
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Application of Floyd’s Cycle Finding Algorithm to

Check the Quality of Random Number Generator

Adyaksa Wisanggeni 13517091
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
adyaksa.wisanggeni@gmail.com

Abstract— Graph is one of the most commonly used

mathematical concept in real life. Many problems in our daily life

can be modeled as graph. One of the problems that computer

scientist encounter is checking the quality of Pseudorandom

Number Generator. One of the easiest ways to check the quality of

a Pseudorandom Number Generator is by finding its repeated

period. In this paper, we will try to find the period by using Floyd’s

Cycle Finding Algorithm, or more commonly known as Hare and

Tortoise Algorithm.

Keywords—Pseudorandom Number Generator, Graph, Floyd’s

Cycle Finding Algorithm, Cycle.

I. INTRODUCTION

Random Number Generator (RNG) have many uses in

computer science. Some of its application is in computer

simulation, statistical sampling, cryptography, and other areas

where producing an unpredictable result is desirable. In reality,

scientist have trouble to create a generator with a true

randomness. As substitute, they create Pseudorandom Number

Generator. Pseudorandom Number Generator (PRNG) is a

generator that’s looks random but actually deterministic given

the same initial state, or more commonly called as seed.

One of the most basic ways to check the quality of a

Pseudorandom Number Generator is to find its period, or how

many iterations it takes to generate a same number more than

once. The easiest way to check this for a general generator is to

model that generator as a graph, where each node represents a

state in its generator. To find the generator’s period is same as

finding the cycle length in that graph. In this paper, we will try

to find the cycle length of a Pseudorandom Number Generator

using Floyd’s Cycle Finding Algorithm.

II. BASIC THEORY

A. Graph

Graph is a collection of vertices, edge, and a relation that

associates each edge with 2 vertices called its endpoints [1]. Two

different vertices are called neighbor if and only if there is an

edge that have both vertices as its endpoint. Two different

vertices A and B is connected if and only if B is neighbor of A

or neighbor of B is connected to A. Degree of vertex A is defined

as the number of edges that have A as its endpoint. A cycle is a

graph with N vertices and N edges where each pair of vertices is

connected, and every vertex have degree 2.

B. Directed and Undirected Graph

A directed graph is a graph where each edge has direction

associated with them, whereas an undirected graph is a graph

where each edge is bidirectional.

Figure 1. Directed and Undirected Graph [2]

C. Linear Congruential Generator

Linear Congruential Generator (LCG) is an algorithm that

yields a sequence of pseudorandom number using a linear
equation [3]. This generator is one of the oldest PRNG. Their

advantage is very fast generation and its quality can be easily

analyzed due to their simple structure. The following formulate

is a formulate to generate a sequence of pseudorandom number

using this generator

𝑥𝑛 = 𝑎𝑥𝑛−1 + 𝑏 (𝑚𝑜𝑑 𝑚)

Linear Congruential Generator depends on 4 parameters:

• Initial state (𝑥0)

• Multiplier (𝑎)

• Increment (𝑏)

• Modulus (𝑚)

For this paper, we will define function 𝐿𝐶𝐺(𝑥0, 𝑎, 𝑏, 𝑚) as a

Linear Congruential Generator with previously defined

parameter.

D. Linear Congruential Generator as Graph

We can represent a Linear Congruential Generator as a

directed graph with 𝑥𝑖 as vertex and a directed edge connecting

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

𝑥𝑖 with 𝑥𝑖+1. The following is some graph model example for

this generator.

• 𝐿𝐶𝐺(0,3,2,5)

Figure 2. Graph representation of 𝐿𝐶𝐺(0,3,2,5)

(Generated from https://nergi-r.github.io/GraphVisualizer/)

• 𝐿𝐶𝐺(0,1,1,5)

Figure 3. Graph representation of 𝐿𝐶𝐺(0,1,1,5)

(Generated from https://nergi-r.github.io/GraphVisualizer/)

• 𝐿𝐶𝐺(1,2,0,8)

Figure 4. Graph representation of 𝐿𝐶𝐺(1,2,0,8)

(Generated from https://nergi-r.github.io/GraphVisualizer/)

From this example, we can see that function 𝐿𝐶𝐺(𝑥0, 𝑎, 𝑏, 𝑚)

have at most 𝑚 states, and not necessarily have 𝑚 period.

Furthermore, an LCG with 𝑥0 as its initial state doesn’t

guarantee that they will have 𝑥0 as its period base. What LCG

guarantee is that its graph representation will always have a

cycle, given finite modulus.

E. Depth First Search

Depth First Search (DFS) is one of graph traversal algorithm.

In this algorithm, we find the “deepest” vertex connected to

current vertex that not already visited, mark it visited, and search

another one. This algorithm, as opposed to Breadth First Search,

uses stack principle as its routine, where earliest visited vertex

will finish last. Because we visit each vertex at most twice, and

we use each edge at most twice too, the time complexity of this

algorithm is 𝑂(𝑛 + 𝑚) where 𝑛 is the number of vertices, and

𝑚 is the number of edges. Because we store whether a vertex is

already visited or not, the space complexity of this algorithm is

𝑂(𝑛) where 𝑛 is the number of vertices.

The following is pseudocode example for Depth First Search.

Figure 5. Pseudocode of DFS [4]

III. CYCLE-FINDING ALGORITHM

A. Depth First Search

We can find cycle length in a generator using DFS. Let 𝐺 be

graph that represent generator, 𝑡𝑖𝑚𝑒 as how many vertices is

already visited, 𝑒𝑛𝑡𝑟𝑦(𝑢)as the time needed to start processing

node 𝑢. Let 𝑣 be the vertices that we visited twice. The period

of a cycle with 𝑣 as its base is given as 𝑡𝑖𝑚𝑒 − 𝑒𝑛𝑡𝑟𝑦(𝑣).
The following pseudocode is implementation of DFS to find

generator’s period

https://nergi-r.github.io/GraphVisualizer/
https://nergi-r.github.io/GraphVisualizer/
https://nergi-r.github.io/GraphVisualizer/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Figure 6. Pseudocode of Cycle-finding Algorithm using DFS

Because this cycle-finding algorithm uses DFS as its base,

this algorithm has the same complexity as DFS, with time

complexity of 𝑂(𝑛 + 𝑚) and space complexity of 𝑂(𝑛).

Because in generator m is always 1, the time complexity become

𝑂(𝑛)

B. Floyd’s Cycle-finding Algorithm

For 𝑛 ≥ 1𝑒9, we need at least additional 1𝑒9 memory to find

the generator’s period. This is very costly. Because of that,

Robert W Floyd created Floyd’s Cycle Finding Algorithm or

more commonly known as Hare and Tortoise algorithm with the

time complexity 𝑂(𝑛) and space complexity 𝑂(1). This

algorithm uses double pointer as its routine, diminishing the

space that DFS needed. Although DFS and this algorithm both

have 𝑂(𝑛) complexity, this algorithm has a bigger constant,

resulting a bit slower calculation in this algorithm.

The algorithm is as described below:

1. Let 𝑓(𝑥) be the next edge after 𝑥, 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 with initial

value 𝑥0, ℎ𝑎𝑟𝑒 with initial value 𝑓(𝑥0), 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 as the

step that hare take, and 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 as the step that

tortoise take.

2. While ℎ𝑎𝑟𝑒 is not equal to 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒, 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 =
 𝑓(𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒), and ℎ𝑎𝑟𝑒 = 𝑓(𝑓(ℎ𝑎𝑟𝑒)).

3. If ℎ𝑎𝑟𝑒 = 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒, then we find a period with cycle at

most 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 − 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 . Because 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 = 2 ∗
𝑠𝑡𝑒𝑝_𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒, we can simplify this as 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒

4. Because step 1-3 doesn’t guarantee that the period is the

minimum one, we need to advance tortoise little by little

while hare stay still until tortoise have the same step as

hare. Or in other word, 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 = 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 +
1, 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 = 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 , 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 = 𝑓(𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒) for

every step until 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 = 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 . If while

advancing the tortoise remain in the same state as hare,

we store the value of 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 − 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 .

5. The period is the minimum of 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 − 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒

that satisfy ℎ𝑎𝑟𝑒 = 𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒 where 𝑠𝑡𝑒𝑝ℎ𝑎𝑟𝑒 is not equal

to 𝑠𝑡𝑒𝑝𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒

To explain further, the following is C implementation of Hare

and Tortoise algorithm.

Figure 7. C Implementation of Hare and Tortoise Algorithm

IV. PSEUDORANDOM NUMBER GENERATOR TESTING

A. glibc

The following is glibc implementation of rand() function that

gcc use.

Figure 8. glibc rand() implementation

(Taken from

https://github.com/lattera/glibc/blob/master/stdlib/random_r.c,

December 9, 2018 at 19.26 UTC+7)

From that code, we can see that rand() function uses

𝐿𝐶𝐺(𝑠𝑒𝑒𝑑, 1103515245,12345,231) as its routine. We will

use our Hare and Tortoise Algorithm to find its period.

https://github.com/lattera/glibc/blob/master/stdlib/random_r.c

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Figure 9. Hare and Tortoise Algorithm to Find glibc rand()

period

From that algorithm, our program finds 2147483648 as the

period of glibc rand() function. Notice that this is 231, or full

cycle of its modulus.

B. Delphi Pascal

The following is Delphi Pascal implementation of Random().

Figure 10. Delphi Pascal Random() Implementation

(Taken from

http://wiki.freepascal.org/Delphi_compatible_LCG_Random,

December 9, 2018 at 19.50 UTC+7)

From that code, we can see that Random() function uses

𝐿𝐶𝐺(𝑠𝑒𝑒𝑑, 134775813, 1,232) . We will use our Hare and

Tortoise Algorithm to find its period.

Figure 11. Hare and Tortoise Algorithm to Find Delphi Pascal

Random() period

From that algorithm, our program finds 4294967296 as the

period of Delphi Pascal Random() function. Notice that this is

232, or full cycle of its modulus.

C. Xorshift

Marsaglia, in his paper, proposed a pseudorandom number

generator that uses xor as its routine. Because of its simple

operation by only using xor, this PRNG is faster than LCG that

uses multiplication as its routine. Example implementation of

xorshift for 32-bit number that he explained in his paper is as

follows.

Figure 12. C implementation of Xorshift [5]

We can use our Algorithm to check its period.

Figure 13. Hare and Tortoise Algorithm to Find Xorshift

period

http://wiki.freepascal.org/Delphi_compatible_LCG_Random

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

From that algorithm, our program finds 4294967295 as the

period of xorshift 32 bit that Marsaglia proposed. Notice that

this number is 232 − 1, because there are 2 graphs in xorshift

representation: graph with only node 0 and its complement. This

is because node 0 doesn’t have anything that can be shifted, so

a good xorshift cannot include 0 as it will create a generator with

period 1.

D. C++11 minstd_rand0

In 1988, Park and Miller proposed a variant of Linear

Congruential Generator with addition constant equals to 0 [6].

Later, C++11 implemented it under minstd_rand0 function. The

following is its official implementation that used in its library.

Figure 14 C++11 minstd_rand0 Implementation

(Taken from https://github.com/gcc-

mirror/gcc/blob/master/libstdc%2B%2B-

v3/include/bits/random.h at December 9, 2018 at 22.33

UTC+7)

From that code, we can see that minstd_rand0 function that

C++11 uses 𝐿𝐶𝐺(𝑠𝑒𝑒𝑑, 16807,0,231 − 1) as its routine. We

will use our Hare and Tortoise Algorithm to find its period.

Figure 15. Hare and Tortoise Algorithm to Find minstd_rand0

period

From that algorithm, our program finds 2147483646 as the

period of C++11 minstd_rand0. Notice that this number is 232 −
2, because there are 2 graphs in xorshift representation: graph

with only node 0 and its complement. This is because we can’t

use 0 as initial seed in multiplicative version of LCG, as 0 will

resulted in itself if we try to generate its next number.

E. C++11 minstd_rand

Few years after they propose the use of

𝐿𝐶𝐺(𝑠𝑒𝑒𝑑, 16807,0,231 − 1), Park, Miller, and Stockmeyer

advocated the new alternative of multiplicative version of LCG

[7]. This version uses 𝐿𝐶𝐺(𝑠𝑒𝑒𝑑, 48271 , 0,231 − 1) as its

routine, as can be seen in the official implementation of C++11

minstd_rand.

Figure 16. C++11 minstd_rand Implementation

(Taken from https://github.com/gcc-

mirror/gcc/blob/master/libstdc%2B%2B-

v3/include/bits/random.h at December 9, 2018 at 22.51

UTC+7)

We will use our Hare and Tortoise to check for its period.

Figure 17. Hare and Tortoise Algorithm to Find minstd_rand

period

From that algorithm, our program finds 2147483646 as the

period of C++11 minstd_rand.

F. Compiler PRNG Comparison

From previous experiment, we can create a table each random

implementation method with its period.

Compiler Type Modulus/Range Period

glibc LCG 32

bit

231 2147483648

Delphi Pascal LCG 32

bit

232 4294967296

- Xorshift

32 bit

232 4294967295

C++11

minstd_rand0

LCG 32

bit

231 − 1 2147483646

C++11

minstd_rand

LCG 32

bit

231 − 1 2147483646

Figure 18. Comparison of each compiler RNG period

As we can see, every compiler that we test have a full or near

full period of its LCG implementation. This is because the need

of RNG implementation of each language is very high, that’s

why everyone that contribute to these languages always try to

find the best RNG implementation that compatible with the

language they use.

https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.h

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

V. CONCLUSION

There are many things that must be tested to judge whether a

generator is good enough to be used for critical application that

require true randomness. Even so, checking the period of

Pseudorandom Number Generator is one of the simplest ways to

check the quality of the generator. Floyd’s Cycle Finding

Algorithm with its linear time complexity and constant memory

is a good choice for finding its period. Furthermore, with its ease

of implementation and easily customizable program, we can

create a more variative test related to generator period, such as

choose a random number as seed and check whether this number

have cycle with more than certain threshold.

VII. ACKNOWLEDGMENT

I would like to express my deep gratitude to Mr. Rinaldi

Munir, Mr. Judhi Santoso, and Mrs. Harlili as our lecturer in

Discrete Mathematics Course for the knowledge that they shared

upon us. I also would like to thank my family and friends for

help and support while this paper is created. I also would like to

thank all programming language creator that open-source their

language implementation, as their contribution to make their

source-code open helps me test my algorithm implementation.

REFERENCES

[1] West, Douglas (2002), “Introduction to Graph Theory”, Singapore:

Pearson, pp. 2-3

[2] Pommerening, K. (2016) Bitstream Ciphers, week 3 notes. Retrieved from

https://www.staff.uni-

mainz.de/pommeren/Cryptology/Bitstream/1_Classic/LCG.pdf

[3] Briñón-Arranz, Lara. (2011). Cooperative control design for a fleet of

AUVs under communication constraints.

[4] Cormen, T. H., & Cormen, T. H. (2001). Introduction to algorithms.

Cambridge, Mass: MIT Press, pp 604-605

[5] George Marsaglia. 2003. Xorshift RNGs. J. Stat. Softw. 8, 14 (2003), 1--

6.

[6] S. K. Park, K. W. Miller, “Random number generators: good ones are hard

to find”, Communications of the ACM, v.31 n.10, p.1192-1201, Oct. 1988

[7] Stephen K. Park; Keith W. Miller; Paul K. Stockmeyer (1988). "Technical

Correspondence: Response" (PDF). Communications of the ACM. 36 (7):

108–110.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 9 Desember 2017

Ttd (scan atau foto ttd)

Adyaksa Wisanggeni 13517091

https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitstream/1_Classic/LCG.pdf
https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitstream/1_Classic/LCG.pdf

