
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Application of Minimum Spanning Tree in Edge

Detection

Aditya Putra Santosa - 13517013

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

adityaputrasantosa@itb.ac.id

Abstract—Computer vision is a terminology used when a

computer extract meaningful information from an image, such as

what object is in there or how many car in in the image. One of

the important process of computer vision is edge detection, where

the image is transformed into just the boundary of object that is

in the image. In this paper, we will discuss the application of

Minimum Spanning Tree in edge detection. We will use C++ and

OpenCV to demonstrate the edge detection. OpenCV is a library

that is typically used for image processing, but in here we will use

it only as a way to convert color, access pixel data of an image and

show it to the user.

Keywords—computer vision, edge detection, graph, minimum

spanning tree.

I. INTRODUCTION

With the increasing development of technology that is in the

area of computer graphic and also in artificial intelligence,

computer vision is becoming a trending topic now. Many thing

have used computer vision as it’s core, such as in speed

camera, instagram filter, self-driving car, face recognition,

google image search, and many more. All of those things have

one thing in common, they all used Object Detection.

It is easy for us human to detect and distinguish an object in

an image, but for a computer, an image is just a bunch of

number that represent a bunch of color. Computer may use

algorithm such as machine learning to distinguish an object but

there is also another way for computer to detect an object, that

is by checking the object shape and match it with all the shape

in the image. By using edge detection, the image will be

transformed into a bunch of object shape that is visible in the

image. For example, a ball will become a circle, or a half circle

if the ball is only half visible in the image.

There are many ways to do edge detection, such as using

Canny Edge Detector, Sobel Filter, Prewitt, or even by using

Minimum Spanning Tree. The advantage of using Minimum

Spanning Tree is it’s easier to implement and easier to explain.

We just need to find all the potential pixel that may be an edge

and insert it into the graph,then we can use Kruskall Algorithm

(O(E log V) in general) to find the path that connect all the

potential pixel with minimum distance between each

neighboring pixel.

II. GRAPH, TREE, MINIMUM SPANNING TREE

A. Graph

Graph is a pair of set (V,E) where V stand for non-

empty set of vertices and E stand for set of edge that connect

pair of vertices [1]. Two vertices is said to be adjacent iff

there is at least one edge connecting both of them.

Graph can be classified by it’s properties. A graph that

doesn’t have any edge that connect vertex V to V (loop) or

multiple edge that connect two vertices is called simple

graph, otherwise it is called unsimple-graph. Graph whose

edge doesn’t have any direction is called undirected graph,

otherwise it is called directed graph. In a directed graph the

edges have start point and endpoint that show the source and

destination of the edges. One cannot simply traverse from

the destination to source in directed graph unless there is a

path / edge from destination to source. Another properties of

graph is weight. Graph that have weight on their edges is

called weighted graph, otherwise it is called unweighted

graph. The weight in edge is use to convey information

about the two vertices that is connected by the edge. The

graph that we will use later in this paper is simple,

undirected, and weighted graph.

Graph, like other data structure has representation that

will be used to describe the graph in program. Such

representation is adjacency list, adjacency matrix, and list of

edges and vertices.

Adjacency list is a way to describe a graph by storing

information of every vertex u that is adjacent to vertex v in

v’s adjacency list. A vertex a and b is said to be adjacent iff

there is b in a’s adjacency list, if the graph is undirected then

a also have to be in b’s adjacency list, otherwise it is

possible for a not to be in b’s adjacency list, it implies that

there is a edge from a to b, but no edge from b to a. In a

weighted graph, the adjacency list will be filled with tuple(u,

w) where u is a vertex and w is the weight of the edge.

Adjacency matrix is a two-dimensional array (matrix)

that have same number of row and column that is the

number of vertices in the graph. Vertex v and u is said to be

adjacent iff is not 0, where M is the adjacency matrix

and i,j is the id of vertex v and u respectively. In an

unweighted graph we can simply put 1 in the cell if there are

edge between two vertex and 0 otherwise. In a weighted

graph, we have to assign the weight of the edge as the value

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

of the cell and 0 if there are no edge connecting both vertex.

 List of edges and vertices is a way to describe a graph

by using two list E and V where E contain all the edge in the

graph and V contain all the vertices in the graph. The edge in E

is shown as a 3-tuple(u, v, w) where u and v show the vertex of

the edge and w is the weight. If the graph is unweighted graph

we can simply set all the weight of the edges to be the same.

Two vertex u and v is said to be adjacent iff there is a tuple (u,

v, w) in E. In this paper, we will use list of edges and vertices

as a way to describe the graph in the program.

 Graph G’ = (V’, E’) is said to be a sub-graph of G =

(V, E) iff V’ is subset of V and E’ is subset of E . Graph G” =

(V”,E”) is said to be complement of G’ iff V” = V – V’ and

E” = E – E’ [1].

Subgraph G’ = (V’, E’) is said to be a spanning

subgraph of G = (V, E) iff V’ = V [1]. This property is

important in this paper, as the graph that we will produces is a

spanning subgraph.

 Another terminology for graph is path. Path that has

length n from to is a sequence of vertex and edge

() such that is an

edge in graph [1]. Two vertex is said to be connected if there is

a path between them.

 Cycle and circuit is a path that end in the same vertex

as the start [1]. A graph that doesn’t have any cycle / circuit is

called a Tree which we will discuss after this.

B. Tree

 Tree is simply a connected undirected graph that

doesn’t have any cycle / circuit [2]. By that definition we can

see that every vertex had a path to another vertex except itself.

 A graph that have multiple trees inside of them are

called a forest. We can always make a forest from a tree just by

removing one or more edges.

 In the practice, we usually defined a vertex to be the

root of the tree. By doing this, we have create a rooted tree,

that is a type of tree that have a root and all other root as it’s

child / descendants. Child of u is defined to be all vertex v that

have an edge from u to v. Descendant of u is all vertex v that

has a path from u to v. Inversely, we can say that v is parent of

u iff there is an edge from v to u and v is ancestor of u if there

is a path from v to u. Vertex that doesn’t have any child is

called the leaf of the tree.

 Tree is usually classified by number of child the

vertex can have. By their number of child, a rooted tree is

called an m-ary tree if every vertex have at most m child [2].

The special case of m-ary tree is when m=2, it is called a

binary tree.

C. Minimum Spanning Tree

 Minimum Spanning Tree is a special kind of tree that

contain all vertex in the graph and have smallest possible sum

of edge’s weight [2]. Minimum Spanning Tree has a wide area

of application such as clustering, network design, computer

vision, road planning, and many more. We can use algorithm

such as Kruskal’s or Prim’s.

Figure 1. Example of minimum spanning tree, picture from

Discrete Mathematics and Its Applications, 7th Ed. – Rosen

Kruskal’s algorithm is a greedy algorithm, that is it always

choose available edge with smallest weight and add it to the

resulting tree. We can implement Kruskal’s algorithm by using

Disjoint Set Union(DSU). Kruskal’s algorithm start by

choosing an edge in graph with the minimum weight. Let u dan

v be the vertex of the edge. If u and v is not connected in the

tree and if the addition of the edge will not cause a circuit to

appear, then add the edge to the tree, otherwise discard the

edge. The pseudocode is as follow.

DSU d(numberOfVertices)
 Graph result
sort all edges in graph by weight
for all edge E in graph:
 u = E.startVertex
 v = E.endVertex

If(d.unite(u, v)) then:
 Add E to result

return result

Figure 2. Example of Kruskall’s Algorithm on graph. Image taken

from Discrete Mathematics and Its Applications, 7th Ed. – Rosen

The complexity of the sorting is O(E log E) but it can be

said that the sorting run in O(E log V) because in a tree E is at

most , so O(E log E) = O(E log) = O(E. 2 log V) = O(E

log V). The process unite / union inside the for loop is O(log

V) at most because of the path compression algorithm. So the

for loop run in O(E log V) time. In total the complexity of

Kruskal’s algorithm is O(2.E log V) which is O(E log V).

As for the Disjoint Set Union, we treat the set as a tree such

that two subsets is said to be disjoint if their ancestor is

different. The algorithm to find the ancestor is path

compression algorithm that run in O(log V) time. Path

compression algorithm work recursively, it exploits the

property of tree such that if a is parent of b and b is parent of c

then, a is ancestor of c. We just need to find the parent of the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

parent of the parent… until we reach a vertex that doesn’t have

any parent, that vertex is the ancestor of the vertex that we

search. Below is the pseudo code for the DSU.

DSU(int size):
 for i in [0..size]:
 parent[i] = i
 rank[i] = 0

int getAncestor(int x):
 if(parent[x] <> x):

parent[x] = getAncestor(parent[x])
 return parent[x]

boolean unite(int x, int y):
 x = getAncestor(x)
 y = getAncestor(y)
 if(x <> y):
 //Check the rank, the smaller

rank will become the child
 if(rank[x] < rank[y]):
 rank[y] += rank[x]
 parent[x] = y
 else:
 rank[x] += rank[y]
 parent[y] = x
 return true

 else:
 //Failed, x and y is not disjoint
 return false

In the implementation of Kruskal’s algorithm, it is easier to

use the list of edges and vertices as the representation of the

graph because the need to sort the edges.

Prim’s algorithm is also a greedy algorithm, it has similarity

with Kruskal’s, such as both choose the smallest weight. The

only difference is, while Kruskal’s choose the edge freely,

Prim’s algorithm only choose edge that is incident with the

vertex in the minimum spanning tree. Prim’s algorithm starts

by choosing random starting vertex, flag is as not available,

insert it into the tree and then insert every edges that is incident

with the vertex into a priority queue. Then, while the priority

queue is not empty, take the top edges and insert it into the tree

and also flag the endpoint of the edges as not available. Repeat

until all vertices is not available. Below is the pseudocode.

priority_queue pq
boolean taken[numberOfVertices] = true for

all vertices
Graph result
//We push tuple of int (weight, vertex)
pq.push(0,0)
taken [E[0].start] = false

while pq is not empty:
 t = pq.top
 pq.pop()
 for every edge incident with t.vertex:

if(taken[edge.end]):
taken[edge.end] = false
add edge to result
pq.push(edge.weight, edge.end)

return result

Figure 3. Example of Prim’s Algorithm on graph. Image taken

from Discrete Mathematics and Its Applications, 7th Ed. – Rosen

Same with the Kruskal’s algorithm, Prim’s algorithm run in

O(E log V) time. Because the need of incident edge, Prim’s

algorithm usually use adjacency list as a way to represent the

graph.

In this paper we will use Kruskal’s algorithm to find the

minimum spanning tree because it is easier to implement.

III. EDGE DETECTION

 A. Definition

Edge detection is a technique in image processing to find

the boundary of an object in image by detecting significant

change or discontinuity of brightness / color [3]. In the

practice, people usually used kernel convolution to detect the

change in brightness/color. Convolution in image processing is

defined as a adding each pixel with it’s neighbor with the

weight defined by the kernel. Kernel is matrices of number that

represent the weight of each pixel when we are doing

convolution. In edge detection there are many kernel that we

can choose, such as Sobel, Prewitt, Laplace, and many other.

Other than single convolution there are also another method

such as Canny Edge detector and Gabor Filter. But we will not

discuss such method in this paper, instead we will use graph

and minimum spanning tree to find the edge of an object.

Figure 4. Example of edge detection using Canny Edge detector.

Image taken from http://cs.brown.edu/courses/cs143/2011/proj2/

(access on 9/12/2018)

B. Minimum Spanning Tree Approach

By the definition of edge detection, an edge is collection of

pixel that have significant change from their neighbor. We will

first find all of such pixel in the image and then assign it as the

vertex of the graph. After finding all potential pixel, we will

need to assign edge between all of the vertex, with the

http://cs.brown.edu/courses/cs143/2011/proj2/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

manhattan distance between pixel as it’s weight. After that, we

just need to find the minimum spanning tree of the graph and

that will become the edge of all object in the image. Because

we assign edge between all vertices, the graph is a complete

graph, a graph in which each pair of vertices is connected by

an edge. However, it is easy to notice that by doing so there

will be a line connecting two different object which we don’t

want. We can solve this problem by only assigning an edge to

another pixel if it is less than certain amount of distance from

the source, we will call this maximum distance as distance

threshold or distThres for short. By doing so, not only we

solve the problem of line connecting two different object, we

also improve the running time of the program. This is because

the complexity of the program is O(E log V) and by assigning

a threshold to the edge, the number of edge is decreased from

the initial, so E will be smaller and if E is smaller, the running

time is faster than the initial.

C. Implementation

To implement the program, we will first need to detect all

the potential pixel, that is all pixel that have significant change

in brightness/color from their neighbor. We will use the

CIELAB color space, defined by three component in the pixel

 .

We use CIELAB because it is uniform with our eyes color

vision, that is two color that’s different in CIELAB color space

will be different to our eyes. Two color that is the same in

CIELAB color space will be the same too in our eyes. Because

we use OpenCV in the implementation of the program, and

OpenCV change the pixel intensity range from normal

CIELAB pixel range, we need to convert OpenCV pixel

intensity to normal CIELAB pixel range. According to

OpenCV documentation, for 8-bit image

 [4]

We can get the normal CIELAB pixel range from OpenCV

pixel range by using this formula.

The formula for distance/similarity between two color in

CIELAB color space that we use is the Delta E 76 version that

is defined as follow.

 √

A distance of 0 means that those two color are the same. Now

we just need to find all pixel that is a certain amount of

distance from it’s neighbor. We will call the minimum color

distance by epsilon. The pseudocode is as follow.

double distance(Vertex u, Vertex v):
 double L1 = u.L * 100/255
 double a1 = u.a – 128
 double b1 = u.b – 128
 double L2 = v.L * 100/255
 double a2 = v.a – 128
 double b2 = v.b – 128
 return sqrt(sqr(L1-L2)+sqr(a1-
a2)+sqr(b1-b2))

void findPotentialPixel():
convert image to CIELAB
for i in [0..image.rows]:

for j in [0..image.cols]:
if(distance(pixel(i, j),neighbor) >
epsilon:

 add (i,j) to graph

after finding all the potential pixel, we will need to assign edge

between each of them. By the idea before, we will assign an

edge iff the manhattan distance between a pair of pixel is less

than thresDist. The pseudocode is as follow.

double mDist(Vertex u, Vertex v):
 return abs(u.x - v.x) + abs(u.y - v.y)

void assignEdges():
for i in [0..numberOfVertices]:
 for j in [i+1..numberOfVertices]:
 Vertex V1 = V[i]
 Vertex V2 = V[j]

if(mDist(V1,V2) < thresDist):
add edge(V1,V2, mDist (V1,V2))

the complexity of assigning edges is O(V^2) .After that, we

just need to find the minimum spanning tree of the graph using

Kruskal’s algorithm and then create an image showing the

graph. The resulting image will show the edges of object in the

source image. Below is the example of source image and the

resulting image after doing the algorithm.

Figure 5. Example of before (left) and after (right) edge detection
with epsilon 20 and thresDest 30. Photo taken by author in Plaza

Widya Nusantara ITB.

Figure 6. Example of before (left) and after (right) edge detection

with epsilon 20 and thresDest 20. Screenshot taken from author’s chat

on line. Bac-Bac Sticker is courtesy of Daryl Cheung

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Figure 7. Example of before (left) and after (right) edge detection

with epsilon 20 and thresDest 20. Bandung Institute of Technology

logo taken from https://gudrilogo.blogspot.com/2017/11/logo-institut-

teknologi-bandung-itb.html (access on 8/12/2018)

It can be seen from the example that the algorithm work

quite well with simple image (image that contain a few object

and little to no noise). With image that have many kind of

object and noise the result will be like figure 1. The total

running time of the program is quite varied. With the first

image in figure 1, the program run about 1.5 minute, that is

because of the image resolution (1108 x 1477) so the program

have to process about 1.600.000 pixel and about 80.000.000

edges. With the second image, the running time is about 20

seconds, that is because of the resolution (253 x 261) so the

program will process less pixel than the first one, about 66.000

pixel and 5.000.000 edges. The third image run about 30

second, faster than the first image even though it has bigger

resolution (1600x1200), that is because most of the pixel is

white and monotone so the program can skip those pixel, the

edges for the third image is about 20.000.000 edges. By

experimenting with various number of epsilon and thresDest,

we have found 20 for epsilon and 30 for thresDest is enough

for most image.

The program running time can be further improved by

utilizing Graphical Processing Unit (GPU) such as Nvidia

Graphic Card by using OpenCV CUDA module. The author

choose not to do this because of the sheer complexity of the

code and the limited time available to do the research and

actual coding of the program. The running time of the

algorithm also can be improved by neglecting the direct

neighbor of the pixel that we are currently checking. We can

implement this by doing a modification on the

findPotentialPixel function, on the loop we increment i and j

by 2 or another number bigger than 1. By doing this, we

decrease the number of the vertices, thus decrease the number

of the edges, which in turn decrease the complexity of the

program. The downside of this method is the accuracy of the

program decreased, some edges may not be detected in

comparison when we increment i and j by 1.

IV. APPLICATION OF EDGE DETECTION

Edge detection has many application in image processing and

computer vision, that is because it is easier to compare object

shape (it’s edges) rather that comparing all of the pixel in the

image. Edge detection also minimized the information shown

in an image, from complete information (shape, color, texure,

and many more) into just shape / edges of the object. One such

example where edge detection is important is in humanoid

soccer robot. The robot need to differentiate between field line,

soccer ball, goal post, and other object. To detect the goal post,

the robot can just do edge detection on it’s vision and find all

vertical line in it’s sight.

Figure 8. Goal Post detection using edge detection. The white and

blue line show the position of goal post. Screenshot taken from

author’s program in Dago Hoogeschool (ITB Humanoid Soccer

Robotic Team for KRSBI-Humanoid)

In figure 4 above, the robot use edge detection, but not using

minimum spanning tree approach, the robot use canny edge

detector approach. Thit is because of the long running time

when we are using minimum spanning tree approach. The

minimum spanning tree approach is terrible when speed is

more important than quality, so it cannot be used to do edge

detection in video, but it can be used against still image.

Another application for edge detection other than object

detection is counting the number of object in an image. We can

use edge detection to find the boundary of the shape of all

object and then calculate how much connected line in there.

Figure 9. Bunch of coin and it’s edge after being processed by edge

detection algorithm. Image taken from

https://www.mathworks.com/content/mathworks/www/en/discovery/e

dge-

detection/jcr:content/mainParsys/image_1.adapt.full.high.jpg/154158

1516580.jpg (accessed 9/12/2018)

From figure 9 we can count how many coins in there simply by

counting the number of circle found in the processed image.

V. CONCLUSION

Edge detection is an important process in image processing

and computer vision. It has many application such as object

detection, preprocessing for advanced computer vision, image

recognition and many more. In this paper, we have use

minimum spanning tree approach to implement edge detection

on still image. The total time complexity of the program is

O(V^2 + E log V) which is quite slow to used against video, so

another approach like Canny / Gabor is recommended to use in

video. But the running time is quite good on still image,

considering it’s result quality which find most edges whether

the image is noised / not.

https://gudrilogo.blogspot.com/2017/11/logo-institut-teknologi-bandung-itb.html
https://gudrilogo.blogspot.com/2017/11/logo-institut-teknologi-bandung-itb.html
https://www.mathworks.com/content/mathworks/www/en/discovery/edge-detection/jcr:content/mainParsys/image_1.adapt.full.high.jpg/1541581516580.jpg
https://www.mathworks.com/content/mathworks/www/en/discovery/edge-detection/jcr:content/mainParsys/image_1.adapt.full.high.jpg/1541581516580.jpg
https://www.mathworks.com/content/mathworks/www/en/discovery/edge-detection/jcr:content/mainParsys/image_1.adapt.full.high.jpg/1541581516580.jpg
https://www.mathworks.com/content/mathworks/www/en/discovery/edge-detection/jcr:content/mainParsys/image_1.adapt.full.high.jpg/1541581516580.jpg

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

VI. APPENDIX

Author’s implementation of the algorithm that is discussed

in this paper can be found on author’s github :

https://github.com/AdityaPutraS/Deteksi-Tepi-MST

The program require C++ and OpenCV to compile. The link

to install and use OpenCV can be accessed on

https://opencv.org/ . Follow the readme.md inside author’s

github repository to compile the program and run it. Samples

and samples result are already available in the repository.

VII. ACKNOWLEDGEMENT

The author would like to express it’s thanks to Dr. Ir.

Rinaldi Munir, MT. as lecturer for Discrete Mathematic

IF1210 for author’s class. The author would also thanks the

contributors to OpenCV library which helped the author in

implementing the algorithm. The author would also like to

express it’s thanks to Dago Hoogeschool (ITB Humanoid

Soccer Robotic Team for KRSBI-H) for the inspiration and

motivation for this paper.

REFERENCES

[1] Rinaldi Munir, Matematika Diskrit”, 6th ed. Bandung: Informatika

Bandung, 2016,ch. 8.

[2] K.H. Rosen, Discrete Mathematics and Its Application, 7th ed. New

York: McGraw-Hill, 2012, ch.10.

[3] Priyanto Hidayatullah, Pengolahana Citra Digital Teori dan Aplikasi

Nyata, 1st ed. Bandung: Informatika Bandung, 2017, ch 10.

[4] OpenCV Documentations. (2015). Retrieved from

https://docs.opencv.org/3.1.0/de/d25/imgproc_color_conversions.html

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 9 Desember 2018

Aditya Putra Santosa - 13517013

https://github.com/AdityaPutraS/Deteksi-Tepi-MST
https://opencv.org/

