
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Huffman Coding Implementation on Gzip Deflate

Algorithm and its Effect on Website Performance

I Putu Gede Wirasuta - 13517015

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

wirasutat@gmail.com 13517015@std.stei.itb.ac.id

Abstract—Huffman coding is a lossless compression commonly

used as backbone of modern compression standard. One of them

being deflate algorithm commonly used in compression software

such as zip and gzip. The need for high performance and fast

compression rises as the demand for higher performance website

rises. In this paper, the author will discuss the implementation of

Huffman coding in modern compression algorithm and the effect

on compressed website sources relying on it.

Keywords—Huffman coding, GZIP, Deflate Algorithm, Website

Compression

I. INTRODUCTION

Computers have seen it’s fair growth in recent years, and

along with it the average size of digital data and the need to

transfer those data. The current median web page size is 1.6MB

[1] and increasing each day. Yet, more users are demanding

faster loading time for a website. This becomes a problem when

file size gets too big beyond the network capabilities to transfer

the data in comfortable time reliably. One solution to this

problem is by reducing the source code size by compressing it.

Data compression is an act of reducing the size of one or more

file so that it requires less disk space or Internet bandwidth to

transfer. To compress file, multiple techniques is available based

on different mechanism to attain different results. In general,

data compression algorithm is divided in two categories, lossless

and lossy compression.

One of the simplest lossless compression algorithm is

Huffman coding, introduced by David A. Huffman in his 1952

paper. The Huffman coding make use of statistical information

of the data to be compressed and construct a compact version of

its symbols based on a corresponding tree scheme, therefore

reducing the overall data size.

Due to its simplicity and efficiency, Huffman coding is often

used with other compression algorithm to produce an even better

compression ratio and speed. Deflate is a file format and

compression algorithm that combines Huffman coding with

LZ77 compression algorithm to achieve a better compression

ratio. Deflate was designed by Phil Katz and specified in RFC

1951 [2]. Other than its own file type, Deflate algorithm is also

used in many other file types such as PNG and GZIP file format.

Most modern browser [3] support compressed source in gzip

format.

This paper will discuss Huffman coding implementation on

deflate algorithm, which is used on gzip file format and observe

its effect on website performance.

II. DATA COMPRESSION ALGORITHM

Data compression is the process of altering a structure of data

in such a way so that it occupies less disk space or Internet

bandwidth. In a paper titled “A Mathematical Theory of

Communication” published in 1948, Shannon describes

efficient way of representing data and its limit, which later

become the foundation of data compression theoretical

background. Data compression works on reducing redundancies

by replacing it with shorter and specific data or removing it [4].

By this principle, data compression can be categorized into

lossless and lossy compression.

Lossless compression is data altering process that reduce the

amount of needed space without losing information. A lossless

compressed file can be reconstructed perfectly into its original

data. The ability to reconstruct the original data perfectly makes

lossless compression suitable for text-based data compression

(including software) and media archival. However, lossless

compression has a very strict compression rate defined by

Shannon’s source coding theorem [5].

Lossy compression on the other hand, is data altering process

that reduce the amount of needed space with assumption that the

data doesn’t need to be reconstructed as perfectly after

compression. Lossy compression is commonly used on media

files, because on certain level of compression, the compressed

data is undistinguishable to human eyes. Lossy compression

works by removing parts of unneeded data while maintaining

the “visible” part. Thus, lossy compression can attain far greater

compression ratio.

The argument on which compression type is better is

pointless, as it is not an apple to apple comparison. Each type

has its own strength and weaknesses, also its appropriate usage.

In fact, some lossy compression algorithm use lossless

compression technique to achieve greater compression ratio.

There are two essential figure to a compression, compression

ratio and compression time. For example, an executable binary

file is 100KB large. Using certain type of compression algorithm

it can be reduced to only 20KB. In this example, the

compression ratio is 5:1 or 20% [6]. Compression ratio vary

because different algorithm performs differently on the same file

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

and the same algorithm performs differently on different file.

Each data compression algorithm has its own proper use.

Compression time is the time needed to compress a file. The

longer an analysis is done to compress a file, the more it is

possible to reach optimum compression. Therefore, generally

the relation between compression time and compression is

inversely proportional.

III. HUFFMAN CODE

Huffman code is an optimal prefix code commonly used for

lossless data compression. The process of encoding plaintext to

Huffman code is called Huffman coding. Huffman coding was

designed by David A. Huffman in 1952 as his term paper on

information theory problem to find the most efficient method of

representing numbers, letters or other symbols using a binary

code [7]. As he was getting desperate on the paper for not

solving the problem, the solution came to him and eventually

published in his paper titled “A Method for the Construction of

Minimum-Redundancy Codes” [8]. In it he described a method

to construct a variable-length code for each input symbol by

using multi-step weight/frequency table. Character with highest

frequency will have a shorter length code and vice versa. In this

paper, the multi-step weight/frequency table will be represented

as binary tree with each node containing merged symbols and

summed weight.

A. Binary Tree

In graph theory, tree is an undirected and acyclic graph. For

any graph T with n vertices that satisfies any of these conditions:

 T has no simple cycles and has n − 1 edges.

 T is connected and has n − 1 edges.

 T is connected, and every subgraph of T includes at least

one vertex with zero or one incident edges.

Then T is a tree. A rooted tree is a tree with one of the vertices

set as root and all the other vertices is given directions away

from the root. Degree is the amount of connected edges, as

rooted tree is directed, there exist inward and outward degree. A

root is a vertices with zero inward degree. Every vertices in a

tree can be reached by a unique path from the root [11].

Figure 1

For this paper, there are a few terminologies that needs to be

understood:

1. Child and parent. X is the child of Y (Y is the parent of X),

iff there is an incident edge going outward from Y and

inward to X. In figure 1, 0 is the parent of 1 and 2, while 6

is the child of 2.

2. Path. Path from vertice X to vertice Y is a sequential edges

from X to Y thru zero or more vertices. In figure 1, there

is a path from 0 to 6 thru 2 edges, or thru vertice 2.

3. Leaf. A Leaf is a vertices with zero outward degree. In

figure 1, vertice 7,8,9,5, and 6 are leaves.

Tree is considered one of the most important part of graph

because of its uses in graph theory related problems. One

specific tree commonly used is binary tree. Binary tree is a tree

where every node has at most two outward degree. A binary tree

can only have two child, commonly called as left and right child

respectively.

Figure 2

B. Prefix Code

Prefix code is a type of code which requires none of its code

word is a prefix of another code word. For example, a code with

these words {0,10,11} in binary representation is a prefix code.

But {0,1,10,11} in binary representation is not a prefix code,

because “1” is prefix of “10” and “11”. Therefore, words on a

complete prefix code can be identified without any separator and

any incomplete prefix code (terminated before end of code

word) is invalid and unidentifiable [9].

C. Huffman Coding Algorithm

Based on [10], Huffman coding process on a plaintext can be

done by building a variation of binary tree (Huffman tree) from

the symbols frequency table. The algorithm is as following

1. Count the frequency of each input symbol in input text

2. Choose two symbol with the lowest frequency, then

create a parent node with symbol equals to the two

symbol concatenated and frequency equals to the two

symbol's frequency added. This parent node replaces the

two building symbols in the frequency table

3. Repeat step 2 until only one symbol remaining which

contains all input symbol

4. Label every left branch as 0 and right branch as 1

5. The path from root to a leaf is the Huffman code for the

corresponding leaf's symbol

For example, figure 1 is the Huffman tree to code

“INFORMATIKA ITB” into Huffman code.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Figure 3

Tracing each path to the leaf of the Huffman tree above yields

the following Huffman code

Input Frequency Huffman Code

I 3/15 00

A 2/15 010

T 2/15 011

B 1/15 1010

F 1/15 1011

K 1/15 1000

(SPACE) 1/15 1001

N 1/15 1100

R 1/15 1101

M 1/15 1110

O 1/15 1111

Table 1

Notice the shortest Huffman code in table above correspond

to input with the highest frequency. The resulting Huffman code

also shows no code word is a prefix of another, conforming the

prefix code definition.

However, a Huffman tree is not unique. A different placement

of node with the same weight is possible, creating a different

Huffman tree and code. Thus, before a decompression could be

done, the Huffman tree must be reconstructed. For a specific

type of input, where input symbol frequencies are more or less

the same, the tree can be constructed once and reused.

Otherwise, a coded information of the corresponding tree, often

called as codebook in decompression process is needed to be

sent when transferring a Huffman coded data. There are two

main ideas to do this

First, prepending the frequency. This is the easiest way to

include information needed to reconstruct the Huffman tree.

Unfortunately, tree reconstruction is costly rendering this idea

unusable.

Another ide is by prepending the tree. This might sound better

after learning that tree reconstruction is memory and time

consuming. But, this idea is space consuming because of the

need to store every node value, child references, and value

assigned to every edges. Moreover, tree traversing is proven to

be memory consuming making this idea also unusable for

practical use.

The problem of Huffman coding is now apparent. It is not the

compression or the decompression technique, rather the means

to transfer the codebook for decompression use. One way to

overcome this is to standardize the production of Huffman code.

One of the most used standard of Huffman code generation is

the canonical Huffman code [12].

D. Canonical Huffman Code

The canonical Huffman code addresses the problems of

space- and time-consuming decoding process of Huffman code

by generating the code in a more standardized format and in

linear time. Every code words value is assigned sequentially

based on the lengths. This can be done by creating a Huffman

tree with respect to the order of the input alphabet. This means,

a sorted frequency table of an input is the easiest to be made into

canonical Huffman code. Fortunately, any Huffman code can be

transformed into canonical Huffman code by this algorithm

1. Sort the input and corresponding code word first by code

word length and secondly by input value

2. The first input symbol is assigned code word with the

same length as normal Huffman code but all zeros

3. The next input symbol is assigned the next binary number

4. If the next input symbol code word is longer then append

zeros until the length match

5. Repeat step 3 and 4 for all input symbol

Using the algorithm above on Table 1, the canonical Huffman

code for “INFORMATIKA ITB” is the following

Input Frequency
Huffman Code

I 3/15
00

A 2/15
010

T 2/15
011

B 1/15
1000

F 1/15
1001

K 1/15
1010

M 1/15
1011

N 1/15
1100

O 1/15
1101

R 1/15
1110

(SPACE) 1/15
1111

Table 2

The advantage of canonical Huffman code is that for the

decoding process, it is possible to encode the codebook in fewer

bits while still containing the same amount of information. This

paper will discuss two ways to encode the codebook of a

canonical Huffman code [12].

The first way is to write each number of bits and code word

based on the order of the input alphabet. The codebook on Table

2 would be encoded as

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

(𝐴, 3,′ 010′), (𝐵, 4,′ 1000′),
(𝐹, 4,′ 1001′), (𝐼, 2,′ 00′), … (𝑆𝑃𝐴𝐶𝐸, 4,′ 1111′)

Since the encoding is ordered by the input alphabet, it can be

removed from the codebook encoding. Furthermore, because the

canonical Huffman code generation algorithm is standardized

and can be done in linear time then the code word can be

removed from the codebook encoding. Leaving only the code

word length need to be encoded to reconstruct the codebook.

Then, codebook on Table 2 would be encoded as

3,4,4,2,4,4,4,4,4,3,4

The second way of encoding the codebook is by writing the

input symbols in increasing order based on the code word length

along with number of symbols for each code word length. Using

this encoding, codebook based on Table 2 would be encoded as

(0,1,2,8) (𝐼, 𝐴, 𝑇, 𝐵, 𝐹, 𝐾, 𝑀, 𝑁, 𝑂, 𝑅, 𝑆𝑃𝐴𝐶𝐸)

This means, no symbol has code word length of 0, the code

word of I has length of 2, the code word of A and T has length

of 3, and the rest of the input alphabet has code word length of

4.

IV. BRIEF EXPLANATION OF LZ77

LZ77 is a lossless data compression algorithm designed by

Jacob Ziv and Abraham Lempel in their paper “A Universal

Algorithm for Sequential Data Compression” published in 1977

[13]. LZ77 is a dictionary coder, meaning it would search the

data to be compressed for specific word available on the

dictionary then replace the occurrence on the text with reference

to the word on the dictionary. In LZ77 algorithm, the dictionary

is prefix of the current word up to several kilobytes. Because the

dictionary is moving as the word search continues, it is termed

as “sliding window”.

Figure 4

V. DEFLATE ALGORITHM

Deflate is a lossless data compression algorithm initially

designed by Phil Katz in 1990, and developed further in 1996

and specified by L Peter Deutsch in RFC 1951 [2]. Deflate

combine LZ77 and Huffman coding (specifically the canonical

Huffman coding) algorithm to achieve compression ratio of

2.5:1 to 3:1 on English text and even more on rasterized images.

A compressed data by deflate algorithm consists of series of

blocks. Each block arbitrarily sized and is produced as a result

of compression using LZ77 and Huffman coding on the input

block. There are four types of block in a deflate compressed

data: uncompressed, compressed with predefined Huffman

code, compressed with dynamic Huffman code, and

reserved/error block. While arbitrary in size, there exist

maximum size of an uncompressed block of 65535 bytes.

A. LZ77 Recurring Word Replacement

The LZ77 in deflate algorithm in implemented in such a way

that is not patented. It is implemented with sliding windows size

of 32KB. The replacement in this implementation is

independent from the type of the block compression. The

recurring word from dictionary is replaced by 256 bits of

distance to reference, 1 bit of end block sign, and 9 bits + extra

bits of word length in that order. The duplicated word reference

may refer to previous block, but not before the beginning of the

input.

B. Huffman Coding

There are two possible Huffman coding implementation in

Deflate algorithm with integer ranging from 0 to 285 as the

alphabet. The first implementation being fixed Huffman code

with specification as the table below

Lit Value Bits Codes

0 – 143 8
00110000 through

10111111

144 – 255 9
110010000 through

111111111

256 – 279 7
0000000 through

0010111

280 – 287 8
11000000 through

11000111

Table 3

Block with fixed Huffman code compression are marked with

“01” as the first two bits. This fixed Huffman code is an example

of specific input type with predictable input symbol frequency.

The second type of Huffman coding implementation is

dynamic Huffman coding. This type generates canonical

Huffman code for a specific input of 19 symbols with the

following specification.

 0 – 15 : Represent code lengths of 0 - 15

 16 : Copy the previous code length 3 - 6 times.

 The next 2 bits indicate repeat length

 (0 = 3, ... , 3 = 6)

 Example: Codes 8, 16 (+2 bits 11),

 16 (+2 bits 10) will expand to

 12 code lengths of 8 (1 + 6 + 5)

 17 : Repeat a code length of 0 for 3 - 10 times.

 (3 bits of length)

 18 : Repeat a code length of 0 for 11 - 138 times

 (7 bits of length)

Unlike block compressed with fixed Huffman code, block

compressed with dynamic Huffman code must encode its

codebook for decompression process. It is encoded as the code

word length of each symbols in this order

16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15

The code word length are interpreted as 3 bit integers (0-7),

with 0 as unused symbols. The code word length is encoded not

in a sequential order because the less likely used symbols are

placed in the end, and removable when unneeded. The encoded

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

codebook is then prepended to the Huffman coded block.

Huffman tree of a block can be different than the previous or

next block and doesn’t take consideration of other symbols

outside its own block.

V. GZIP IMPLEMENTATION

Gzip is a lossless compression software and also a file format.

It was developed by Jean-loup Gailly and Mark Adler in 1992

to replace UNIX compress utility which was patented at that

time and later used by GNU project. The compression software

is based on deflate algorithm [14]. Other compressed file type

that also use deflate algorithm includes zip and 7zip. Gzip

produces a compressed file with .gz file extension with file

format of the same name.

Gzip file format is comprised of 10 byte header, optional

flags, a body containing compressed data using DEFLATE

algorithm, and a 8 byte footer of checksum and original file size

mod 237 [14].

Gzip being a single file compression software means it is

commonly used with archival software. Gzip is used with tar to

produce compressed archive format with .tar.gz file extension.

The compression is usually better than zip files as it takes

advantages of redundancy reduction across multiple files. A

typical gzip compression ratio range around 2:1 to 5:1, in

accordance with the deflate algorithm it is based on. Table 4

highlight gzip compression performance compared to other type

of compression on different level of compression. The

performance is calculated as percentage of the compressed file

relative to the uncompressed file. The uncompressed file is

445MB large.

lv gzip bzip2 lzma xz lz4

1 26.8% 20.2% 18.4% 18.4% 35.6%

2 25.5% 18.8% 17.5% 17.5% 35.6%

3 24.7% 18.2% 17.1% 17.1% 35.6%

5 22.0% 17.6% 14.9% 14.9% -

7 21.5% 17.2% 14.4% 14.4% -

9 21.4% 16.9% 14.1% 14.1% -

Table 4 [15]

Performance can also be measured from compression and

decompression time. Table 5 shows the same file being

compressed by multiple type of compression. While table 6

shows decompression comparison

lv gzip bzip2 lzma xz lz4

1 8.1s 58.3s 31.7s 32.2s 1.3s

2 8.5s 58.4s 40.7s 41.9s 1.4s

3 9.6s 59.1s 1m2s 1m1s 1.3s

5 14s 1m1s 3m5s 3m6s -

7 21s 1m2s 4m14s 4m13s -

9 33s 1m3s 4m48s 4m51s -

Table 5

 gzip bzip2 lzma xz lz4

1 3.5s 3.4s 6.7s 7.2s 0.4s

2 3s 15.7 6.3s 6.8s 0.3s

3 3.2s 15.9s 6s 6.7s 0.4s

5 3.2s 16s 5.5s 6.2s -

7 3s 15s 5.3s 5.9s -

9 3s 15s 5s 5.6s -

Table 6

From tables above, it’s clear that gzip is not the best in

compression ratio, nor it’s the fastest to compress and

decompress. But, compression ratio is “good” enough and

compression and decompression time is only behind the lz4

compressed file type. This balance of compression ratio and

time is what makes gzip widely adopted standard of HTTP

compression [3].

VI. EFFECT ON WEBSITE PERFORMANCE

Most modern browser has long accept compressed file

format, with gzip as the most supported. With the steadily rising

trend of website size, HTTP compression has become a

necessity. The adoption rate has reach 77% in December 2018,

growing 5% from 2017 [16]. In figure 2 below is data transfer

statistic from several websites. On the second rightmost column

are the data downloaded (numbers on the top) and data size in

disk (numbers on the bottom). All of them are using gzip as

compression technique.

Figure 5

Google manage to attain compression ratio of 4:1. While

youtube, new york times, and itb’s site manage to achieve nearly

8:1 compression ratio. Gzip is able to achieve such high

compression ratio because web sources are mostly redundant.

Web sources are wrapped in tags with matching opening and

closing tag, with only difference being a slash (‘/’). Menu in

websites are also subject to compression, usually a menu bar is

made from multiple unordered list element. HTML and CSS

tags are also redundant. This is why gzip with deflate algorithm

performs incredibly on compressing web sources.

VII. CONCLUSION

Gzip uses deflate algorithm which combines LZ77 and

Huffman coding to achieve good enough compression ratio

while maintaining comfortable compression and decompression

time. Web sources are documents with high redundancy and

high demand. To improve website performance, lower load

times is needed which means lower file size. Compressed gzip

file works well on web sources because of high redundancies,

achieving up to 8:1 compression ratio.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

VIII. ACKNOWLEDGMENT

The author would like to thank God the Almighty for grace

and blessings. The author would also thank Dr. Judhi Santoso

M.Sc. as the lecturer of discrete mathematics (IF2120). And also

gratitude to family and friends for their support in the making of

this paper.

REFERENCES

[1] https://httparchive.org/reports/page-weight (Accesed December 8, 2018)
[2] P. Deutsch, DEFLATE Compressed Data Format Specification version

1.3. Menlo Park, CA. 1996.
[3] http://schroepl.net/projekte/mod_gzip/browser.htm (Accesed December 8,

2018)

[4] Lohit and Jagadish, A NEW LOSSLESS METHOD OF IMAGE
COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING

TECHNIQUES. Hubli, India. 2005.

[5] C.E. Shannon, A Mathematical Theory of Communication. 1948.
[6] S. Khalid, Introduction to Data Compression, Third Edition. San

Fransisco, CA:Elsevier. 2006.

[7] http://www.huffmancoding.com/my-uncle/scientific-american (Accesed
December 8, 2018)

[8] Huffman. D, A Method for the Construction of Minimum-Redundancy

Codes. 1952.
[9] http://www.atis.org/glossary/definition.aspx?id=6416 (Accesed

December 8, 2018)

[10] R. Munir, Matematika Diskrit. Bandung: Departemen Teknik Informatika
Institut Teknologi Bandung. 2003.

[11] T.K. Shmuel, Space- and Time-Efficient Decoding with Canonical

Huffman Trees. London, UK: Springer. 1997.
[12] Y. Nekritch, Byte-oriented decoding of canonical Huffman codes. London,

UK: Springer. 2000.

[13] Z. Jacob, A Universal Algorithm for Sequential Data Compression.
London, UK: Springer. 1997.

[14] https://www.gnu.org/software/gzip/manual/gzip.html#index-options-4

(Accesed December 8, 2018)
[15] https://catchchallenger.first-

world.info/wiki/Quick_Benchmark:_Gzip_vs_Bzip2_vs_LZMA_vs_XZ_

vs_LZ4_vs_LZO (Accesed December 8, 2018)
[16] https://w3techs.com/technologies/details/ce-compression/all/all (Accesed

December 8, 2018)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 9 Desember 2018

I Putu Gede Wirasuta - 13517015

