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Abstract—Transportation has always been one of the vital 

aspects in human lives. Moreover, human, as social creatures, 

needs other humans. However, most people are separated by 

geographical features. This encourages transportation to develop. 

In this modern era, transportation systems have become more 

complex as technology progresses. This paper will create a 

simplistic graph model of intercity transportation modes and 

determine the route of two cities in the system that has the lowest 

cost. The model will be based on weighted and directed graph, with 

a few adjustments. To determine the route of two cities at the lowest 

cost, Bellman-Ford algorithm will be used. 
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I.   INTRODUCTION 

Transportation has always been one of the vital aspects in 

human lives. In this era, people are living more connected than 

ever before. Most people on earth are living geographically 

separated. However, this proves to not be an obstacle as 

mankind progresses. The invention of various transportation 

means, from the use of animals such as horses, the invention of 

wheels, the first sailing boat, to the sophisticated means of travel 

such as airplanes, allows people from all around the world to 

travel from places far away. 

Human is by nature a social creature. That is, human needs 

other humans. This simple reason might be the one that mostly 

encourages transportation. Most people are disconnected by 

geographic features. This is where transportation comes into 

play. To allow people to get to different places that is either too 

far away to walk, or is just simply disconnected geographically, 

people need means of transportation. 

Trade is also a factor. As people are separated in different 

kind of locations, resources available are also different, 

depending on the location. For example, people living in 

Indonesia might be able to obtain woods and logs easily but 

might not be able to get much crude oil and gas. Since those 

resources are needed, yet is not obtainable locally, people need 

to trade. Transportation is needed for people to trade easily, 

since it allows people to move goods from different places. 

Naturally, transportation comes with a cost. Most of the time, 

the distance needed to be traveled matters the most in deciding 

the cost of transportation. The further it is, the higher the cost 

gets. Other factors that may influence the cost are namely speed, 

safety, and comfort. 

As of the current time, there are various modes of 

transportation available for people to use, with different 

advantages and disadvantages, at different costs. Thus, a way to 

help people determine the most suitable mode of transportation 

is needed. This will be useful in applications that need to present 

its users the cheapest route, for example in applications that 

specializes on selling tickets of transportation modes. 

On this paper, will be discussed the modeling of intercity 

transportation modes on a weighted graph. The graph model will 

represent several different cities with edges that represent 

connection between cities and type of transportation, and 

weights that represent cost of travel. In determining the route 

between two different cities at the lowest cost, will be used the 

Bellman-Ford Algorithm. 

 

II.  DEFINITION AND TYPES OF GRAPHS 

A. Definition of Graph [1], [2] 

A graph consists of a nonempty set of vertices V (or nodes) 

and a set of edges E. An edge may connect either one vertex or 

two vertices. Those vertices are called endpoints of an edge. A 

graph is represented by a couple of sets, a set of vertices and a 

set of edges. In this case, we may define a graph G = (V, E). This 

means that graph G consists of a set of vertices V and a set of 

edges E. The number of vertices in a graph is called as graph’s 

cardinality, which is denoted as n = |V|, and the number of edges 

in a graph is denoted as m = |E|. 

As defined before, a graph consists of a nonempty set of 

vertices, which means that a graph must consist of at least one 

vertex. However, a graph may consist of an empty set of edges. 

A graph that consist of one vertex and an empty set of edges is 

called as trivial graph. 

Vertices of a graph may be denoted by alphabet letters, such 

as a, b, c, …, by natural numbers, such as 1, 2, 3, …, or by a 

combination of both. An edge is expressed by a pair of vertices. 

For example, an edge that connects vertex a to vertex b is 

expressed as (a, b). An edge may also be denoted as e1, e2, e3, … 

with each edge representing a pair of vertices. In this case, we 

may define e1 = (a, b), which means that edge e1 connects vertex 

a to vertex b. The order of vertices pair with same vertices in an 

edge might differentiate an edge if the graph is a directed graph. 

This will be discussed in the next part. 
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B. Types of Graph [2] 

There are several ways to classify a graph. The first 

classification of graphs is based on the edges. Based on its edges, 

a graph may be classified into two types: 

 

1. Simple graph 

A graph which consists of no loops and no multi-edge is 

considered as a simple graph. A simple graph consists of 

unordered pair edges, which means that any edges in a simple 

graph has no direction. This also means that in a simple graph, 

an edge (a, b) is the same edge as (b, a). Based on this definition, 

we may define a graph G = (V, E) that consists of a nonempty 

set of vertices V and a set of unordered pairs of vertices referred 

as edges E. 

2. Unsimple graph 

A graph which consists of at least a loop or at least a multi-

edge, or both, is considered as an unsimple graph. A loop itself 

is an edge that has the same endpoints. For example, an edge (a, 

a) is a loop. Multi-edge itself means that in a set of edges, there 

is at least two edges that connects the same vertices. For 

example, a set of edges E that contains edge (a, b) and (a, b) is 

considered a multi-edge set. There are two types of unsimple 

graph (not mutually exclusive, a graph may be both type) which 

are multigraph and pseudograph. A multigraph is a graph that 

consists of at least one multi-edge, while a pseudograph is a 

graph that consists of at least one loop. 

 

 
Fig. 1 Graph (a) simple graph, (b) multigraph, (c) pseudograph 

 

The second classification of graphs is based on the 

orientation of the edges. Based on the direction of its edges, a 

graph may be classified into two types: 

1. Undirected graph 

A graph that consists of edges with no directions is 

considered as an undirected graph. In this type of graph, the 

edges are a set of unordered pairs. This means that if given two 

edges (a, b) and (b, a), both edges are considered as same. 

2. Directed graph (digraph) 

A graph that consists of edges with direction orientation is 

considered as a directed graph. These directed edges may be 

referred to as arcs. In a directed graph, the set of edges E consists 

of ordered pairs. This means that if given two edges (a, b) and 

(b, a), those edges are considered different, which also means 

that (a, b) ≠ (b, a). In an arc (a, b), vertex a is called as initial 

vertex while vertex b is called as terminal vertex. A directed 

graph may contain a loop edge, but it cannot contain multi-

edges. 

 
Fig.2 Graph (a) undirected graph, (b) directed graph 

 

III.   FINDING PATH OF TWO VERTEX WITH LOWEST 

TOTAL WEIGHT USING BELLMAN-FORD ALGORITHM 

A. Bellman-Ford Algorithm [3]-[5] 

Bellman-Ford algorithm is used to find a path from a single 

vertex in a weighted-directed graph (single source shortest path) 

to any other vertices in the graph. This algorithm allows for 

negative weights on the edges of the graph. However, there 

cannot exist negative cycles, which is a circuit in a graph with 

total weights less than 0. This algorithm is designed for directed 

graphs, but it is also applicable on undirected graphs. 

To use Bellman-Ford algorithm on an undirected graph, some 

adjustments are needed. For every edges E in an undirected 

graph G, a directed edge is created from both endpoints. For 

example, for an edge E = (a, b) in an undirected graph G, edge 

(a, b) and edge (b, a) is created, both with the same weight as 

the weight of E. 

 

B. Finding Path of Two Vertex with Lowest Weight [4], [5] 

Bellman-Ford algorithm works by doing an overestimation on 

the shortest path from a vertex to the other vertices in the graph. 

Then, the algorithm does an iteration |V| - 1 times. These 

iterations are called relaxations. In these relaxations, the 

algorithm finds new paths with lower weights from the source 

vertex to all other vertices. The pseudocode of Bellman-Ford 

algorithm is given below. 

 

 
Fig. 3 Pseudocode of Bellman-Ford algorithm. 

Source: https://www.programiz.com/dsa/bellman-ford-

algorithm 

 

The given pseudocode also keeps track of the previous vertex 

of the path to a vertex. 

The algorithm may be divided into two parts, initialization 

and relaxation. On the initialization, the algorithm 

overestimates the distance from source Vertex S to any other 

vertices by setting all distance value to infinity except the 

distance to Vertex S itself, which is set to 0. It also sets the 

previous vertex to NULL. On the relaxation, the algorithm starts 

to find the lower-weighted paths, which will lead to the lowest-

weighted paths in the end. The iterations in relaxation part 

should be done only |V| - 1 times, and each of these iterations 

https://www.programiz.com/dsa/bellman-ford-algorithm
https://www.programiz.com/dsa/bellman-ford-algorithm


Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019 

 

represents the number of edges involved in the lowest-weighted 

path produced. This means that the-nth iteration will produce the 

lowest-weighted paths that at most involves n edges. The 

illustration of how this algorithm works will be shown later. 

 

 

IV.  MODELING OF INTERCITY TRANSPORTATION INTO A 

GRAPH 

A. Problem Explanation 

In this paper, an example problem will be given and 

modeled. Given a set of cities C1, C2, C3, C4, C5. Each of these 

cities are connected through different modes of intercity 

transportations. In this example, the cities are connected as 

follows: 

• C1 is connected to C2 by a plane with the cost of Rp. 

700.000,00- , connected to C5 by a train with the 

cost of Rp. 200.000,00-, and connected to C4 by a 

plane with the cost of Rp. 800.000,00-. 

• C2 is connected to C1 by the same plane before that 

goes in reverse, connected to C3 by a bus with the 

cost of Rp. 100.000,00-, connected to C4 by a train 

with the cost of Rp. 250.000,00-, and connected to 

C5 by a plane with the cost of Rp. 1.300.000,00-. 

• C3 is connected to C2 by the same bus that goes in 

reverse and connected to C4 by bus with the cost of 

Rp. 50.000,00-. 

• C4 is connected to C1 by the same plane that goes in 

reverse, connected to C2 by the same train that goes 

in reverse, connected to C3 by the same bus that 

goes in reverse, and connected to C5 by plane with 

the cost of Rp. 1.600.000,00-. 

• C5 is connected to C1 by the same train that goes in 

reverse, connected to C2 by the same plane that goes 

in reverse, and connected to C4 by the same plane 

that goes in reverse. 

 

The following table will show the connections between each 

cities which will be denoted by the cost of travels and the 

transportation modes. Each element represents a pair of 

transportation modes and cost of travel (in thousand rupiahs). 

 

 C1 C2 C3 C4 C5 

C1 (-, 0) (P, 700) (-, -) (P, 800) (T, 200) 

C2 (P, 700) (-, 0) (B, 100) (T, 250) (P, 1300) 

C3 (-, -) (B, 100) (-, 0) (B, 50) (-, -) 

C4 (P, 800) (T, 250) (B, 50) (-, 0) (P, 1600) 

C5 (T, 200) (P, 1300) (-, -) (P, 1600) (-, 0) 

Table. I Connection between cities in the example. 
B: Bus 

P: Plane 

T: Train 

 

B. Modeling the Intercity Transportation Modes into 

Graph 

 

For the given example problem before, will be created a 

model that may explain the situation. In order to model the 

problem into a graph, the vertices and and the edges need to be 

determined first. In this problem, the cities will be modeled as 

vertices on the graph and the connections between cities will be 

modeled as edges between each vertex. 

By modeling the cities from C1, C2, C3, C4, and C5 into 

vertices, we will get a graph with five vertices, which will mean 

that |V| = 5. For the edges, a few adjustments are needed since 

the data does not only contain weight for the edges, but also the 

type of transportation mode represented by the edge itself. For 

this, a pair of transportation mode and cost will become the 

component of an edge in the graph. 

Using the model explained before, a graph model of the 

example problem may be created as follows. 

 

 
Fig. 4 Graph model on the example problem 

B: Bus 

P: Plane 

T: Train 

 

In Fig. 4, the graph model of the example problem can be 

seen, with each vertices representing each cities, and each edges 

representing connections between each cities, containing the 

transportation mode and weighted cost. 

 

 

V. APPLICATION OF BELLMAN-FORD ALGORITHM IN 

DETERMINING THE ROUTE BETWEEN TWO CITIES AT 

LOWEST COST 

By using Bellman-Ford algorithm, the path between vertices 

in a weighted-directed graph may be determined. The algorithm 

will be used on the previous graph model of intercity 

transportation modes. 

However, since the previous graph model is still a weighted-

undirected graph, it still needs to be converted into a weighted-

directed graph that still holds the exact same information as 

before. To do this, for every edge in the graph model, will be 

created a directed edge that connects both endpoints, with the 

exact same weight. For example, the undirected edge (C1, C2) 

may be converted into two edges, (C1, C2) and (C2, C1), with the 

exact same weight for both edges, which is (P, 700). The 
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resulting weighted-directed paragraph is as follows. 

 
Fig. 5 Graph model on the example problem 

B: Bus 

P: Plane 

T: Train 

 

The graph in Fig. 5 is now a weighted-directed graph version 

of the previous graph model in Fig. 4. With this graph, the 

Bellman-Ford algorithm may be used to find the path with 

lowest cost from a vertex to any other vertices. 

In this example, the path with the lowest cost from city C5 to 

city C3 will be sought. As explained before, the Bellman-Ford 

algorithm will first overestimate the cost from the source vertex 

to any other vertices, and set the distance to itself to 0. In order 

to make the process easier to understand, an illustration will be 

used. The table shows the distances from C5 to all vertices in the 

graph and the previous vertex to reach the target vertex. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 ~ ~ ~ ~ 

Previous - - - - - 

Table. II Initialization process. 

 

After the initialization process, the Bellman-Ford algorithm 

continues to the relaxation part. In this part, the algorithm will 

do iterations |V| - 1 times. In this example problem, since we 

have five vertices (|V| = 5), the algorithm will iterate the 

relaxation |V| - 1 times which is four times. 

The iteration of this relaxation part will iterate each vertex in 

the weighted-directed graph, and will run through all the edges. 

The way to illustrate this is by imagining a pointer to the current 

vertex. The pointer will iterate through all vertices in the graph. 

In that iteration, the algorithm will check all edges that connects 

the current vertex pointed to any other vertices, and check the 

cost. 

 
Fig. 6 Pointer is currently pointing to Vertex C5. 

 

In Fig.6, the pointer is currently pointing to Vertex C5. The 

Bellman-Ford algorithm then checks every edges that originates 

from Vertex C5 to any other vertices. In Fig. 5, it shown that 

there are three edges from Vertex C5 to other vertices, namely 

edges (C5, C1), (C5, C2), and (C5, C4), all with different weights. 

The algorithm then loops through those edges, and updates the 

distance table if the distance from the current pointed vertex to 

the target vertex added with current pointed vertex cost is lower 

than the one currently saved in the table. For example, the edge 

(C5, C1) has the cost of 200 and the current pointed vertex has 

the cost of 0. From Table. II it is known that the currently saved 

distance from C5 to C1 is ~ (infinite). That means the condition 

is fulfilled and the table is updated. The process of updating the 

table involves changing the distance and the previous vertex, in 

this case, the distance is 200 and previous vertex is set to C5. 

Continuing the next edge (C5, C2), this edge costs 1300 and the 

current cost to currently pointed vertex is 0, these adds to 1300, 

which is also less than ~ (infinite), thus the table is updated 

again. To the next edge (C5, C4), this edge has the weight of 1600 

and added with currently pointed vertex cost becomes 1600, 

which is again less than ~ (infinite), and the table is updated. All 

the edges originating from the currently pointed vertex, C5, has 

already been iterated. After this iteration, the table becomes as 

follows. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 1300 ~ 1600 

Previous - C5 C5 - C5 

Table. III First relaxation, iterating on Vertex C5. 

 

The algorithm continues the iteration. The pointer changes 

to another vertex. The order of this vertex iteration does not 

really matter, since it is guaranteed that it will always produce 

the same path with lowest weight. However, if the algorithm is 

optimized, it may affect the order may affect performance since 

the iteration may stop earlier in some orders, but this is not a 

concern in this paper, because the algorithm used in this paper 

is the basic Bellman-Ford algorithm. 
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Continuing the iteration, the pointer changes to C1. This 

currently pointed vertex has edges directing towards vertices C2, 

C4, and C5. This means that the table values that may change in 

this iteration are only those involving vertex C2, C4, and C5. 

From the previous table, the currently pointed vertex costs 200. 

Observing edge (C1, C2), the cost is 700, added with currently 

pointed vertex, the cost becomes 900, which is less than 1300 

from the previous table (the cost from C5 to C2), so the table is 

updated. To the next edge, (C1, C4), it costs 800, added with 

current cost, the cost becomes 1000. This cost is lower than the 

previous cost, which is 1600, thus the table is updated. To the 

last edge on the currently pointed vertex, (C1, C5), which costs 

200, added with currently cost, it becomes 400. Checking that 

cost to the previous value, which is 0, definitely does not satisfy 

the condition, and the table is not updated. From this, it is also 

discovered that all edges directing toward the source vertex, in 

this case C5, does not need to be checked, since it will always 

fail the condition, because the graph has no negative weight. 

After this current iteration, the table is updated as follows. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 ~ 1000 

Previous - C5 C1 - C1 

Table. IV First relaxation, iterating on Vertex C1. 

 

The iteration continues onto the third vertex, C2. This vertex 

has edges directing to C1, C3, C4, and C5. From the previous 

table, this vertex costs 900. For the first edge, (C2, C1), the cost 

is 700, added with the current cost, it gets to 1600. This costs 

more than what the previous table has, thus the table is not 

updated. To the next connection, (C2, C3), it costs 100 and with 

current costs becomes 1000. Compared to the previous value on 

the table, 1000 is less than ~ (infinite), so the table is updated. 

Next, (C2, C4), this costs 250 and added with the current cost 

becomes 1050, which is not less than the previous value toward 

C4, 1000, so the table is not updated. To the final edge in this 

vertex, (C2, C5), this edge is going toward source vertex, so it 

may be skipped. After this iteration, the table becomes as 

follows. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 1000 1000 

Previous - C5 C1 C2 C1 

Table. V First relaxation, iterating on Vertex C2. 

 

The algorithm then continues to the next vertex, C3. This 

vertex is connected to C2 and C4, and this current vertex costs 

1000. For the first pair, (C3, C2), this costs 100, and added with 

the current cost, this costs 1100. Comparing this cost to the 

previous value on the table, 1100 is not less than 900, thus the 

table stays the same. To the pair (C3, C4), it costs 50, and with 

the current vertex cost, it becomes 1050. Again, comparing this 

value to the previous value on the table, 1050 is not less than 

1000, and the table is not updated. The table stays the same as 

before, shown as follows. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 1000 1000 

Previous - C5 C1 C2 C1 

Table. VI First relaxation, iterating on Vertex C3. 

Onto the last vertex in the first relaxation, the pointer now 

points to Vertex C4, which cost 1000. This vertex is connected 

to C1, C2, C3, and C5. The first edge, (C4, C1), this edge costs 

800, plus the current cost, it gets to 1800. This cost is higher than 

the previous cost, which is 200, so the table is left untouched. 

To the next edge, (C4, C2), this costs 250 and with the current 

cost becomes 1250. The table holds previous value of 900, so 

this edge does not satisfy the condition and the table is 

unchanged. For the next edge, (C4, C3), this edge has weight of 

50, added with the current cost, it now costs 1050, while the 

table holds previous value of 1000, so the table is not updated. 

Similar to the previous vertex, this iteration does not update any 

value on the table, and the table stays as follows. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 1000 1000 

Previous - C5 C1 C2 C1 

Table. VII First relaxation, iterating on Vertex C4. 

 

Because all of the vertices have already been iterated, the 

first relaxation is finished. The algorithm now enters the second 

relaxation, starting all over again, from Vertex C5. 

Starting back from C5, this vertex costs 0, and is connected 

to C1, C2, and C4. Beginning from pair (C5, C1) which costs 200, 

with the current costs, it stays 200. Compared to the previous 

value on the table, 200 is not less than 200, thus the table is not 

updated. To the next edge (C5, C2) with the cost of 1300, added 

with current cost of 0, it still costs 1300. However, the previous 

value on the table is 900, so it does not satisfy the condition, and 

the table is unchanged. To the edge (C5, C4), this edge weighs 

1600, with current cost, it stays 1600, compared to the previous 

value of 1000, it also does not satisfy the condition. Because 

none of the edge satisfy the condition, the table is unchanged in 

the current iteration. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 1000 1000 

Previous - C5 C1 C2 C1 

Table. VIII Second relaxation, iterating on Vertex C5. 

 

Now, the pointer is pointing to the next vertex, C1. This 

vertex costs 200, and has edges towards C2, C4, and C5. The edge 

(C1, C2) costs 700, with current vertex cost, it now costs 900, 

and compared to previous value, it is not less than 900, so the 

table is unchanged. The edge (C1, C4) costs 800, with current 

cost becomes 1000, and is not less than previous value of 1000, 

so the table is not changed. The next edge (C1, C5) is heading 

toward the source vertex and may be skipped. After this 

iteration, the table still stays the same, as follows. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 1000 1000 

Previous - C5 C1 C2 C1 

Table. IX Second relaxation, iterating on Vertex C1. 

 

The pointer then moves to C2, this vertex costs 900, while 

being connected to C1, C3, C4, and C5. The edge of (C2, C1) costs 

700, and becomes 1600 because of current vertex cost. This does 

not satisfy the condition, since the previous value is 200. Next, 

edge (C2, C3) with the cost of 100, plus the current vertex cost 
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becomes 1000, and is still not less than 1000. The next pair (C2, 

C4) is costing 250, and with the current cost it gets to 1150. This 

value is not less than the previous one, which is 1000, thus the 

table is not updated. The table is not updated in this iteration 

either and stays the same as follows. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 1000 1000 

Previous - C5 C1 C2 C1 

Table. X Second relaxation, iterating on Vertex C2. 

 

The pointer now is pointing to C3, with the current cost of 

1000. This vertex has edges heading to C2 and C4. The first pair 

of (C3, C2) costs 100, and costs 1100 with the current vertex cost, 

which is not less than the previous 900. Now, the pair (C3, C4) 

weighs 50, and becomes 1050 because of the current vertex cost. 

This is no less than 1000, the previous value. The table is not 

changed in this iteration and stays the same as follows. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 1000 1000 

Previous - C5 C1 C2 C1 

Table. XI Second relaxation, iterating on Vertex C3. 

 

The algorithm continues to Vertex C4, with current cost of 

1000. This vertex is connected to C1, C2, C3, and C5. The edge 

of (C4, C1) costs 800, and becomes 1800 with current vertex 

cost. It is definitely not less than 200. For edge (C4, C2) that costs 

250, added with 1000 from current vertex cost, now it costs 

1250. Compared to 900 from the previous value, it does not 

satisfy the condition. To the edge (C4, C3), this edge weighs 50, 

with total of 1050 because of the current vertex cost. Comparing 

it to 1000 from the previous value shows that it does not satisfy 

the condition, thus the table is not updated. This iteration does 

not change the table, and it stays as follows. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 1000 1000 

Previous - C5 C1 C2 C1 

Table. XII Second relaxation, iterating on Vertex C4. 

 

This ends the second relaxation. The Bellman-Ford 

algorithm will continue to the third relaxation, starting from the 

beginning vertex again. However, since the second relaxation 

does not update the table at all, the third and fourth relaxations 

will not update. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 1000 1000 

Previous - C5 C1 C2 C1 

Table. XIII The table after third relaxation. 

 

Vertex C5 C1 C2 C3 C4 

Distance 0 200 900 1000 1000 

Previous - C5 C1 C2 C1 

Table. XIV The table after fourth relaxation. 

 

After doing |V| - 1 relaxations, which is four times, the 

algorithm finally found the path from source Vertex C5 to any 

other vertices on the graph with the lowest total of weight. From 

Table. XIV, it is shown that the path with lowest total weight 

from Vertex C5: 

1. C5 to C5 (itself) costs 0, 

2. C5 to C1 costs 200, 

3. C5 to C2 costs 900, 

4. C5 to C3 costs 1000, and 

5. C5 to C4 costs 1000. 

 

To find out the route with lowest weight, a stack data structure 

will be used. For example, the route from C5 to C3 with the 

lowest weight may be traced through this method. First, push C3 

to the stack and go to the data in the table that holds C3, then 

check the previous vertex of that target vertex, which is C2. Push 

Vertex C2 to the stack. Now continue to find the data of C2 on 

the table and check the previous vertex. Vertex C1 is the 

previous vertex in this route that leads to C2, thus C1 is pushed 

to the stack. Continuing by finding the data of C1, the previous 

vertex is C5. Thus, C5 is pushed to the stack. This process is 

actually looped from the target vertex until the source vertex is 

found and pushed to the stack. Now, a stack is produced as 

follows. 

 

 
Fig. 7 Stack produced for path from C5 to C3. 

 

The stack now represents the vertex that is passed by the route 

with the lowest weight from Vertex C5 to C3. To access the path, 

the stack is popped, until the stack is empty and the target vertex 

is reached. 

With the Bellman-Ford algorithm, the route for intercity 

transportation modes with the lowest cost may be determined. 

From the example, it has been found out that from city C5 to city 

C3, the route that has the lowest cost is through city C5 to city 

C1, then go through city C5, and arrive at city C5. This route will 

cost Rp. 1.000.000,00-. The transportation mode may also be 

found out since the edge has been adjusted to suit the needs of 

the graph model of this intercity transportation modes. As 

example again, to go from city C5 to C3, the best route that costs 

the least is by Train from C5 to C1, then continues by plane to 

C2, and finally arrive to C3 by bus. 
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VI.   CONCLUSION 

Graph has many applications in modeling various problems. 

In this paper, graph is used to model intercity transportation 

modes. This graph model makes the system easier to understand 

and allows for procedural and mathematical approach to find 

solutions for various problem involving the modeled system. 

For example, the graph model of intercity transportation modes 

allows procedural approach to determine the route between two 

cities that costs the least. The graph model in this paper still only 

involves costs and is still a very simplistic approach to the 

problem. However, this also proves that graph modeling allows 

for better approach in finding solutions and this model may also 

be developed even further to consider other factors of 

transportations. 
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