
Finding Shortest Escape Route for Evacuation in a

Building Using Breadth-First-Search Algorithm

Ahmad Fahmi Pratama - 13516139

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

afahmi3@yahoo.co.id

Abstract—In evacuation planning in a building, finding shortest

to the nearest exit is an important aspect. But sometimes the

evacuees inside the building are still confused of choosing a path /

route that they should follow to find nearest emergency exit,

because of the unfamiliarity with the building. They tend to go to

the main entrance which sometimes far enough from their position,

making it dangerous. The objective of this paper is to find shortest

escape route in a building for evacuation, if there are any incidents

such as fire or earthquake. This paper presents a shortest path-

based algorithm which finds nearest exit in a building, using

Breadth-First-Search algorithm. The floor plan is treated as a

graph, with any unit step of a person is represented as its nodes.

Then, the algorithm traverses the graph to find a shortest way to

the nearest exit from the person’s position. There may be multiple

emergency exits that are reachable, the evacuee can then choose

any exits available that he/she wants to go through.

Keywords—Shortest path, graph traversal, Breadth-First-

Search algorithm, evacuation planning

I. INTRODUCTION

While designing a building layout, making effective and

efficient evacuation planning is a must. It must be easy for the

visitors in the building to get out of the building as quickly as

possible whenever a disaster occurs using the safe way that the

layout given. However, sometimes finding a safe way to escape

or finding emergency exits in a building is not really easy if the

building is quite complex and huge, or that many emergency

exits are blocked with some obstacles caused by the disasters,

trapping evacuees inside the building.

 Disasters can occur at any time, also when visitors are still

inside a building. Every visitor inside the building should know

where are the location of emergency exits there, supposedly. But

in contrary, knowing emergency exits while they are not familiar

enough of the building is difficult. Most of the time, they do not

know which is the shortest and safest path they should follow in

order to reach the exit because of the unfamiliarity. A survey for

investigating exit choice decision in a Chinese supermarket by

[1] shows that 48.6% of the respondent will use the nearest the

emergency exit, but a considerable amount of people (20.9% of

the respondent) will return to the main entrance. There are still

many people who choose main entrance as their exit because it

was the first thing that appears when thinking about evacuation

route, since finding emergency exits is not that easy.

Making a decision in a critical time such as in a disaster often

leads to bad decision, such as choosing a path that they should

follow to go outside a building. Unfortunately, there has no time

to make a good decision. Every decision has to be made quickly

to make the evacuees as safe as possible. It also can reduce the

number of the injuries because of the hazard. To help them in

making a good decision, the author will provide a way to find a

shortest evacuation route in a disaster using Breadth-First-

Search algorithm.

II. BASIC GRAPH THEORIES

A. Graph

A graph G = (V, E) consists of a nonempty set of vertices /

nodes called V and a nonempty set of edges called E, which each

of edges has either one or two vertices associated with it, called

its endpoints [2].

Figure 1. A graph that consists of 6 vertices and 5 edges.

Source: author’s document.

B. Terminology

In graph theory, there are some terminologies that are

important to describe anything related to graphs, such as

behavior, properties, etc. Here are the lists of important terms

that will be used.

1. Adjacent

Two vertices u and v of a graph G are called adjacent /

neighbors if both of the vertices are connected each other

by an edge e.

2. Incident

An edge e is called incident with the vertices u and v if it

connects both of the two vertices.

3. Degree

Degree of a vertex u in a non-directed graph G is the sum

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

of edges that are incident with that vertex.

4. Path

A path in a graph G is a set of vertices that consists of any

start vertex until the final vertex, creating a path.

5. Cycle / Circuit

A cycle is path that the start and final vertices are the same

vertex, creating a loop.

6. Isolated Vertex

An isolated vertex is a vertex that has no edges that

coincidence with it.

7. Subgraph

A graph H = (W, F) is called a subgraph of a graph G =

(V, E), where F ⊆ E and W ⊆ V. A subgraph H is a proper

subgraph of G if H ≠ G.

8. Weighted Graph

A weighted graph is a graph that has values (weight) on its

edges. The values can represent relation between any two

connected vertices, such as distance, time, production cost,

etc.

C. Types of Graphs

Graphs can be classified into some categories based on their

properties. Mainly, graphs can be classified into the types of

graphs depending upon the number of edges, the number of

vertices, interconnectivity, and their overall structure.

Based on the edges direction, graphs can be divided into two

types, directed graph and non-directed graph.

1. Directed Graph

A directed graph is a graph that contains edges that have

directions to which vertex they are heading to.

Figure 2. An example of directed graph [2]

2. Non-Directed Graph

A non-directed graph is graph such the edges have no

direction to any vertices.

Figure 3. An example of non-directed graph [2]

Based on the edges types, graphs can be classified into three

categories listed below:

1. Simple Graph

A simple graph is a graph that has no parallel edges and

has no loops.

2. Multigraph

A multigraph is a graph that may has multiple edges

connecting the same pair of vertices.

3. Pseudograph

A pseudograph is a graph that may has multiple edges

connecting the same pair of vertices as well as loops.

D. Some Special Simple Graphs

There are some special, famous, or widely known types of

graphs that are often to be found. Here are the lists of graphs.

1. Complete Graph

A complete graph on n vertices, denoted by Kn, is a simple

graph that contains exactly one edge connecting every pair

of distinct vertices. In other words, a complete graph Kn

with n vertices has exactly n-1 edges.

Figure 4. Some examples of complete graph[2]

2. Cycle Graph

A cycle graph (or cycle only), denoted by Cn, n≥3, is a

simple graph that consists of n vertices v1, v2, …, vn and

edges that connect between every pair of {vn-1, vn}.

Figure 5. Some examples of cycle graph [2]

3. Wheels

A wheel, denoted by Wn, actually a cycle graph Cn that is

given additional vertex, and connect this new vertex to

each vertex in the cycle.

Figure 6. Some examples of wheel graph [2]

III. GRAPH TRAVERSAL

A. Definition

Graph traversal is a technique used for searching a vertex in a

graph by traversing all of the vertices in a graph. This method

obviously required considerable amount of computation time,

since graph traversal may require some vertices to be visited

more than once. Revisiting vertices is needed as sometimes it is

not necessarily known whether a vertex has already been

explored or not. As the graph becomes denser, this redundancy

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

becomes more often, thus increasing its computation time.

It is usually necessary to keep track of which vertices that has

been visited before in the algorithm, so that the algorithm will

not visiting the same vertices repeatedly, leading to infinite loop.

This may be accomplished in some methods, such as associating

each vertex of the graphs with some values or “colors” that

distinguish them between the unvisited ones, indicating that

certain vertex has been visited before.

There are two famous graph traversal algorithms that can be

used to achieve the goals, the two are Depth-First-Search

(abbreviated as DFS) algorithm and Breadth-First-Search

(abbreviated as BFS) algorithm. In this paper, BFS algorithm

will be used later.

B. Breadth-First-Search (BFS)

Breadth-First-Search (abbreviated as BFS) is a kind of graph

traversal algorithm. Give a graph G = (V,E) and a distinguished

source vertex s, BFS explores every edges of G to discover every

vertices that are accessible from s. In other words, BFS will visit

vertices that are direct neighbors of s (first layer). Then, it will

visit the neighbors of the direct neighbors that were visited

before (second layer), and so on.

BFS algorithm mainly uses queue data structure in this

application. It first starts by inserting the source vertex s to the

queue, then process the queue as follows:

1. Take the front most vertex u from the queue

2. Insert all the unvisited neighbors of u to the queue, then

mark them as visited

3. Repeat step 1 and 2 until all of the vertices had already

been visited

Figure 7. Graphical simulation of BFS algorithm [4]

The algorithm will visit vertex s and all vertices in the

connected component that contains s layer by layer. BFS

algorithm complexity is O(V+E) where V is the number of

vertices and E is the number of edges in the graph. Below is the

pseudo-code of BFS algorithm.

BFS algorithm implementation[5].

IV. IMPLEMENTATION OF BFS ALGORITHM ON FINDING

SHORTEST ESCAPE ROUTE

A. Building Layout

BFS algorithm obviously needs graph to be traversed. So, the

building layout that will be used for this implementation needs

to be converted to a graph. The graph that will be used is in the

form of grid map with the size of R x C, where R is the row size

of the grid, indicating building’s length, and C is the column size

of the grid, indicating building’s width.

BFS(G,s) {

 initialize vertices;

 Q = {s];

 while (Q not empty) {

 u = Dequeue(Q);

 for each v adjacent to u do {

 if (color[v] == WHITE) {

 color[v] = GRAY;

 d[v] = d[u]+1; // compute d[]

 p[v] = u; // build BFS tree

 Enqueue(Q,v);

 }

 }

 color[u] = BLACK;

}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Figure 8. Sample layout. Source: author’s document

The picture above represents a layout building with some

emergency exits blocked with rocks or fires. The red dot

indicating the evacuee that wants to escape from the building as

quickly as possible, before the fire spreads to another emergency

exit and the evacuee cannot escape.

This building layout is just a simple example. In reality, real

building layout is much more complex that this example, thus

needs more memory space and more time consuming.

B. BFS Algorithm

The author uses C++ language for implementing BFS

algorithm. This implementation requires the map to be

converted into grid with the following conditions:

1. Character “#” indicating obstacles, such as rocks, fires,

walls, etc.

2. Character “0” indicating path that can be passed through.

3. Character “S” is the start vertex, or the position of the

evacuee.

4. Character “F” indicating the emergency exits or any exits

available in the map.

Using the following rules above, the map on figure 3 before

is converted into this grid:

Figure 9. Converted map, viewed in Microsoft Excel.

Source: author’s document

The grid itself is actually a graph, with every character are its

vertices. Character “0” denoting path that can be passed through

by the evacuee, and every adjacent “0” is connected by each

other, thus making them neighbors. Every character “0” is

connected only with eight other “0” around it, in the position of

eight wind directions.

The evacuee can go through the path by traversing the edges

of any two “0” vertices from the start position (start vertex,

denoted by character “S”).

Then, the implementation of the BFS algorithm is shown as

follows.

#include <bits/stdc++.h>

#define fi first

#define se second

using namespace std;

typedef pair<int,int>node;

int main(){

 queue<node>q;

 node start,finish,now,next;

 #define sfi start.fi

 #define sse start.se

 int r,c,a,b,step[120][120];

 int dr[8] = {-1,0,1,0,1,1,-1,-1};

 int dc[8] = {0,-1,0,1,1,-1,1,-1};

 char grid[120][120];

 bool visited[120][120];

 cin>>r>>c; //input map size

 //input grid

 for (int i=0;i<r;i++)cin>>grid[i];

 for (int i=0;i<r;i++){

 for (int j=0;j<c;j++){

 if (grid[i][j]=='S'){ //start vertex

 sfi = i;

 sse = j;

 }

 }

 }

 //start the BFS

 q.push(make_pair(sfi,sse)); //enqueue start vertex

 visited[sfi][sse] = true; //start vertex visited

 step[sfi][sse] = 0; //step masih 0

 while (!q.empty()){

 now = q.front();

 q.pop();

 /* search neighbors in every directions */

 for (int i=0;i<8;i++){

 next.fi = now.fi + dr[i]; //x-position

 next.se = now.se + dc[i]; //y-position

 /* check if not traversing exceed the boundaries

*/

 if (next.fi>=0 && next.fi<=r && next.se>=0 &&

next.se<=c){

 /* check if vertex can be visited (not an

obstacle) */

 if (grid[next.fi][next.se]!='#'){

 /* check if it hasn't been visited yet */

 if (!visited[next.fi][next.se]){

 /* mark as visited */

 visited[next.fi][next.se] = true;

 step[next.fi][next.se] =

step[now.fi][now.se]+1;

 q.push(make_pair(next.fi,next.se));

 }

 }

 }

 }

 }

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

The algorithm works by traversing all reachable vertices that

can be visited from the start position. First, the position of the

start vertex is inserted to the queue, or can be said, the start

vertex is enqueued and marked as visited. Then, the algorithm

will check if there are any vertices that had not been visited

before. If yes, it will check every neighbor of the current

processed vertex, whether they can be visited or not. If a new

vertex can be visited, it will enqueue the vertex for the next

calculation. If there is no neighbor that can be visited from the

current processed vertex, the loop will stop and the algorithm

will proceed to the next vertex that is available in the queue.

While the queue is not empty, it will pop out the front most

element of the queue, or known as dequeue, to be the next vertex

that will be processed. Then it will again check every neighbor

that can be traversed, and so on. It will keep track of how many

steps that are needed to visit a certain vertex in a two-

dimensional array (matrix) representing the grid map. The

process will be repeated until all of the vertices has been visited

by the algorithm.

If the queue is empty, then the traversing process is finished.

The next step is showing the matrix that contains steps that are

needed for every vertex visited. Then, it will be found how many

steps that are needed to reach a certain exit. The exit that can be

reached with minimal steps is the shortest one. In some cases,

maybe the are more than one nearest exits since the position of

the evacuee (the start vertex) could be anywhere.

C. Result

With the following codes and the converted grid before, the

resulting grid is generated. The output is the same grid as the

input grid but the character “0” is replaced with how many steps

it takes to reach certain vertex “0” from the start vertex. Using

the algorithm, the output is then saved into .csv file format to

make it easier to analyze the resulting grid.

Below is the picture of the program’s main interface. It first

receives an integer R and C, both representing the sum of rows

and columns of the grid, respectively. Then, it receives an input

grid that wanted to be analyzed.

Figure 10. The program is receiving an input, viewed in

Windows command prompt. Source: author’s document

The resulting grid is shown below. The author colorized it to

make it easier to distinguish between every element that exist in

the grid.

Figure 11. The resulting grid, viewed in Microsoft Excel.

Source: author’s document

From the resulting grid above, the number of steps taken to

reach certain exits is shown. In the sample case, there is only one

accessible emergency exit, while the rest two is blocked by some

obstacles, whether it is fire or rocks. It may have multiple paths

to reach the exit from the start position, but the algorithm shows

only the minimum steps that are needed. From the grid above,

19 steps are needed to reach the exit from the start position

(denoted as the character “0” in a red cell). The unreachable

vertices are marked as zero steps by the algorithm, because it is

not possible to walk to them from the start position, because of

blocked by the obstacles. The shortest path is shown as follows:

 /* output the resulting grid */

 FILE *output;

 output = fopen("output.csv", "w+");

 cout<<"\n";

 for (int i=0;i<r;i++){

 for (int j=0;j<c;j++){

 if(grid[i][j] == '#') fprintf(output, "%c",

grid[i][j]);

 else fprintf(output, "%d", step[i][j]);

 if(j<c) fprintf(output, ",");

 }

 fprintf(output, "\n");

 }

 fclose(output);

 return 0;

}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Figure 12. The shortest path, viewed in Microsoft Excel.

Source: author’s document

Using the shortest path the algorithm has generated before, it

only needs 19 steps taken from the start vertex. It also efficiently

generates diagonal paths, makes the path shorter. This algorithm

also can generate multiple paths leading to different exits, if

there are more than one emergency exits available in the map.

V. CONCLUSION

In conclusion, it is possible to find shortest evacuation route

using Breadth-First-Search algorithm. Whether the objective is

to find one or more paths leading to multiple exits, this algorithm

is useful as well. However, it is necessary to have the building

layout first before using this algorithm, because this algorithm

generates shortest path output based on the grid that has been

given before.

VI. ACKNOWLEDGMENT

The first and the foremost thanks from the author is to our

God, Allah (swt) for giving inspiration and chance to be able to

create and finish this paper successfully. Special

acknowledgement belongs to Dr. Ir. Rinaldi, MT. as the lecturer

of the author’s IF2120 Discrete Mathematics class, for guidance

and every knowledge given so that the author can understand

about computer science deeper and also for preparing this paper.

Last but not least, the author thanks deeply to the author’s

parents for

REFERENCES

[1] E.-W. Augustijn-Beckers, J. Flacke, and B. Retsios, Investigating the

Effect of Different Pre-Evacuation Behavior and Exit Choice Strategies

Using Agent-Based Modeling. Procedia Engineering, vol. 3, pp. 23–35,

Jan. 2010.

[2] K.H. Rosen, Discrete Mathematics and its Applications, 7th ed. New York:

McGraw-Hill, 2012, pp. 641-802.

[3] S. Halim and F. Halim, Competitive programming 3: The New Lower

Bound of Programming Contests. S.l.: Lulu.com, 2013.

[4] Btech Smart Class. “Graph Traversals – BFS”. Internet:

http://btechsmartclass.com/DS/U3_T11.html, [Dec 2, 2017].

[5] A.S. Arifin, Art of Programming Contest. [On-line]. Bangladesh:

Gyankosh Prokashoni. [Dec 2, 2017].

[6] N.A.M. Sabri et al. (2014) “Simulation Method of Shortest and Safest Path

Algorithm for Evacuation in High Rise Building”. Applied Mathematical

Science. [On-line]. 8, pp 2-3. Available: http://www.m-

hikari.com/ams/ams-2014/ams-101-104-2014/45384.html [Dec 1, 2017].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

sini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

Ahmad Fahmi Pratama - 13516139

http://btechsmartclass.com/DS/U3_T11.html
http://www.m-hikari.com/ams/ams-2014/ams-101-104-2014/45384.html
http://www.m-hikari.com/ams/ams-2014/ams-101-104-2014/45384.html

