
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Topological Sort Using Graph Theory

Hafidh Rendyanto 13517061
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
hafidhrendyanto@s.itb.ac.id

13517061@std.stei.itb.ac.id

Abstract—In this paper we discuss the use of graph theory to

implement Topological Sort algorithm, a type of algorithm to

create full relation from partial one. In order to do this, it create a

graph from knowledge base that we give to it and then apply the

said algorithm to that graph to make an ordered list.

Keywords—Topological Sort, Sort Algorithm, Algorithm, Graph

Theory.

I. INTRODUCTION

In Computer Science, sorting algorithm is used in many

different (and most of the times, diverse) application. It is used

to find a solution to a problem, but most of the times, it is used

to accelerate another algorithm like search algorithm (ex: binary

search). But in this paper, we will focus our attention to a type

of sort algorithm that usually used to deduce a solution to a

problem (partial relation problem). But before we continue, I

want to mention some other uses of sort algorithm.

1) Searching

Like I have said in the preceding paragraph, sort

algorithm is mostly used to accelerate sort algorithm in

what known as search pre-processing in which, before we

search a data for specific element, we sort the data, so we

can use binary search (which have a complexity of O(log

n), the lowest of its kind) when the need to search an

element of this data arises. On a note, this use of sort

algorithm is perhaps the single, most important

application of sorting.

2) Closest Pair

This problem, ask the question of, given a set of n

number, how do you find the pair of numbers that have

the smallest difference between them. The simplest of

algorithm is to traverse that set, and for every element x

in that set, you must traverse every element y of this list

except x, compute the difference between x and y, and

then find the minimum difference. Of course, this

problem goes quadratically large the larger the size of that

set (O(n2)). One of the uses of sort algorithm to accelerate

this problem is to pre-process the data using sort

algorithm, so we need only traverse the data once, and

then find the difference between the next and preceding

element, this approach is going to reduce the closest pair

problem to a complexity of (O(n)).

3) Element Uniqueness

Another problem that can be optimized using search

algorithm is Element Uniqueness, this problem asks the

question of is there any duplicates in a given set of n

items. Like before the simplest algorithm is to traverse

that set, and for every element x in that set, you must

traverse every element y of this list except x, compute the

difference between x and y, and if there exist a pair of x

and y which have a difference of 0, then that pair of x and

y is not unique in that set. Just like before, this algorithm

has complexity of O(n2) and one way to accelerate the

problem is to pre-process the data so we just need to

linearly search the data for element that is not unique after

the pre-process.

4) Frequency Distribution

This problem asks the question of, given a set of n

items, which element occurs the largest number of times

in that set. The optimization problem is very similar to

the problem that I have mentioned before, If the items are

sorted, we can seep from left to right linearly, counting

them one by one, since all identical items will be lumped

together.

5) Selection

This problem asks the question of, what is the kth

largest item in the set. If the keys are placed in sorted

order in an array, the kth largest can be found in constant

time by simply looking at the kth position of the set.

Over the course of history, humanity has made many kinds of

sort algorithm, like bucket sort, bubble sort, selection sort,

insertion sort, merge sort, and many other (which I will go

through one by one in the next section). They are different in

implementation, but they have one common characteristic, all of

them can only sort object with a defining characteristic of

conformity like, real number set ℝ or alphabet. None of them

can sort random item. For example, we cannot sort a set like

{apple, banana, melon} because we don’t know whether apple

precede banana or the other way around.

But all hope is not lost, there is one sort algorithm (at least

that I know) that can sort a set of random items, the sort

algorithm that refer is topological sort. This sort algorithm take

a set of partial relation of object as input, and then using that set

as information, this algorithm, create a new set of ordered object.

Our implementation of topological sort use graph to process the

information using simple algorithm that I will explain shortly.

mailto:hafidhrendyanto@s.itb.ac.id

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

II. BRIEF EXPLANATION OF SORT ALGORITHM

A. Definition

The word algorithm is used widely in computer science,

mathematics, and science in general. The formal definition

of this word is that algorithm is an unambiguous

specification of how to solve a class of problem. Algorithm

can perform calculation, data processing, and automated

reasoning.

Algorithm is used in every part of our daily life, from

solving complex problem, proofing mathematical theorem,

and even food recipes can be categorized as algorithm. But

most importantly, algorithm gives the means to convey our

ideas to other, and to make our life easier.

In this paper we are going to talk about the type of

algorithm used in data processing, vis, sort algorithm. Sort

algorithm itself is a type of algorithm that is used to make

an ordered set of an unordered one. This type of algorithm

has many applications like what I have described in the

preceding chapter.

B. Brief History

Over the course of human history, the word has

developed from precise definition of process to something

more abstract in this day and age, the reason will be

explained shortly. I will describe briefly about the history

of the word below,

Ancient Greece

There are two examples of the use of this word in ancient

Greece, vis, Sieve of Eratosthenes, which was described in

Introduction to Arithmetic by Nicomachus, and the

Euclidean algorithm, which was first described in Euclid's

Elements.

The Advent of Algebra

The advent of algebra gives birth to the use of variable to

solve mathematical problem, which also gives birth to

algorithm to solve such problem.

Advancement of Mathematics

Algorithm is expanded in the field of mathematics to

solve even more problem and even given its own place of

study in Discrete Mathematic, a subset of math.

The Advent of Computer

In this event of human history, the use of the word is not

expanded, it is rather, shrink to be used mainly in the field

of computer science to describe a set of process that

computer go through in order to solve problem.

Current Age

In this day and age, the word expanded again to not only

describe precise description of some process but also to

model how intelligence work in the field of artificial

intelligence. Even if this definition of “algorithm” does not

match precisely with artificial intelligence, but I still believe

that even the most sophisticated machine intelligence (using

neural net or some other kind of advanced implementation)

could still be described using algorithm.

C. Classification

There are many ways to classify algorithm, each with their

own odds and ends.

By design paradigm

Paradigm can be described as point of view, or way of

thinking. With different point of view to a problem, one can

create a completely different algorithm to a problem.

a) Brute-force

This is the naïve method of trying every possible

solution to see which is best.

b) Divide and Conquer

A divide and conquer algorithm repeatedly reduces an

instance of a problem to one or more smaller instances

of the same problem (usually recursively) until the

instances are small enough to solve easily. One such

example of divide and conquer is merge sorting.

Sorting can be done on each segment of data after

dividing data into segments and sorting of entire data

can be obtained in the conquer phase by merging the

segments.

c) Search and Enumeration

Many problems (such as playing chess) can be modeled

as problems on graphs. A graph exploration algorithm

specifies rules for moving around a graph and is useful

for such problems. This category also includes search

algorithms, branch and bound enumeration and

backtracking.

d) Randomized Algorithm

Such algorithms make some choices randomly (or

pseudo-randomly). They can be very useful in finding

approximate solutions for problems where finding

exact solutions can be impractical (see heuristic

method below).

e) Reduction of Complexity

This technique involves solving a difficult problem by

transforming it into a better-known problem for which

we have (hopefully) asymptotically optimal

algorithms.

f) Backtracking

In this approach, multiple solutions are built

incrementally and abandoned when it is determined

that they cannot lead to a valid full solution. One of its

popular use is its use in logic programming

Optimization Problem

For optimization problems there is a more specific

classification of algorithms

a) Linear Programing

If the problem that is going to be solved have linear

equity and inequality constraints, the constraint of this

particular problem can be used directly in producing

the optimal solution, such is the definition of this

classification

b) Dynamic Programing

Dynamic Programing use the “infinite” memory of

computer to its advantage, it save the result of some

computation in memory to avoid recomputing it in the

future.

c) The Greedy Method

A greedy algorithm is similar to a dynamic

programming algorithm in that it works by examining

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

substructures, in this case not of the problem but of a

given solution.

d) The Heuristic Method

I think heuristic algorithm use similar paradigm in what

was used in calculus. These algorithms work by getting

closer and closer to the optimal solution as they

progress. In principle, if run for an infinite amount of

time, they will find the optimal solution. Just like

calculus.

III. ANALYSIS AND DISCUSSION

Like what I have mentioned many times in this paper, we are

going to focus our attention to one implementation of algorithm

to process data vis, sort algorithm. In particular we are going to

discuss one sort algorithm that does not require conformity in

the object that it sort vis, topological sort.

Topological sort can sort a set of object without conformity

in them, using some knowledge base which we will refer as

partial relation and then transform them to full relation.

For example, topological sort can sort a set of object like

{sleep, eat, doing_work} if we give it knowledge base like sleep

< eat, sleep < doing_work, and eat < doing_work.

In this paper, we will discuss a particular implementation of

topological sort which uses graph theory for its implementation.

Not only we will discus topological sort, but I have made my

own implementation of this algorithm using what I have learn

from my course at IF2120 Discrete Math myself.

The algorithm that I have used is actually very simple, which

I will write bellow,

1. Make a directed graph from the knowledge base that we

have. For example if we have element (a < b) in our

knowledge base we can make an arc from that with a as

our initial vertex, and b as our final vertex.

2. Delete a vertex X that have an incoming degree of 0

(din(q) = 0) then insert that vertex to the list of ordered

objects.

3. Delete all arc with X as it incoming degree, then there

will be another vertex with incoming degree of 0 because

of this step.

4. Repeat step 3 and 4.

For example if I have a knowledge base of

a < b, b < c,

b < d, b < e,

c < f, d < f,

f < g, e <g, and

b < g.

Then the process of this algorithm is shown as follows,

Firs, we make a graph out of our knowledge base as

follows.

Ordered List = { }.

Then we delete vertex A and then insert it into our

ordered list,

Ordered List = {A}.

Delete vertex B,

Ordered List = { A, B }.

Delete vertex D,

Ordered List = { A, B, D }.

Delete vertex C,

Ordered List = { A, B, D, C }.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Delete vertex E,

Ordered List = { A, B, D, C, E }.

Delete vertex E,

Ordered List = { A, B, D, C, E, F }.

And then we delete vertex G to get an ordered list of

{ A, B, D, C, E, F, G }.

Source Code

I have made my implementation of topological sort in

C language and would like to mention it below,

1. int partialRelation2Graf() {
2. /* Local Var */
3. address Temp;
4. address currAdd;
5. address adjacentcyTarget;
6.
7. /* Algoritm */
8. Temp = Alokasi(Elmt(partialRelation, 1,

1));
9. First(InformationArchive) = Temp;
10. for(int i = 1; i <= Neff(partialRelation

); i++) {
11. if(!isThereOnGraf(Elmt(partialRelati

on, i, 1))) {
12. Next(Temp) = Alokasi(Elmt(partia

lRelation, i, 1));
13. Temp = Next(Temp);
14. }
15. if(!isThereOnGraf(Elmt(partialRelati

on, i, 2))) {
16. Next(Temp) = Alokasi(Elmt(partia

lRelation, i, 2));
17. Temp = Next(Temp);
18. }
19. }
20.
21. for(int i = 1; i <= Neff(partialRelation

); i++) {
22. currAdd = First(InformationArchive);

23. while ((strcmp(Head(currAdd), Elmt(p

artialRelation, i, 1)) != 0) && (currAdd !=
NULL)) {

24. currAdd = Next(currAdd);
25. }
26. if (currAdd == NULL) {
27. printf("Error at assigning adjac

entcy, cannot found target vertex.\n");
28. return -1;

29. }
30. if (adjacentcy(currAdd) == NULL) {
31. adjacentcy(currAdd) = Alokasi(El

mt(partialRelation, i, 2));
32. } else {
33. adjacentcyTarget = adjacentcy(cu

rrAdd);
34. while(Next(adjacentcyTarget) !=

NULL) {
35. adjacentcyTarget = Next(adja

centcyTarget);
36. }
37. Next(adjacentcyTarget) = Alokasi

(Elmt(partialRelation, i, 2));
38. }
39. }
40.
41. for(int i = 1; i <= Neff(partialRelation

); i++) {
42. currAdd = First(InformationArchive);

43. while ((strcmp(Head(currAdd), Elmt(p

artialRelation, i, 2)) != 0) && (currAdd !=
NULL)) {

44. currAdd = Next(currAdd);
45. }
46. if (currAdd == NULL) {
47. printf("Error at assigning adjac

entcy, cannot found target vertex.\n");
48. return -1;
49. }
50. In(currAdd)++;
51. }
52. return 0;
53. }
54.
55. int sortFunc() {
56. address currAdd;
57. address adjacentcyTarget;
58. address Temp;
59.
60. First(SortedList) = NULL;
61. while (!isInfoArcEmpty()) {
62. currAdd = First(InformationArchive);

63. while (In(currAdd) != 0) {
64. currAdd = Next(currAdd);
65. }
66. if (First(SortedList) == NULL) {
67. Temp = Alokasi(Head(currAdd));
68. First(SortedList) = Temp;
69. } else {
70. Next(Temp) = Alokasi(Head(currAd

d));
71. Temp = Next(Temp);
72. }
73. In(currAdd)--;
74.
75. adjacentcyTarget = adjacentcy(currAd

d);
76. while (adjacentcyTarget != NULL) {
77. currAdd = First(InformationArchi

ve);
78. while ((strcmp(Head(currAdd), He

ad(adjacentcyTarget)) != 0) && (currAdd != N
ULL)) {

79. currAdd = Next(currAdd);

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

80. }
81. if (currAdd == NULL) {
82. printf("Unexpected NULL at s

ortFunc\n");
83. }
84. In(currAdd)--;
85. adjacentcyTarget = Next(adjacent

cyTarget);
86. }
87. }
88. return 0;
89. }
90.
91. int main() {
92. printf("Selamat datang di program topolo

gical sort!\n");
93. printf("Program ini akan merubah keterur

utan parsial yang\n");
94. printf("kedalam keterurutan lengkap!\n")

;
95. readRelation();
96. partialRelation2Graf();
97. sortFunc();
98. printSolution();
99. return 0;
100. }

I only included the important function in the code

snippet and exclude many unimportant parts so not to

make the snippet too long.

Test Case

I have also make some test case to test my algorithm, the

first example is the same as example I have depicted

using graph above,

The second test case is a recipe to make soup,

The last test case, is a procedure to make house,

IV. CONCLUSION

In this paper, we have discussed algorithm in general,

discussing it definition, classification all the way to it history,

we continue our discussion to more specific type of algorithm

that process data, which is sort algorithm, and then we focus

once more to a type of sort algorithm that tries to make sense of

an object that seemingly cannot be sorted, vis, topological sort.

Topological sort does this, by creating full relation using

information derived from knowledge bases. It first make a graph

from that knowledge base and then apply the said algorithm to

that graph.

V. ACKNOWLEDGMENT

I would like to thank God for giving me power, will, and

opportunity to finish this paper in time and I would like to thank

my parent for giving me support and the chance to study here in

computer science department of STEI.

REFERENCES

[1] Bell, C. Gordon and Newell, Allen (1971), Computer Structures: Readings

and Examples, McGraw–Hill Book Company, New York. ISBN 0-07-

004357-4.

[2] Minsky, Marvin (1967). Computation: Finite and Infinite Machines (First

ed.). Prentice-Hall, Englewood Cliffs, NJ. ISBN 0-13-165449-7.

[3] Bolter, David J. (1984). Turing's Man: Western Culture in the Computer

Age (1984 ed.). The University of North Carolina Press, Chapel Hill NC.

ISBN 0-8078-1564-0., ISBN 0-8078-4108-0pbk.

[4] Burgin, Mark (2004). Super-Recursive Algorithms. Springer. ISBN 978-

0-387-95569-8.

[5] Church, Alonzo (1936a). "An Unsolvable Problem of Elementary Number

Theory". The American Journal of Mathematics.

[6] Knuth, Donald (1997). Fundamental Algorithms, Third Edition. Reading,

Massachusetts: Addison–Wesley. ISBN 0-201-89683-4.

[7] Kosovsky, N. K. Elements of Mathematical Logic and its Application to

the theory of Subrecursive Algorithms, LSU Publ., Leningrad, 1981

[8] A. A. Markov (1954) Theory of algorithms. [Translated by Jacques J.

Schorr-Kon and PST staff] Imprint Moscow, Academy of Sciences of the

USSR, 1954

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

[9] https://www.quora.com/What-are-the-uses-of-different-sorting-

algorithms-like-bubble-selection-insertion-shell-merge-heap-quick-tree-

radix-counting-and-bucket-sort-in-real-life-scenarios, accessed 9

December, 8:13 GMT +7.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

Hafidh Rendyanto 13517061

https://www.quora.com/What-are-the-uses-of-different-sorting-algorithms-like-bubble-selection-insertion-shell-merge-heap-quick-tree-radix-counting-and-bucket-sort-in-real-life-scenarios
https://www.quora.com/What-are-the-uses-of-different-sorting-algorithms-like-bubble-selection-insertion-shell-merge-heap-quick-tree-radix-counting-and-bucket-sort-in-real-life-scenarios
https://www.quora.com/What-are-the-uses-of-different-sorting-algorithms-like-bubble-selection-insertion-shell-merge-heap-quick-tree-radix-counting-and-bucket-sort-in-real-life-scenarios

