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Abstract—RSA  encryption  is  an  widely  applied  asymmetric
encryption method. The strength of RSA lies in the large integer
prime factorization problem, which is solved fastest by general
number  field  sieve  in  super-polynomial  time.  Quantum
computation  provides  a  quantum  algorithm,  called  Shor’s
algorithm, that is able to solve the problem in exponential time
complexity,  thus  putting  RSA  key  at  risk.  However,
implementation of  quantum algorithm and quantum algorithm
faces  some  challenges,  while  post-quantum key  RSA has  been
proposed to be improvable.

Keywords—  cryptography,  quantum  computing,  RSA  key,
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I.   INTRODUCTION

The secrecy of information has been a concern for humans
in a long time. The oldest record of cryptography can be traced
to ancient Egyptians in around 1900 B.C., and used extensively
by  civilizations  for  various  purposes.[1]
    However old it is, the study of cryptography had only been
extensively studied in these past few decades, mainly due to
advances  in  Mathematics  and  demands  to  encrypt  sensitive
data  in  the  ever-growing  Internet.  One  encryption  method
which is widely used is RSA. The power of RSA encryption
lies  in  the  fact  that  to  find  two  prime  factors  of  a  certain
number, usually in hundreds or even thousand of digits, is a
really  tedious  task,  if  not  impossible,  even  for  modern
computers.[2]

In 1994, Peter Shor from MIT proposed an algorithm which
could  factorize  big  numbers  efficiently.  Shor’s  Algorithm
employs some fundamental properties of quantum computing
(superposition  to  be  exact)  to  solve  the  problem.  The
algorithm, therefore, cannot be applied to classical computer.
However, until 2014, the biggest number to be factorized with
quantum computing is 56,513,  a number much smaller  than
numbers  used for  RSA encryption.[3] Furthermore, quantum
computing  is  area  which  still  require  further  studies  and
researches , therefore RSA encryption will still be useful for
quite a long time.
  This publication will briefly discuss about RSA encryption,
basic  quantum  computing  terminologies,  history  of  Shor’s
Algorithm  and  the  algorithm  itself,  and  also  extending  the
topic to some challenges in implementing such algorithm and
improvement of RSA encryption post-quantum.

II.  THEORIES

A. Number Theory : Modular Arithmetic
  It is important to review the basic of number theorem to

understand RSA encryption and few important steps in Shor’s
Algorithm. The first notation of integer congruence appeared
in Gauss’ Disquisitiones Arithmeticae. Let m be an integer, For
a, b  ∈ ℤ, a ≡ b mod m and it can be stated that “a is congruent
to b mod m” if m | (a-b) ((a-b) is divisible by m).

  Due to its definition , there are several theorems describing
modular  arithmetic  (note  that  only  the  most  fundamental
theorems will be written, otherwise is omitted) : 

1. Let m  ∈ ℤ be a nonzero integer. For each a  ∈ ℤ, there
is a unique r with a ≡ r mod m and 0 ≤ r < |m|.

2. If a ≡ b mod m and c ≡ d mod m, then a + c ≡ b + d mod
m and ac ≡ bd mod m.

3. If a ≡ b mod m and b ≡ c mod m then a ≡ c mod m. [4]

B. RSA Encryption
RSA  Encryption  is  a  method  of  encrypting  message

introduced by Ron Rivest, Adi Shamir and Leonard Adleman
in  1978,  first  published  in  the  Communications  of  the
Association for Computing Machinery.

The steps of encryption is as the following [2] :
1. Choose  a  number  n  =  pq,  where  p  and  q  both  are

primes.  the  value  n  is  public  key, therefore  can  be
published.

2. Find  a  number  e,  where  gcd(e,φ(n))  =  1.(  Note  :
gcd(x,y) is the greatest common divisor of x and y).
φ(n) is the Euler totient function (number of positive
integer less than n which are relatively prime to n ,
with 1 is relatively prime to all number). This number
is also a public key, therefore it can also be published

3. Find a number d, such as ed = 1 mod (φ(n)). In other
word,  d  is  the  multiplicative  modular  inverse  of  n.
such number d exists if  and only if  e and  φ(n) are
relatively prime.

  Let there be a message M . To get the encrypted message C
from the initial message M,  then C  ≡ Me mod n. To get the
original message M from the encrypted message C, then M ≡
Cd mod  n.  The  decryption  is  ensured  by  Euler’s  Theorem,
extension of Fermat’s Little Theorem to general modulus :

For m ≥ 2 in Z+ and any a  Z such that (a, m) = 1,∈
a (m)ϕ  ≡ 1 mod m

(1)
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  The power of this encryption lies in the fact that to find the
appropriate value of d , the value of φ(n) must be determined
first. According to the property of  φ(n),  φ(n) = (p-1)(q-1) for
prime p and q. Therefore, one should find the values of both p
and q to be able to decrypt the message.

  The simplest method to find the value of p and q is by
brute force, which is by trying all numbers below the square
root  of n.(such algorithm is called as trial division). However,
there are already several  algorithms found for  faster  integer
factorization, such as Pollard’s rho algorithm, general number
field sieve etc.  The best  algorithm with asymptotic behavior
known is general number field sieve, with time complexity of
exp[c(ln n)1/3 (ln(ln n))2/3] in Big-O notation.

  To illustrate the difficulty of factoring certain integer n ,it is
stated  in  a  paper  published  by  a  team  of  international
researchers in IACR (International Association for Cryptologic
Research) in 2010 that it is possible to factorize 768-bit RSA
key, but such factorization requires instructions of order 267  to
be carried on. Such large number of operations can be operated
for 1500 years in a standard desktop (single core 2.2GHz AMD
Opteron with 2GB RAM ). [5] The study then suggested that
keys  with  digits  fewer  than  768  are  not  to  used  again.
However,  RSA-1024  and  RSA-2048  is  the  standard  widely
used in  the current years,  meaning that  it  will  require more
operations to break the encryption.

  RSA is commonly applied, with some implementation of
includes  RSA is  Amazon  Elastic  Compute  Cloud  (Amazon
EC2) key pair and OpenSSH(Secure Shell) protocol. 

B . Quantum Computing
  A  simple  definition,  a  quantum  computing  is  a

computational method that employs quantum properties (such
as  entanglement,  superposition).  A  quantum  computer  ,
therefore, is a machine operating based on quantum computing
properties. However, the term of quantum computing is more
similar to analog computing instead of digital computing, as
quantum computing allows continuum value of  qubits (as  it
will  be  explained  below).  One  of  the  goal  of  quantum
computing  is  to  use  quantum  properties  which  have  no
equivalents  in  classical  computing  ,  therefore  quantum
computing has some advantages over classical computing.

  There are few underlying terminologies and properties in
quantum computing :

1. Qubits and Some of Its Properties
  Qubit, or a quantum bit, can be seen as a counterpart of

classical’s computing bit. However, qubit differs bit by the fact
that it allows for continuum value; all state which are spanned
by its  unit  vectors  are  also  qubits.  Qubit  can  represents  all
quantum mechanical  system modeled  by a  two dimensional
complex vector space .

  The  convention  of  the  orthonormal  is  that  |0>  and  |1>
correspond  to  the  states |↑>  and  |→>,  respectively. (The
notation follows Dirac’s notation). With this convention, then |
0> and |1> can be directly compared to classical computer bits’
0 and 1. However, as stated above, qubit is a continuous value.
Therefore, a qubit can be represented as superposition of  α|0>
+ β|1> and |α| + |β| = 1. [6]

  Fig. 1. Graphical representation of qubit. Notice that a
qubit can be defined as a linear combination of |0> and |1>,
and  both  α  and  β are  complex  numbers.  Source  :
https://www.ijser.org/paper/A-Survey-The-Next-Generation-
Of-High-Quantum-Performance.html, accessed 22:35 UTC+7
December 8 2018.

  However,  there  are  some  peculiar  properties  about
measurement in qubit , derived from various experiments and
axioms  in  quantum  mechanics  :  Let  there  be  a  device  to
measure  a  quantum  state  with  preferred  base  of  {|u>,|v>}.
Measurement of a quantum state will change the state into one
of the preferred base. If the quantum state is defined as |x> = α|
u> + β|v> , then the probability of the state measured as |u> is |
α|2,  and  the  probability  of  being  measured  as  |v>  is  |β|2..
Measurements  of  the  state  after  the  first  measurement  will
always  result  in  the  changed  state  with  probability  1.
Consequently, it is impossible to determine the original state
before measurement. Other consequence is that although it is
possible to store infinitely many states in a single qubit, but
there can only be one bit worth of data extracted from qubit
(since the measurement device has two orthonormal basis).

  Another peculiar property of qubit which has no equivalent
in classical  bit  is  the principle of quantum parallelism. This
property is one of the property that gives quantum computation
advantage over classical computation,.

A single qubit Hadamard transformation H is applied to |0>
to generate superposition state (1/√2)(|0>+|1>). If applied to all
n qubit individually, all in state |0>, then a superposition of all
2n  standard basis vector will be generated. The superposition
will be as the following : 

  (2)
  2n can be written as a certain N.
  A linear transformation Uf such that Uf   = |x,y> -> |x, y
f(x)> acts on a superposition of input values  ⊕ Σax|x> as the

following :  

  (3)
  The  effect  of  applying  Uf to  the  superposition  values

obtained by Eq.2 is defined by Eq.4.
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(4)
  Eq. 4 means that one application of U f contains all the 2n

values of f(x) entangled by their input value x. The ability of
working simultaneously with 2n  values is named as quantum
parallelism.  However,  the  principle  would  be  pretty
meaningless  without  further  transformation.  Measuring  in
standard  basis  will  return  a  random  state  |x,f(x)>,  and  the
measured  state  will  be  projected  into  the  final  state  (recall
about measurement of qubits).

C . Challenges in Implementation
  This sub-chapter is necessary to give a brief explanation of

requirements  in  implementing  a  machine  that  employs
quantum computation.

 DiVincenzo  has  proposed  five  physical  requirements  to
implement quantum computation[7] :

1.  A  scalable  system  physical  system  with  well
characterized qubits.

2. The ability of initialize the state of qubits to a simple
fiducial  (assumed as  a  fixed  basis  of   comparison)
basis, such as |00..>

3. Long  relevant  coherence  duration,  much  longer  than
gate  operation  time.  However,  it  is  practically
impossible to truly isolate a quantum computer from
its  environment.  Environment  is  described  as  a
subsystem  which  is  not  under  control  ;  no
measurements or gates can be applied.

  Decoherence  occurs  when  the  information  of  the
computational  subsystem  is  lost  to  the  environment.
Decoherence acts as the main principal for the emergence of
classical behavior. However, as stated above, environment is a
state which is outside the computational control, therefore the
problems  becomes  serious.  To solve  the  problem,  there  are
several quantum states error models and correction.

4. An “universal” set of quantum gates.
5. A  qubit-specific  measurement  capability.  An  ideal

measurement will be independent to state of nearby
qubits and without changing the state of the rest of the
quantum computer. 

III.   SHOR’S ALGORITHM

A. Motivation for Shor’s Algorithm
The  first  motivation  comes  to  a  fact  well-known  to

mathematician  in  1970s’  ,  that  one  can  easily  solve  the
problem of integer factorization if another hard problem, the
order (or period) finding problem, can be solved. The problem
will be briefly discussed later.

Some of the earlier ideas of a quantum machine came from
Feynman (1982) , Benioff (1982) and Deutsch (1985). Benioff
demonstrated  that  a  quantum  machine  can  model  Turing
machine,  means  that  the  quantum  machine  at  least  is  as
powerful as Turing machine. Deustch expanded the notion by
demonstrating the quantum equivalent of Turing machine, and
showed  that  quantum machine  can  simulate  some problems

beyond the scope of Turing machine (for example is generating
a truly random number, instead of a pseudo random number).
Studies  circling around quantum computing grows, with the
study of quantum circuit and gates. A paper by Bernstein and
Vazirani in 1993 demonstrates that some problems which are
to be solved in super-polynomial time classically can be solved
in polynomial time by quantum algorithm. Simon showed an
example  of  such  algorithm  in  1993,  which  became  the
inspiration for Shor to develop other quantum algorithm. As in
1994,  in  his  paper  “Polynomial-Time Algorithms For  Prime
Factorization  and  Discrete  Algorithms  on  a  Quantum
Computer”  ,  Shor  presented  two quantum algorithms which
perform in a much less complexity of time when compared to
its classical counterpart. [8]

This paper will only briefly explains the prime factorization
algorithm ,  as the prime factorization problem is the key of
breaking RSA encryption.

B. Outline of Shor’s Algorithm
Shor  algorithm reduces the  problem into few basic  steps.

The algorithm is as the following : 
1. Choose  a  random  number  m.  By  Euclidean  algorithm,

find gcd(m,n). If it is equal to 1 , then continue to next step,
otherwise then the factor of n can be directly determined.

2. Let there a function f(a) = xa mod n where x is co-prime to
m.  From  number  theory,  it  can  be  concluded  that  f(a)  is
periodic ,  which  means there exists  r  such  as  f(a)  =  f(a+r).
Because m0 ≡ 1 mod n, therefore mr ≡ 1 mod n.

3. If r is an even integer , then proceed to step 4. Otherwise
proceed to step 1.

4. Because  r  is  even  and  m  is  co-prime  to  n,  then  the
equation mr ≡ 1 mod n can be written as (m1/2 +1)(m1/2 -1) = kn.
If  m1/2  +1≡ 0 mod n,  return to step 1.Otherwise,  go to step
5.Determine  d  =  gcd  (m1/2  +1,  n),  and  d  is  the  non-trivial
solution.

Step  1,  3,4,5  are  steps  which  can  be  solved  by  classical
computer. Step 2 reduces the factorization problem into period-
finding  problem,  which  can  be  solved  far  more  efficiently
using quantum computation.

.B. Quantum Computation in Period-Finding Problem
  As  mentioned  above,  Shor’s  Algorithm  reduces  the
factorization problem into period finding problem.
  The  period  finding  problem  can  be  solved  by  quantum
computer efficiently by employing parallelism and Quantum
Fourier Transform ( a quantum variant of Fourier Transform,
analogue to Discrete Fourier Transform). The algorithm is as
the following [9] :

1. Determine a number q, such that q is a power of 2 and 
n2 < q < 2n2 . 

2. Create  two  quantum  registers  ,  (register  1  and  2
respectively),  so  the  quantum state  can  be  defined  as  |reg1,
reg2>. The first register should be put in the superposition of
states representing number a mod q. The state of the quantum
machine will be :
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(5)
3. Initialize the second register with the superposition of all

states xa   mod n  in Eq.(5) .The current state will  be as the
following :

(6)
4. Perform  Quantum  Fourier  Transform  Aq  to  the  first

register in Eq. (6). The state will be :

(7)
Then , do measurement to the machine in state represented

by Eq.(7). The probability of a certain machine state of |c>|xk

mod n> will be :

(8)
That  is,  the  sum when  xa  ≡ xk for  0< a  <  q.  Also,  it  can

assumed that k < r (as defined, r is the period). In other word ,
a ≡ k (mod r), and therefore a = br + k.
 The probability of a state|c>|xk mod n> will be at least 1/3r2 if
exists d  ∈ ℤ such as :

(9)
  Dividing by rq and rearranging the equation in Eq.(5), it is

obtained that :

  (10)
The  fraction  d/r  can  be  obtained  with  continued  fraction

expansion,  with  the  algorithm being  executable  by  classical
computer. This part of the algorithm is considered to be the
post-processing part. 

C. Example of Shor’s Algorithm
To visualize the algorithm in a more concrete sense and to

demonstrate  some  steps,  consider  a  problem  of  factoring
21[10] :

1. Take m = 6. Because gcd(6,21) = 3, then it can be 
directly determined that 21 = 3.7 . 

2. Take other m, for example 11. Because gcd(11,21) = 1, 
continue to next step.

3. Next step is to find the appropriate q. Since n = 21, then
n2 = 441 and 2n2 = 882, therefore q = 512.

4. Initialize the first register with the superposition of all
states a mod q :

(11)

5. Initialize the second register to be the superposition of all
states ma mod n : 

(12)

To visualize it easier , Eq(12). can be written as :

(13)
  The periodicity can be viewed from the expansion :

Table 1.Expansion of the first few terms. By the definition of
period defined previously, thus it can be easily concluded that
the period r is 6. However, r cannot be determined easily for
larger numbers. Source : 
https://qudev.phys.ethz.ch/content/QSIT15/Shors
%20Algorithm.pdf

Figure  2  .  The  probabilistic  distribution  of  c.  It  can  be
observed  that  applying  the  transformation  enormously
increases the probability of some values of c to be observed.
Also, the “peaks” are located in a periodic manner, namely c=
512d/6 , d  ∈ ℤ. Source : 
https://qudev.phys.ethz.ch/content/QSIT15/Shors
%20Algorithm.pdf

6. Apply Quantum Fourier Transform to the first register :

(14)
Probability of a certain state |c>|ma mod n> is :

(15)

Assuming that c = 427, then:
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(16)

By continued fraction expansion :

(17) 
A  value  r=6  can  be  obtained,  which  agrees  with  the

observation in table 1.

D. Complexity and Efficiency of Shor’s Algorithm
  Shor  proposed  that  the  algorithm  would  only  have
exponential-time complexity. The algorithm would only take
O((log  n)2(log(log  n))(log(log(log  n)))  steps  in  quantum
computer,  with  additional  polynomial  time  required  for  the
continued  fraction expansion.  This  comes  with  several  facts
about the algorithm itself , especially due to Quantum Fourier
Transform. 

Figure  3.  Comparison  of  the  best  classical  algorithm
(general  number  field sieve)  with Shor’s algorithm with the
respect of the number of operations needed to factorize certain
number  with  number  of  digits  d.  Source  :
https://quantumexperience.ng.bluemix.net/proxy/tutorial/full-
user-guide/004-Quantum_Algorithms/110-
Shor's_algorithm.html

IV. CHALLENGES FOR IMPLEMENTATION OF SHOR’S

ALGORITHM AND FUTURE OF RSA ENCRYPTION

A. Challenges in Implementing Shor’s Algorithm
  Shor’s algorithm provide a an example where quantum 
computation , theoretically, operates more efficiently than 
classical computing Other quantum algorithms do exhibit 
similar feature, such as Grover’s algorithm, a search function 
with O(√N) evaluations. As described previously, a quantum 
system can also model universal Turing machine. The prospect
of using such quantum machine is surely interesting. The 
current most advanced chips has transistors of 14 nm in 
diameter. A prediction based on Moore’s Law would state that 
transistors would shrink to a size of less than 5 nm in diameters
by 2020. A scale as small as that cannot be governed by 
classical physics solely; rather quantum physics would govern 
systems with such scale.[11]

Figure 4. A prediction regarding the power of quantum 
factorization compared to classical factorization. The 
advances in chip by the Moore’s law clearly do not reduces the
time complexity needed by classical computer to perform 
factorization. Source : 
https://ibmcai.com/2016/03/15/quantum-computing-time-for-
venture-capitalists-to-put-chips-on-the-table/
  

However, one should be wondering about why quantum 
computer has not been widely used. There are few challenges 
to the development of quantum computer. The first challenge 
to the implementation is the physical constraints and 
requirements to build a quantum computer. As discussed 
previously, there are few requirements to build such machine. 
One of the constraint is the fact that are quantum computers 
are extremely sensitive to entanglement with the environment. 
Larger number of qubits increase the vulnerability of a 
quantum system to decoherence , with the fact that larger size 
of an object would increase its classicality (a degree in which a
system can be explained by classical mechanics). 

Other  than  that,  there  has  been  some  flaws  pointed  out
about  the  Shor’s algorithm.  The  first  possible  skepticism is
mentioned in the paper by Z. Cao, Z. Cao and L. Liu (2014)
[12]. The first possible flaw noticed is in the description by P.
Shor  about  the  transformation  of  |a>|0>  into  |a>|xa mod n>
(quantum modular exponentiation). In the original paper, Shor
only described the conventional transformation ( in which (a,1)
-> (a,xa mod n)), but do not really describe the transformation
of the state itself. Also, the authors (Z. Cao, Z.Cao and L. Liu)
noticed that it is also impossible to compose a superposition
from  pure  states,  therefore  the  paper  boldly  claim  that  the
algorithm is flawed.

Other  possible  flaws are  also  pointed  out  by Z.  Cao and
Z.Cao (2014) [13]. The paper then suggested that the Shor’s
claim  of  polynomial-time  algorithm  should  be  reevaluated.
(An interesting note about this paper : the paper is published in
less  than  6  months  after  the  paper  mentioned  before,  and
contains the answer provided by MIT professor Scott Aaronson
for the quantum modular exponentiation problem . However,
the answer seems to be not convincing and “too vague”).

B. Improvement of RSA Post-Quantum
  As previously discussed, the biggest number factorized by
Shor’s algorithm is very small compared to the numbers used
by standard RSA encryption used today. However, under the
assumption that quantum computer can be developed at least in
a par with modern classical computer, then the question of how
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much quantum computation will be a threat to RSA encryption
arose.
  This  certain problem is  discussed  in  a  paper  published  in
2017 by Bernstein, Heninger, Lou and Valenta [14]. The paper
argued  that  the  power  of  Shor’s  algorithm  can  be  seen  as
exaggerated (especially  with the conventional  claim that  the
development  of  quantum  computing  means  that  RSA
encryption will be totally useless). Furthermore, the paper also
introduced a 1 terabyte RSA public key, essentially enough to
push  all  quantum  attacks  to  be  over  2100  qubits.  It  is  also
demonstrated  that,  in  terms  of  costs,  speeding  RSA  key
generation will much further widen the gap of cost of attack to
user’s cost. However, a key as large as that is still in theoretical
scope, as the time needed the to generate such larger key is
quiet impractical with current technology

One  interesting  aspect  is  that  the  paper  also  introduces
another  quantum  factorization  algorithm  called  as  GEECM
(Grover’s  method  and  Lenstra’s  elliptic-curve  factorization
with Edwards curve) , which is used in the paper as the main
constraints  for  generating  secure  post-quantum  RSA  key
instead of Shor’s Algorithm. (Which means that the proposed
GEECM can be even faster  than Shor’s algorithm, although
there had been no (online) sources found regarding the time
complexity of GEECM itself, as the paper is relatively new).

V.   CONCLUSION

Although a more efficient algorithm to find RSA decryption
key has been proposed and demonstrated, it can be concluded
that RSA encryption will still be secure in the next few years,
if not decades. However, it is possible to say that the power of
quantum computing can be explored further, and other secure
post-quantum encryption methods should  start  to  be  studied
and implemented.
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