exist negative cycles, which is a circuit in a graph with

total weights less than 0. This algorithm is designed for directed

graphs, but it is also applicable on undirected graphs.

To use Bellman-Ford algorithm on an undirected graph, some

adjustments are needed. For every edges E in an undirected

graph G, a directed edge is created from both endpoints. For

example, for an edge E = (a, b) in an undirected graph G, edge

(a, b) and edge (b, a) is created, both with the same weight as

the weight of E.

B. Finding Path of Two Vertex with Lowest Weight [4], [5]

Bellman-Ford algorithm works by doing an overestimation on

the shortest path from a vertex to the other vertices in the graph.

Then, the algorithm does an iteration |V| - 1 times. These

iterations are called relaxations. In these relaxations, the

algorithm finds new paths with lower weights from the source

vertex to all other vertices. The pseudocode of Bellman-Ford

algorithm is given below.

Fig. 3 Pseudocode of Bellman-Ford algorithm.

Source: https://www.programiz.com/dsa/bellman-ford-

algorithm

The given pseudocode also keeps track of the previous vertex

of the path to a vertex.

The algorithm may be divided into two parts, initialization

and relaxation. On the initialization, the algorithm

overestimates the distance from source Vertex S to any other

vertices by setting all distance value to infinity except the

distance to Vertex S itself, which is set to 0. It also sets the

previous vertex to NULL. On the relaxation, the algorithm starts

to find the lower-weighted paths, which will lead to the lowest-

weighted paths in the end. The iterations in relaxation part

should be done only |V| - 1 times, and each of these iterations

https://www.programiz.com/dsa/bellman-ford-algorithm
https://www.programiz.com/dsa/bellman-ford-algorithm

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

represents the number of edges involved in the lowest-weighted

path produced. This means that the-nth iteration will produce the

lowest-weighted paths that at most involves n edges. The

illustration of how this algorithm works will be shown later.

IV. MODELING OF INTERCITY TRANSPORTATION INTO A

GRAPH

A. Problem Explanation

In this paper, an example problem will be given and

modeled. Given a set of cities C1, C2, C3, C4, C5. Each of these

cities are connected through different modes of intercity

transportations. In this example, the cities are connected as

follows:

• C1 is connected to C2 by a plane with the cost of Rp.

700.000,00- , connected to C5 by a train with the

cost of Rp. 200.000,00-, and connected to C4 by a

plane with the cost of Rp. 800.000,00-.

• C2 is connected to C1 by the same plane before that

goes in reverse, connected to C3 by a bus with the

cost of Rp. 100.000,00-, connected to C4 by a train

with the cost of Rp. 250.000,00-, and connected to

C5 by a plane with the cost of Rp. 1.300.000,00-.

• C3 is connected to C2 by the same bus that goes in

reverse and connected to C4 by bus with the cost of

Rp. 50.000,00-.

• C4 is connected to C1 by the same plane that goes in

reverse, connected to C2 by the same train that goes

in reverse, connected to C3 by the same bus that

goes in reverse, and connected to C5 by plane with

the cost of Rp. 1.600.000,00-.

• C5 is connected to C1 by the same train that goes in

reverse, connected to C2 by the same plane that goes

in reverse, and connected to C4 by the same plane

that goes in reverse.

The following table will show the connections between each

cities which will be denoted by the cost of travels and the

transportation modes. Each element represents a pair of

transportation modes and cost of travel (in thousand rupiahs).

 C1 C2 C3 C4 C5

C1 (-, 0) (P, 700) (-, -) (P, 800) (T, 200)

C2 (P, 700) (-, 0) (B, 100) (T, 250) (P, 1300)

C3 (-, -) (B, 100) (-, 0) (B, 50) (-, -)

C4 (P, 800) (T, 250) (B, 50) (-, 0) (P, 1600)

C5 (T, 200) (P, 1300) (-, -) (P, 1600) (-, 0)

Table. I Connection between cities in the example.
B: Bus

P: Plane

T: Train

B. Modeling the Intercity Transportation Modes into

Graph

For the given example problem before, will be created a

model that may explain the situation. In order to model the

problem into a graph, the vertices and and the edges need to be

determined first. In this problem, the cities will be modeled as

vertices on the graph and the connections between cities will be

modeled as edges between each vertex.

By modeling the cities from C1, C2, C3, C4, and C5 into

vertices, we will get a graph with five vertices, which will mean

that |V| = 5. For the edges, a few adjustments are needed since

the data does not only contain weight for the edges, but also the

type of transportation mode represented by the edge itself. For

this, a pair of transportation mode and cost will become the

component of an edge in the graph.

Using the model explained before, a graph model of the

example problem may be created as follows.

Fig. 4 Graph model on the example problem

B: Bus

P: Plane

T: Train

In Fig. 4, the graph model of the example problem can be

seen, with each vertices representing each cities, and each edges

representing connections between each cities, containing the

transportation mode and weighted cost.

V. APPLICATION OF BELLMAN-FORD ALGORITHM IN

DETERMINING THE ROUTE BETWEEN TWO CITIES AT

LOWEST COST

By using Bellman-Ford algorithm, the path between vertices

in a weighted-directed graph may be determined. The algorithm

will be used on the previous graph model of intercity

transportation modes.

However, since the previous graph model is still a weighted-

undirected graph, it still needs to be converted into a weighted-

directed graph that still holds the exact same information as

before. To do this, for every edge in the graph model, will be

created a directed edge that connects both endpoints, with the

exact same weight. For example, the undirected edge (C1, C2)

may be converted into two edges, (C1, C2) and (C2, C1), with the

exact same weight for both edges, which is (P, 700). The

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

resulting weighted-directed paragraph is as follows.

Fig. 5 Graph model on the example problem

B: Bus

P: Plane

T: Train

The graph in Fig. 5 is now a weighted-directed graph version

of the previous graph model in Fig. 4. With this graph, the

Bellman-Ford algorithm may be used to find the path with

lowest cost from a vertex to any other vertices.

In this example, the path with the lowest cost from city C5 to

city C3 will be sought. As explained before, the Bellman-Ford

algorithm will first overestimate the cost from the source vertex

to any other vertices, and set the distance to itself to 0. In order

to make the process easier to understand, an illustration will be

used. The table shows the distances from C5 to all vertices in the

graph and the previous vertex to reach the target vertex.

Vertex C5 C1 C2 C3 C4

Distance 0 ~ ~ ~ ~

Previous - - - - -

Table. II Initialization process.

After the initialization process, the Bellman-Ford algorithm

continues to the relaxation part. In this part, the algorithm will

do iterations |V| - 1 times. In this example problem, since we

have five vertices (|V| = 5), the algorithm will iterate the

relaxation |V| - 1 times which is four times.

The iteration of this relaxation part will iterate each vertex in

the weighted-directed graph, and will run through all the edges.

The way to illustrate this is by imagining a pointer to the current

vertex. The pointer will iterate through all vertices in the graph.

In that iteration, the algorithm will check all edges that connects

the current vertex pointed to any other vertices, and check the

cost.

Fig. 6 Pointer is currently pointing to Vertex C5.

In Fig.6, the pointer is currently pointing to Vertex C5. The

Bellman-Ford algorithm then checks every edges that originates

from Vertex C5 to any other vertices. In Fig. 5, it shown that

there are three edges from Vertex C5 to other vertices, namely

edges (C5, C1), (C5, C2), and (C5, C4), all with different weights.

The algorithm then loops through those edges, and updates the

distance table if the distance from the current pointed vertex to

the target vertex added with current pointed vertex cost is lower

than the one currently saved in the table. For example, the edge

(C5, C1) has the cost of 200 and the current pointed vertex has

the cost of 0. From Table. II it is known that the currently saved

distance from C5 to C1 is ~ (infinite). That means the condition

is fulfilled and the table is updated. The process of updating the

table involves changing the distance and the previous vertex, in

this case, the distance is 200 and previous vertex is set to C5.

Continuing the next edge (C5, C2), this edge costs 1300 and the

current cost to currently pointed vertex is 0, these adds to 1300,

which is also less than ~ (infinite), thus the table is updated

again. To the next edge (C5, C4), this edge has the weight of 1600

and added with currently pointed vertex cost becomes 1600,

which is again less than ~ (infinite), and the table is updated. All

the edges originating from the currently pointed vertex, C5, has

already been iterated. After this iteration, the table becomes as

follows.

Vertex C5 C1 C2 C3 C4

Distance 0 200 1300 ~ 1600

Previous - C5 C5 - C5

Table. III First relaxation, iterating on Vertex C5.

The algorithm continues the iteration. The pointer changes

to another vertex. The order of this vertex iteration does not

really matter, since it is guaranteed that it will always produce

the same path with lowest weight. However, if the algorithm is

optimized, it may affect the order may affect performance since

the iteration may stop earlier in some orders, but this is not a

concern in this paper, because the algorithm used in this paper

is the basic Bellman-Ford algorithm.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Continuing the iteration, the pointer changes to C1. This

currently pointed vertex has edges directing towards vertices C2,

C4, and C5. This means that the table values that may change in

this iteration are only those involving vertex C2, C4, and C5.

From the previous table, the currently pointed vertex costs 200.

Observing edge (C1, C2), the cost is 700, added with currently

pointed vertex, the cost becomes 900, which is less than 1300

from the previous table (the cost from C5 to C2), so the table is

updated. To the next edge, (C1, C4), it costs 800, added with

current cost, the cost becomes 1000. This cost is lower than the

previous cost, which is 1600, thus the table is updated. To the

last edge on the currently pointed vertex, (C1, C5), which costs

200, added with currently cost, it becomes 400. Checking that

cost to the previous value, which is 0, definitely does not satisfy

the condition, and the table is not updated. From this, it is also

discovered that all edges directing toward the source vertex, in

this case C5, does not need to be checked, since it will always

fail the condition, because the graph has no negative weight.

After this current iteration, the table is updated as follows.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 ~ 1000

Previous - C5 C1 - C1

Table. IV First relaxation, iterating on Vertex C1.

The iteration continues onto the third vertex, C2. This vertex

has edges directing to C1, C3, C4, and C5. From the previous

table, this vertex costs 900. For the first edge, (C2, C1), the cost

is 700, added with the current cost, it gets to 1600. This costs

more than what the previous table has, thus the table is not

updated. To the next connection, (C2, C3), it costs 100 and with

current costs becomes 1000. Compared to the previous value on

the table, 1000 is less than ~ (infinite), so the table is updated.

Next, (C2, C4), this costs 250 and added with the current cost

becomes 1050, which is not less than the previous value toward

C4, 1000, so the table is not updated. To the final edge in this

vertex, (C2, C5), this edge is going toward source vertex, so it

may be skipped. After this iteration, the table becomes as

follows.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 1000 1000

Previous - C5 C1 C2 C1

Table. V First relaxation, iterating on Vertex C2.

The algorithm then continues to the next vertex, C3. This

vertex is connected to C2 and C4, and this current vertex costs

1000. For the first pair, (C3, C2), this costs 100, and added with

the current cost, this costs 1100. Comparing this cost to the

previous value on the table, 1100 is not less than 900, thus the

table stays the same. To the pair (C3, C4), it costs 50, and with

the current vertex cost, it becomes 1050. Again, comparing this

value to the previous value on the table, 1050 is not less than

1000, and the table is not updated. The table stays the same as

before, shown as follows.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 1000 1000

Previous - C5 C1 C2 C1

Table. VI First relaxation, iterating on Vertex C3.

Onto the last vertex in the first relaxation, the pointer now

points to Vertex C4, which cost 1000. This vertex is connected

to C1, C2, C3, and C5. The first edge, (C4, C1), this edge costs

800, plus the current cost, it gets to 1800. This cost is higher than

the previous cost, which is 200, so the table is left untouched.

To the next edge, (C4, C2), this costs 250 and with the current

cost becomes 1250. The table holds previous value of 900, so

this edge does not satisfy the condition and the table is

unchanged. For the next edge, (C4, C3), this edge has weight of

50, added with the current cost, it now costs 1050, while the

table holds previous value of 1000, so the table is not updated.

Similar to the previous vertex, this iteration does not update any

value on the table, and the table stays as follows.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 1000 1000

Previous - C5 C1 C2 C1

Table. VII First relaxation, iterating on Vertex C4.

Because all of the vertices have already been iterated, the

first relaxation is finished. The algorithm now enters the second

relaxation, starting all over again, from Vertex C5.

Starting back from C5, this vertex costs 0, and is connected

to C1, C2, and C4. Beginning from pair (C5, C1) which costs 200,

with the current costs, it stays 200. Compared to the previous

value on the table, 200 is not less than 200, thus the table is not

updated. To the next edge (C5, C2) with the cost of 1300, added

with current cost of 0, it still costs 1300. However, the previous

value on the table is 900, so it does not satisfy the condition, and

the table is unchanged. To the edge (C5, C4), this edge weighs

1600, with current cost, it stays 1600, compared to the previous

value of 1000, it also does not satisfy the condition. Because

none of the edge satisfy the condition, the table is unchanged in

the current iteration.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 1000 1000

Previous - C5 C1 C2 C1

Table. VIII Second relaxation, iterating on Vertex C5.

Now, the pointer is pointing to the next vertex, C1. This

vertex costs 200, and has edges towards C2, C4, and C5. The edge

(C1, C2) costs 700, with current vertex cost, it now costs 900,

and compared to previous value, it is not less than 900, so the

table is unchanged. The edge (C1, C4) costs 800, with current

cost becomes 1000, and is not less than previous value of 1000,

so the table is not changed. The next edge (C1, C5) is heading

toward the source vertex and may be skipped. After this

iteration, the table still stays the same, as follows.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 1000 1000

Previous - C5 C1 C2 C1

Table. IX Second relaxation, iterating on Vertex C1.

The pointer then moves to C2, this vertex costs 900, while

being connected to C1, C3, C4, and C5. The edge of (C2, C1) costs

700, and becomes 1600 because of current vertex cost. This does

not satisfy the condition, since the previous value is 200. Next,

edge (C2, C3) with the cost of 100, plus the current vertex cost

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

becomes 1000, and is still not less than 1000. The next pair (C2,

C4) is costing 250, and with the current cost it gets to 1150. This

value is not less than the previous one, which is 1000, thus the

table is not updated. The table is not updated in this iteration

either and stays the same as follows.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 1000 1000

Previous - C5 C1 C2 C1

Table. X Second relaxation, iterating on Vertex C2.

The pointer now is pointing to C3, with the current cost of

1000. This vertex has edges heading to C2 and C4. The first pair

of (C3, C2) costs 100, and costs 1100 with the current vertex cost,

which is not less than the previous 900. Now, the pair (C3, C4)

weighs 50, and becomes 1050 because of the current vertex cost.

This is no less than 1000, the previous value. The table is not

changed in this iteration and stays the same as follows.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 1000 1000

Previous - C5 C1 C2 C1

Table. XI Second relaxation, iterating on Vertex C3.

The algorithm continues to Vertex C4, with current cost of

1000. This vertex is connected to C1, C2, C3, and C5. The edge

of (C4, C1) costs 800, and becomes 1800 with current vertex

cost. It is definitely not less than 200. For edge (C4, C2) that costs

250, added with 1000 from current vertex cost, now it costs

1250. Compared to 900 from the previous value, it does not

satisfy the condition. To the edge (C4, C3), this edge weighs 50,

with total of 1050 because of the current vertex cost. Comparing

it to 1000 from the previous value shows that it does not satisfy

the condition, thus the table is not updated. This iteration does

not change the table, and it stays as follows.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 1000 1000

Previous - C5 C1 C2 C1

Table. XII Second relaxation, iterating on Vertex C4.

This ends the second relaxation. The Bellman-Ford

algorithm will continue to the third relaxation, starting from the

beginning vertex again. However, since the second relaxation

does not update the table at all, the third and fourth relaxations

will not update.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 1000 1000

Previous - C5 C1 C2 C1

Table. XIII The table after third relaxation.

Vertex C5 C1 C2 C3 C4

Distance 0 200 900 1000 1000

Previous - C5 C1 C2 C1

Table. XIV The table after fourth relaxation.

After doing |V| - 1 relaxations, which is four times, the

algorithm finally found the path from source Vertex C5 to any

other vertices on the graph with the lowest total of weight. From

Table. XIV, it is shown that the path with lowest total weight

from Vertex C5:

1. C5 to C5 (itself) costs 0,

2. C5 to C1 costs 200,

3. C5 to C2 costs 900,

4. C5 to C3 costs 1000, and

5. C5 to C4 costs 1000.

To find out the route with lowest weight, a stack data structure

will be used. For example, the route from C5 to C3 with the

lowest weight may be traced through this method. First, push C3

to the stack and go to the data in the table that holds C3, then

check the previous vertex of that target vertex, which is C2. Push

Vertex C2 to the stack. Now continue to find the data of C2 on

the table and check the previous vertex. Vertex C1 is the

previous vertex in this route that leads to C2, thus C1 is pushed

to the stack. Continuing by finding the data of C1, the previous

vertex is C5. Thus, C5 is pushed to the stack. This process is

actually looped from the target vertex until the source vertex is

found and pushed to the stack. Now, a stack is produced as

follows.

Fig. 7 Stack produced for path from C5 to C3.

The stack now represents the vertex that is passed by the route

with the lowest weight from Vertex C5 to C3. To access the path,

the stack is popped, until the stack is empty and the target vertex

is reached.

With the Bellman-Ford algorithm, the route for intercity

transportation modes with the lowest cost may be determined.

From the example, it has been found out that from city C5 to city

C3, the route that has the lowest cost is through city C5 to city

C1, then go through city C5, and arrive at city C5. This route will

cost Rp. 1.000.000,00-. The transportation mode may also be

found out since the edge has been adjusted to suit the needs of

the graph model of this intercity transportation modes. As

example again, to go from city C5 to C3, the best route that costs

the least is by Train from C5 to C1, then continues by plane to

C2, and finally arrive to C3 by bus.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

VI. CONCLUSION

Graph has many applications in modeling various problems.

In this paper, graph is used to model intercity transportation

modes. This graph model makes the system easier to understand

and allows for procedural and mathematical approach to find

solutions for various problem involving the modeled system.

For example, the graph model of intercity transportation modes

allows procedural approach to determine the route between two

cities that costs the least. The graph model in this paper still only

involves costs and is still a very simplistic approach to the

problem. However, this also proves that graph modeling allows

for better approach in finding solutions and this model may also

be developed even further to consider other factors of

transportations.

VII. ACKNOWLEDGMENT

The author of this paper thanks the lecturer of the authors

class of Discrete Mathematics, Dr. Rinaldi Munir, for the

knowledge shared and taught in the class and also the guidance

that allows the author to finish this paper. The author also thanks

all the authors of the references, also to others that may have

helped the making of this paper directly and indirectly.

REFERENCES

[1] Rosen, K. H. (2011). Discrete Mathematics and Its Applications 7th

Edition. New York, NY: McGraw-Hill Education.

[2] Munir, R. (2009). Matematika Diskrit. Bandung: Informatika Bandung.
[3] Bellman, R. (1958). On a routing problem. Quarterly of Applied

Mathematics. 16(1). 87-90. DOI: 10.1090/qam/102435

[4] Bellman-Ford Algorithm | DP-23. Retrieved from
https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/

[5] Bellman Ford’s Algorithm. Retrieved from

https://www.programiz.com/dsa/bellman-ford-algorithm

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 10 Desember 2018

Aidil Rezjki Suljztan Syawaludin

13517070

