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Abstract— Graph is one of the most commonly used 

mathematical concept in real life. Many problems in our daily life 

can be modeled as graph. One of the problems that computer 

scientist encounter is checking the quality of Pseudorandom 

Number Generator. One of the easiest ways to check the quality of 

a Pseudorandom Number Generator is by finding its repeated 

period. In this paper, we will try to find the period by using Floyd’s 

Cycle Finding Algorithm, or more commonly known as Hare and 

Tortoise Algorithm. 
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I.   INTRODUCTION 

Random Number Generator (RNG) have many uses in 

computer science. Some of its application is in computer 

simulation, statistical sampling, cryptography, and other areas 

where producing an unpredictable result is desirable. In reality, 

scientist have trouble to create a generator with a true 

randomness. As substitute, they create Pseudorandom Number 

Generator. Pseudorandom Number Generator (PRNG) is a 

generator that’s looks random but actually deterministic given 

the same initial state, or more commonly called as seed.  

One of the most basic ways to check the quality of a 

Pseudorandom Number Generator is to find its period, or how 

many iterations it takes to generate a same number more than 

once. The easiest way to check this for a general generator is to 

model that generator as a graph, where each node represents a 

state in its generator. To find the generator’s period is same as 

finding the cycle length in that graph. In this paper, we will try 

to find the cycle length of a Pseudorandom Number Generator 

using Floyd’s Cycle Finding Algorithm. 

 

II.   BASIC THEORY 

A. Graph 

Graph is a collection of vertices, edge, and a relation that 

associates each edge with 2 vertices called its endpoints [1]. Two 

different vertices are called neighbor if and only if there is an 

edge that have both vertices as its endpoint. Two different 

vertices A and B is connected if and only if B is neighbor of A 

or neighbor of B is connected to A. Degree of vertex A is defined 

as the number of edges that have A as its endpoint. A cycle is a 

graph with N vertices and N edges where each pair of vertices is 

connected, and every vertex have degree 2.   

 

B. Directed and Undirected Graph 

A directed graph is a graph where each edge has direction 

associated with them, whereas an undirected graph is a graph 

where each edge is bidirectional.  

 

 

Figure 1. Directed and Undirected Graph [2] 

 

C. Linear Congruential Generator 

Linear Congruential Generator (LCG) is an algorithm that 

yields a sequence of pseudorandom number using a linear 
equation [3]. This generator is one of the oldest PRNG. Their 

advantage is very fast generation and its quality can be easily 

analyzed due to their simple structure. The following formulate 

is a formulate to generate a sequence of pseudorandom number 

using this generator 

𝑥𝑛 = 𝑎𝑥𝑛−1 + 𝑏 (𝑚𝑜𝑑 𝑚) 

 

Linear Congruential Generator depends on 4 parameters: 

• Initial state (𝑥0) 

• Multiplier (𝑎) 

• Increment (𝑏) 

• Modulus (𝑚) 

 

For this paper, we will define function 𝐿𝐶𝐺(𝑥0, 𝑎, 𝑏, 𝑚) as a 

Linear Congruential Generator with previously defined 

parameter. 

 

 

D. Linear Congruential Generator as Graph 

We can represent a Linear Congruential Generator as a 

directed graph with 𝑥𝑖 as vertex and a directed edge connecting 
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𝑥𝑖 with 𝑥𝑖+1. The following is some graph model example for 

this generator. 

 

• 𝐿𝐶𝐺(0,3,2,5) 

 

Figure 2. Graph representation of 𝐿𝐶𝐺(0,3,2,5) 

(Generated from https://nergi-r.github.io/GraphVisualizer/) 

 

• 𝐿𝐶𝐺(0,1,1,5) 

 

Figure 3. Graph representation of 𝐿𝐶𝐺(0,1,1,5) 

(Generated from https://nergi-r.github.io/GraphVisualizer/) 

• 𝐿𝐶𝐺(1,2,0,8) 

 

Figure 4. Graph representation of 𝐿𝐶𝐺(1,2,0,8) 

(Generated from https://nergi-r.github.io/GraphVisualizer/) 

 

From this example, we can see that function 𝐿𝐶𝐺(𝑥0, 𝑎, 𝑏, 𝑚) 

have at most 𝑚 states, and not necessarily have 𝑚 period. 

Furthermore, an LCG with 𝑥0 as its initial state doesn’t 

guarantee that they will have 𝑥0 as its period base. What LCG 

guarantee is that its graph representation will always have a 

cycle, given finite modulus. 

 

E. Depth First Search 

Depth First Search (DFS) is one of graph traversal algorithm. 

In this algorithm, we find the “deepest” vertex connected to 

current vertex that not already visited, mark it visited, and search 

another one. This algorithm, as opposed to Breadth First Search, 

uses stack principle as its routine, where earliest visited vertex 

will finish last. Because we visit each vertex at most twice, and 

we use each edge at most twice too, the time complexity of this 

algorithm is 𝑂(𝑛 + 𝑚) where 𝑛 is the number of vertices, and 

𝑚 is the number of edges. Because we store whether a vertex is 

already visited or not, the space complexity of this algorithm is 

𝑂(𝑛) where 𝑛 is the number of vertices.  

The following is pseudocode example for Depth First Search. 

 

Figure 5. Pseudocode of DFS [4] 

 

 

III.   CYCLE-FINDING ALGORITHM 

A. Depth First Search 

We can find cycle length in a generator using DFS. Let 𝐺 be 

graph that represent generator, 𝑡𝑖𝑚𝑒 as how many vertices is 

already visited,  𝑒𝑛𝑡𝑟𝑦(𝑢)as the time needed to start processing 

node 𝑢. Let 𝑣 be the vertices that we visited twice. The period 

of a cycle with 𝑣 as its base is given as 𝑡𝑖𝑚𝑒 − 𝑒𝑛𝑡𝑟𝑦(𝑣). 
The following pseudocode is implementation of DFS to find 

generator’s period 

https://nergi-r.github.io/GraphVisualizer/
https://nergi-r.github.io/GraphVisualizer/
https://nergi-r.github.io/GraphVisualizer/
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Figure 6. Pseudocode of Cycle-finding Algorithm using DFS 

Because this cycle-finding algorithm uses DFS as its base, 

this algorithm has the same complexity as DFS, with time 

complexity of 𝑂(𝑛 + 𝑚) and space complexity of 𝑂(𝑛). 

Because in generator m is always 1, the time complexity become 

𝑂(𝑛)   

   

B. Floyd’s Cycle-finding Algorithm 

For 𝑛 ≥ 1𝑒9, we need at least additional 1𝑒9 memory to find 

the generator’s period. This is very costly. Because of that, 

Robert W Floyd created Floyd’s Cycle Finding Algorithm or 

more commonly known as Hare and Tortoise algorithm with the 

time complexity 𝑂(𝑛) and space complexity 𝑂(1). This 

algorithm uses double pointer as its routine, diminishing the 

space that DFS needed. Although DFS and this algorithm both 

have 𝑂(𝑛) complexity, this algorithm has a bigger constant, 

resulting a bit slower calculation in this algorithm. 

The algorithm is as described below: 

1. Let 𝑓(𝑥) be the next edge after 𝑥, 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 with initial 

value  𝑥0, ℎ𝑎𝑟𝑒 with initial value 𝑓(𝑥0), 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒  as the 

step that hare take, and 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 as the step that 

tortoise take. 

2. While ℎ𝑎𝑟𝑒 is not equal to 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒, 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 =
 𝑓(𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒), and ℎ𝑎𝑟𝑒 =  𝑓(𝑓(ℎ𝑎𝑟𝑒)). 

3. If ℎ𝑎𝑟𝑒 = 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒, then we find a period with cycle at 

most 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 − 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 . Because 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 = 2 ∗
𝑠𝑡𝑒𝑝_𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒, we can simplify this as 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒  

4. Because step 1-3 doesn’t guarantee that the period is the 

minimum one, we need to advance tortoise little by little 

while hare stay still until tortoise have the same step as 

hare. Or in other word, 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 = 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 +
1, 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 = 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 , 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 = 𝑓(𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒) for 

every step until 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 = 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 . If while 

advancing the tortoise remain in the same state as hare, 

we store the value of 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 − 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 . 

5. The period is the minimum of 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 − 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 

that satisfy ℎ𝑎𝑟𝑒 = 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 where 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒  is not equal 

to 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒  

 

To explain further, the following is C implementation of Hare 

and Tortoise algorithm. 

 

 

Figure 7. C Implementation of Hare and Tortoise Algorithm 

IV. PSEUDORANDOM NUMBER GENERATOR TESTING 

A. glibc 

The following is glibc implementation of rand() function that 

gcc use. 

 

 

Figure 8. glibc rand() implementation 

(Taken from 

https://github.com/lattera/glibc/blob/master/stdlib/random_r.c, 

December 9, 2018 at 19.26 UTC+7)  

 

From that code, we can see that rand() function uses 

𝐿𝐶𝐺(𝑠𝑒𝑒𝑑, 1103515245,12345,231) as its routine. We will 

use our Hare and Tortoise Algorithm to find its period. 

https://github.com/lattera/glibc/blob/master/stdlib/random_r.c
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Figure 9. Hare and Tortoise Algorithm to Find glibc rand() 

period 

 

From that algorithm, our program finds 2147483648 as the 

period of glibc rand() function. Notice that this is 231, or full 

cycle of its modulus. 

 

B. Delphi Pascal 

The following is Delphi Pascal implementation of Random().

 

Figure 10. Delphi Pascal Random() Implementation 

(Taken from 

http://wiki.freepascal.org/Delphi_compatible_LCG_Random, 

December 9, 2018 at 19.50 UTC+7) 

From that code, we can see that Random() function uses 

𝐿𝐶𝐺(𝑠𝑒𝑒𝑑, 134775813, 1,232) . We will use our Hare and 

Tortoise Algorithm to find its period. 

 

 

Figure 11. Hare and Tortoise Algorithm to Find Delphi Pascal 

Random() period 

 

From that algorithm, our program finds 4294967296 as the 

period of Delphi Pascal Random() function. Notice that this is 

232, or full cycle of its modulus. 

 

C. Xorshift 

Marsaglia, in his paper, proposed a pseudorandom number 

generator that uses xor as its routine. Because of its simple 

operation by only using xor, this PRNG is faster than LCG that 

uses multiplication as its routine. Example implementation of 

xorshift for 32-bit number that he explained in his paper is as 

follows. 

 

 

Figure 12. C implementation of Xorshift [5] 

 

We can use our Algorithm to check its period. 

 

Figure 13. Hare and Tortoise Algorithm to Find Xorshift 

period 

http://wiki.freepascal.org/Delphi_compatible_LCG_Random
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From that algorithm, our program finds 4294967295 as the 

period of xorshift 32 bit that Marsaglia proposed. Notice that 

this number is 232 − 1, because there are 2 graphs in xorshift 

representation: graph with only node 0 and its complement. This 

is because node 0 doesn’t have anything that can be shifted, so 

a good xorshift cannot include 0 as it will create a generator with 

period 1. 

 

D. C++11 minstd_rand0 

In 1988, Park and Miller proposed a variant of Linear 

Congruential Generator with addition constant equals to 0 [6]. 

Later, C++11 implemented it under minstd_rand0 function. The 

following is its official implementation that used in its library. 

 

 

Figure 14 C++11 minstd_rand0 Implementation 

(Taken from https://github.com/gcc-

mirror/gcc/blob/master/libstdc%2B%2B-

v3/include/bits/random.h at December 9, 2018 at 22.33 

UTC+7) 

 

From that code, we can see that minstd_rand0 function that 

C++11 uses 𝐿𝐶𝐺(𝑠𝑒𝑒𝑑, 16807,0,231 − 1) as its routine. We 

will use our Hare and Tortoise Algorithm to find its period. 

 

 

Figure 15. Hare and Tortoise Algorithm to Find minstd_rand0 

period 

 

From that algorithm, our program finds 2147483646 as the 

period of C++11 minstd_rand0. Notice that this number is 232 −
2, because there are 2 graphs in xorshift representation: graph 

with only node 0 and its complement. This is because we can’t 

use 0 as initial seed in multiplicative version of LCG, as 0 will 

resulted in itself if we try to generate its next number. 

 

E. C++11 minstd_rand 

Few years after they propose the use of 

𝐿𝐶𝐺(𝑠𝑒𝑒𝑑, 16807,0,231 − 1),    Park, Miller, and Stockmeyer 

advocated the new alternative of multiplicative version of LCG 

[7]. This version uses 𝐿𝐶𝐺(𝑠𝑒𝑒𝑑, 48271 , 0,231 − 1) as its 

routine, as can be seen in the official implementation of C++11 

minstd_rand. 

 

Figure 16. C++11 minstd_rand Implementation 

(Taken from https://github.com/gcc-

mirror/gcc/blob/master/libstdc%2B%2B-

v3/include/bits/random.h at December 9, 2018 at 22.51 

UTC+7) 

 

We will use our Hare and Tortoise to check for its period. 

 

Figure 17. Hare and Tortoise Algorithm to Find minstd_rand 

period 

 

From that algorithm, our program finds 2147483646 as the 

period of C++11 minstd_rand. 

 

F. Compiler PRNG Comparison 

From previous experiment, we can create a table each random 

implementation method with its period. 

 

Compiler Type Modulus/Range Period 

glibc LCG 32 

bit 

231 2147483648 

Delphi Pascal LCG 32 

bit 

232 4294967296 

- Xorshift 

32 bit 

232 4294967295 

C++11 

minstd_rand0 

LCG 32 

bit 

231 − 1 2147483646 

C++11 

minstd_rand 

LCG 32 

bit 

231 − 1 2147483646 

 

Figure 18. Comparison of each compiler RNG period 

 

 

As we can see, every compiler that we test have a full or near 

full period of its LCG implementation. This is because the need 

of RNG implementation of each language is very high, that’s 

why everyone that contribute to these languages always try to 

find the best RNG implementation that compatible with the 

language they use. 

https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
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V.   CONCLUSION 

There are many things that must be tested to judge whether a 

generator is good enough to be used for critical application that 

require true randomness. Even so, checking the period of 

Pseudorandom Number Generator is one of the simplest ways to 

check the quality of the generator. Floyd’s Cycle Finding 

Algorithm with its linear time complexity and constant memory 

is a good choice for finding its period. Furthermore, with its ease 

of implementation and easily customizable program, we can 

create a more variative test related to generator period, such as 

choose a random number as seed and check whether this number 

have cycle with more than certain threshold. 
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