Finding Shortest Escape Route for Evacuation in a
Building Using Breadth-First-Search Algorithm

Ahmad Fahmi Pratama - 13516139
Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, JI. Ganesha 10 Bandung 40132, Indonesia
afahmi3@yahoo.co.id

Abstract—In evacuation planning in a building, finding shortest
to the nearest exit is an important aspect. But sometimes the
evacuees inside the building are still confused of choosing a path /
route that they should follow to find nearest emergency exit,
because of the unfamiliarity with the building. They tend to go to
the main entrance which sometimes far enough from their position,
making it dangerous. The objective of this paper is to find shortest
escape route in a building for evacuation, if there are any incidents
such as fire or earthquake. This paper presents a shortest path-
based algorithm which finds nearest exit in a building, using
Breadth-First-Search algorithm. The floor plan is treated as a
graph, with any unit step of a person is represented as its nodes.
Then, the algorithm traverses the graph to find a shortest way to
the nearest exit from the person’s position. There may be multiple
emergency exits that are reachable, the evacuee can then choose
any exits available that he/she wants to go through.

Keywords—Shortest path, graph traversal, Breadth-First-

Search algorithm, evacuation planning

I. INTRODUCTION

While designing a building layout, making effective and
efficient evacuation planning is a must. It must be easy for the
visitors in the building to get out of the building as quickly as
possible whenever a disaster occurs using the safe way that the
layout given. However, sometimes finding a safe way to escape
or finding emergency exits in a building is not really easy if the
building is quite complex and huge, or that many emergency
exits are blocked with some obstacles caused by the disasters,
trapping evacuees inside the building.

Disasters can occur at any time, also when visitors are still
inside a building. Every visitor inside the building should know
where are the location of emergency exits there, supposedly. But
in contrary, knowing emergency exits while they are not familiar
enough of the building is difficult. Most of the time, they do not
know which is the shortest and safest path they should follow in
order to reach the exit because of the unfamiliarity. A survey for
investigating exit choice decision in a Chinese supermarket by
[1] shows that 48.6% of the respondent will use the nearest the
emergency exit, but a considerable amount of people (20.9% of
the respondent) will return to the main entrance. There are still
many people who choose main entrance as their exit because it
was the first thing that appears when thinking about evacuation
route, since finding emergency exits is not that easy.

Making a decision in a critical time such as in a disaster often

leads to bad decision, such as choosing a path that they should
follow to go outside a building. Unfortunately, there has no time
to make a good decision. Every decision has to be made quickly
to make the evacuees as safe as possible. It also can reduce the
number of the injuries because of the hazard. To help them in
making a good decision, the author will provide a way to find a
shortest evacuation route in a disaster using Breadth-First-
Search algorithm.

II. BASIC GRAPH THEORIES

A. Graph

A graph G = (V, E) consists of a nonempty set of vertices /
nodes called V and a nonempty set of edges called E, which each
of edges has either one or two vertices associated with it, called
its endpoints [2].

Figure 1. A graph that consists of 6 vertices and 5 edges.
Source: author’s document.

B. Terminology

In graph theory, there are some terminologies that are
important to describe anything related to graphs, such as
behavior, properties, etc. Here are the lists of important terms
that will be used.

1. Adjacent
Two vertices u and v of a graph G are called adjacent /
neighbors if both of the vertices are connected each other
by an edge e.

2. Incident
An edge e is called incident with the vertices u and v if it
connects both of the two vertices.

3. Degree
Degree of a vertex u in a non-directed graph G is the sum

of edges that are incident with that vertex.

4. Path
A path in a graph G is a set of vertices that consists of any
start vertex until the final vertex, creating a path.

5. Cycle/ Circuit
A cycle is path that the start and final vertices are the same
vertex, creating a loop.

6. Isolated Vertex
An isolated vertex is a vertex that has no edges that
coincidence with it.

7. Subgraph
A graph H = (W, F) is called a subgraph of a graph G =
(V, E), where F €E and W € V. A subgraph H is a proper
subgraph of G if H# G.

8. Weighted Graph
A weighted graph is a graph that has values (weight) on its
edges. The values can represent relation between any two
connected vertices, such as distance, time, production cost,
etc.

C. Types of Graphs

Graphs can be classified into some categories based on their
properties. Mainly, graphs can be classified into the types of
graphs depending upon the number of edges, the number of
vertices, interconnectivity, and their overall structure.

Based on the edges direction, graphs can be divided into two
types, directed graph and non-directed graph.

1. Directed Graph
A directed graph is a graph that contains edges that have
directions to which vertex they are heading to.

Figure 2. An example of directed graph [2]

2. Non-Directed Graph
A non-directed graph is graph such the edges have no
direction to any vertices.

b € d

.
e E

a f

Figure 3. An example of non-directed graph [2]

Based on the edges types, graphs can be classified into three
categories listed below:

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2017/2018

1. Simple Graph
A simple graph is a graph that has no parallel edges and
has no loops.

2. Multigraph
A multigraph is a graph that may has multiple edges
connecting the same pair of vertices.

3. Pseudograph
A pseudograph is a graph that may has multiple edges
connecting the same pair of vertices as well as loops.

D. Some Special Simple Graphs

There are some special, famous, or widely known types of
graphs that are often to be found. Here are the lists of graphs.

1. Complete Graph
A complete graph on n vertices, denoted by K, is a simple
graph that contains exactly one edge connecting every pair
of distinct vertices. In other words, a complete graph K,
with n vertices has exactly n-1 edges.

/\

Figure 4. Some examples of complete graph[2]

2. Cycle Graph
A cycle graph (or cycle only), denoted by C,, n>3, is a
simple graph that consists of n vertices vi, v, ..., vo and
edges that connect between every pair of {Vi-1, Vn}.

AT O

Figure 5. Some examples of cycle graph [2]

3. Wheels
A wheel, denoted by Wy, actually a cycle graph C, that is
given additional vertex, and connect this new vertex to

each vertex in the cycle.

Figure 6. Some examples of wheel graph [2]

Wy

III. GRAPH TRAVERSAL

A. Definition

Graph traversal is a technique used for searching a vertex in a
graph by traversing all of the vertices in a graph. This method
obviously required considerable amount of computation time,
since graph traversal may require some vertices to be visited
more than once. Revisiting vertices is needed as sometimes it is
not necessarily known whether a vertex has already been
explored or not. As the graph becomes denser, this redundancy

becomes more often, thus increasing its computation time.

It is usually necessary to keep track of which vertices that has
been visited before in the algorithm, so that the algorithm will
not visiting the same vertices repeatedly, leading to infinite loop.
This may be accomplished in some methods, such as associating
each vertex of the graphs with some values or “colors” that
distinguish them between the unvisited ones, indicating that
certain vertex has been visited before.

There are two famous graph traversal algorithms that can be
used to achieve the goals, the two are Depth-First-Search
(abbreviated as DFS) algorithm and Breadth-First-Search
(abbreviated as BFS) algorithm. In this paper, BFS algorithm
will be used later.

B. Breadth-First-Search (BFS)

Breadth-First-Search (abbreviated as BFS) is a kind of graph
traversal algorithm. Give a graph G = (V,E) and a distinguished
source vertex s, BFS explores every edges of G to discover every
vertices that are accessible from s. In other words, BFS will visit
vertices that are direct neighbors of s (first layer). Then, it will
visit the neighbors of the direct neighbors that were visited
before (second layer), and so on.

BFS algorithm mainly uses queue data structure in this
application. It first starts by inserting the source vertex s to the
queue, then process the queue as follows:

1. Take the front most vertex u from the queue

2. Insert all the unvisited neighbors of u to the queue, then

mark them as visited

3. Repeat step 1 and 2 until all of the vertices had already

been visited

Consider the following example graph to perform BFS traversal

Step 1:
- Select the vertex A as starting point (visit A).
- Insert A into the Queue.

Queue

Step 2:
Visit all adjacent vertices of A which are not visited (D, E, B).
- Insert newly visited vertices into the Queue and delete A from the Queue..

Queue

Step 3:
- Visit all adjacent vertices of D which are not visited (there is no vertex).
- Delete D from the Queue.

Queue

Step 4:
- Visit all adjacent vertices of E which are not visited (C, F).
- Insert newly visited vertices into the Queue and delete E from the Queue.

Queue

[[[[efc]e] |

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2017/2018

Step 5:
- Visit all adjacent vertices of B which are not visited (there is no vertex).
- Delete B from the Queue.

Queue

[T [T Tefe]]

Step 6:
- Visit all adjacent vertices of € which are not visited (G).
- Insert newly visited vertex into the Queue and delete € from the Queue.

Queue

[T TTTTels]

Step 7:
- Visit all adjacent vertices of F which are not visited (there is no vertex).
- Delete F from the Queue.

Queue

(LTI TTTe

Step 8:
- Visit all adjacent vertices of G which are not visited (there is no vertex).
- Delete G from the Queue.

Queue

CLITTTT]

- Queue became Empty. So, stop the BFS process.
- Final result of BFS is a Spanning Tree as shown below...

Figure 7. Graphical simulation of BFS algorithm [4]

The algorithm will visit vertex s and all vertices in the
connected component that contains s layer by layer. BFS
algorithm complexity is O(V+E) where V is the number of
vertices and E is the number of edges in the graph. Below is the
pseudo-code of BFS algorithm.

BFS(G,s) {
initialize vertices;
Q = {s];
while (Q not empty) {
u = Dequeue (Q) ;
for each v adjacent to u do {
if (color[v] == WHITE) {
color([v] = GRAY;
d[v] = d[ul+l; //
plv] = u; // build BFS
Enqueue (Q, V) ;
}
}
color[u]
}

compute d[]

tree

= BLACK;

BFS algorithm implementation[5].

IV. IMPLEMENTATION OF BFS ALGORITHM ON FINDING
SHORTEST ESCAPE ROUTE

A. Building Layout

BFS algorithm obviously needs graph to be traversed. So, the
building layout that will be used for this implementation needs
to be converted to a graph. The graph that will be used is in the
form of grid map with the size of R x C, where R is the row size
ofthe grid, indicating building’s length, and C is the column size
of the grid, indicating building’s width.

EXIT EXIT

EXIT
bbb

—r .

Figure 8. Sample layout. Source: author’s document

The picture above represents a layout building with some
emergency exits blocked with rocks or fires. The red dot
indicating the evacuee that wants to escape from the building as
quickly as possible, before the fire spreads to another emergency
exit and the evacuee cannot escape.

This building layout is just a simple example. In reality, real
building layout is much more complex that this example, thus
needs more memory space and more time consuming.

B. BFS Algorithm

The author uses C++ language for implementing BFS
algorithm. This implementation requires the map to be
converted into grid with the following conditions:

1. Character “#” indicating obstacles, such as rocks, fires,

walls, etc.

2. Character “0” indicating path that can be passed through.

3. Character “S” is the start vertex, or the position of the

evacuee.

4. Character “F” indicating the emergency exits or any exits

available in the map.

Using the following rules above, the map on figure 3 before
is converted into this grid:

00 R OO0 H OO0 HOOHOOOOR
QD0 % R OO0 0000000 HROO00OR
00 R OO0 0000000 R R TR
OO0 O 00 HH T OO0 HOH OO R
= E R OO0 OO0 000 OO0 OO0 O W &
000 H® OO0 % 3HH O OO0 O = B =
FEE R B B O B B B B B B OB OB B O 3

&t&hhhh&tht.&thﬂzhht
D.DDDD:&DD:&DD&E##DD&E

%&#%DDD%%#%#%&QDDD.
%DD#DDD%####%&EQDD#.

OO R OO O R OO HOOOO R
FEEE O OO N R R KR R R R KR K
OO R T OO H K OOOoOOoOOOOoOOo R
OO H OO0 HOOOoOooHOH B HE K
OO H OO0 HOO0O0OCOoHOH B HE R
O 00 % OO0 % OO0 % OO0 % OO0 00O =

E= 3
k-3
E-3
E-3
k=3
k-3
k-3
E= 3

Figure 9. Converted map, viewed in Microsoft Excel.
Source: author’s document

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2017/2018

The grid itself is actually a graph, with every character are its
vertices. Character “0” denoting path that can be passed through
by the evacuee, and every adjacent “0” is connected by each
other, thus making them neighbors. Every character “0” is
connected only with eight other “0” around it, in the position of
eight wind directions.

The evacuee can go through the path by traversing the edges
of any two “0” vertices from the start position (start vertex,
denoted by character “S”).

Then, the implementation of the BFS algorithm is shown as
follows.

#include <bits/stdc++.h>

#define fi first
#define se second
using namespace std;

typedef pair<int,int>node;

int main () {
queue<node>q;
node start,finish, now,next;
#define sfi start.fi
#define sse start.se

int r,c,a,b,step[120]1[120];
int dr[8] = {-1,0,1,0,1,1,-1,-1};
int dc[8] = {0,-1,0,1,1,-1,1,-1};

char grid[120][120];
bool visited[120][120];

cin>>r>>c; //input map size
//input grid
for (int 1=0;i<r;i++)cin>>grid[i];

for (int i=0;i<r;i++) {
for (int j=0;j<c;j++){

if (grid[i]l[jl=='S"){ //start vertex
sfi = 1i;
sse = J;

}
}
}

//start the BFS

g.push (make_pair(sfi,sse)); //enqueue start vertex
visited[sfi] [sse] = true; //start vertex visited
step[sfi] [sse] = 0; //step masih 0

while (!g.empty()) {

now = g.front();
q.pop ()

/* search neighbors in every directions */
for (int 1=0;1<8;1i++) {

next.fi = now.fi + dr[i]; //x-position
next.se = now.se + dc[i]; //y-position

/* check if not traversing exceed the boundaries
*/
if (next.fi>=0 && next.fi<=r && next.se>=0 &&
next.se<=c) {
/* check if vertex can be visited
obstacle) */
if (grid[next.fi] [next.se]l!="#"){
/* check if it hasn't been visited yet */
if (!visited[next.fi] [next.se]) {
/* mark as visited */
visited[next.fi] [next.se] = true;
step[next.fi] [next.se] =
step[now.fi] [now.se]+1;
g.push (make_pair (next.fi,next.se));

(not an

/* output the resulting grid */
FILE *output;
output = fopen ("output.csv",
cout<<"\n";
for (int 1i=0;i<r;i++) {
for (int j=0;j<c;j++){
if (grid[i][3] == "#")
grid[i]([J]);
else fprintf (output,
if (<c)

) ;
7

fprintf (output, "%c",
"sd", stepl[il[]]);
fprintf (output, ",");
%printf(output,
éclose(output);

"\n") ;

return 0;

}

The algorithm works by traversing all reachable vertices that
can be visited from the start position. First, the position of the
start vertex is inserted to the queue, or can be said, the start
vertex is enqueued and marked as visited. Then, the algorithm
will check if there are any vertices that had not been visited
before. If yes, it will check every neighbor of the current
processed vertex, whether they can be visited or not. If a new
vertex can be visited, it will enqueue the vertex for the next
calculation. If there is no neighbor that can be visited from the
current processed vertex, the loop will stop and the algorithm
will proceed to the next vertex that is available in the queue.

While the queue is not empty, it will pop out the front most
element of the queue, or known as dequeue, to be the next vertex
that will be processed. Then it will again check every neighbor
that can be traversed, and so on. It will keep track of how many
steps that are needed to visit a certain vertex in a two-
dimensional array (matrix) representing the grid map. The
process will be repeated until all of the vertices has been visited
by the algorithm.

If the queue is empty, then the traversing process is finished.
The next step is showing the matrix that contains steps that are
needed for every vertex visited. Then, it will be found how many
steps that are needed to reach a certain exit. The exit that can be
reached with minimal steps is the shortest one. In some cases,
maybe the are more than one nearest exits since the position of
the evacuee (the start vertex) could be anywhere.

C. Result

With the following codes and the converted grid before, the
resulting grid is generated. The output is the same grid as the
input grid but the character “0” is replaced with how many steps
it takes to reach certain vertex “0” from the start vertex. Using
the algorithm, the output is then saved into .csv file format to
make it easier to analyze the resulting grid.

Below is the picture of the program’s main interface. It first
receives an integer R and C, both representing the sum of rows
and columns of the grid, respectively. Then, it receives an input
grid that wanted to be analyzed.

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2017/2018

D:\HMIF\Tugas\Matdis\Paper>bfs
19 17
HHEHH P P
#OOHOHOOHOHHHHOOH
#OOH#OH0OHOHOOHOOH
#OOHOHOOHHHOOHHOH
#OOH#H##00000000H#06H
HFHEHO0OHHHHHOOHHH
#OO#000#000#0000H
Foo#e0BFoeeH0e0eH
HHEHO00H000HOHHHH
HOH#000HOHOHOHOOH
#OOHO0OHHOHOHOHOOH
HHHHOOHHHHHHOHHHH
#000000000000000+#
#800000000000000+#
HHHEOHHHO0000HHOHH
HOHHHOHHHHHHHO00H
#OO#000#0000H050H
#OO#000#0000H000H
FHEHH

Figure 10. The program is receiving an input, viewed in
Windows command prompt. Source: author’s document

The resulting grid is shown below. The author colorized it to
make it easier to distinguish between every element that exist in
the grid.

8 # # # # | s ¢« e # # 2 ¢
0 0 # 0 # 1818 # 0 # # # # 0 0
0 0 # 0 # 1717 # 0 # 14 14 # 0 0
0 0 # 0 # 17 16 # # # 13 13 # # 0
0 0 # # # 17 16 15 14 13 12 12 12 # 0
#1717 17 # # # # # 11 11 # #
|ﬁoo#1e1e1ﬁ#ooo#1o1o1o11#
0 0 # 151515 # 0 0 0 # 9 9 10 11 #
141414 # 0 0 0 # 8 # # #
0 # # 1313 13 # 0 # 0 # 7 # 0 0
0 0 # 1212 # # 0 # 0 # 6 # 0 0
1211 # # # # # # 5 # # #
#1514 13 12 11 10 9 8 7 6 5 4 4 4 4 #
#1514 13 12 11 10 9 8 7 6 5 4 3 3 3 #
13 # # # 9 8 7 6 5 # # 2 #
#. 0 # # # 0 # # # # # # # 1 1 1 #
00 # 000 #0000 # 1> ¢
0 0 # 0 0 0 # 0 0 0 0 # 1 1 1
8 # # # # # #£ # # # # # # # #

Figure 11. The resulting grid, viewed in Microsoft Excel.
Source: author’s document

From the resulting grid above, the number of steps taken to
reach certain exits is shown. In the sample case, there is only one
accessible emergency exit, while the rest two is blocked by some
obstacles, whether it is fire or rocks. It may have multiple paths
to reach the exit from the start position, but the algorithm shows
only the minimum steps that are needed. From the grid above,
19 steps are needed to reach the exit from the start position
(denoted as the character “0” in a red cell). The unreachable
vertices are marked as zero steps by the algorithm, because it is
not possible to walk to them from the start position, because of
blocked by the obstacles. The shortest path is shown as follows:

H O M H OO WO OO O H
Mo W o oH oH o W o o

=

@

=

@

=

@

=
EElE)
el
W
e
(SN
e
[
=
o o

E:3
B T T I B

oM A W O W A A A M A M A
(=T =T - = B = B = B - S = R = P T = P = 3
(=R =T N N R 3 = = I = T -
[L I N =

#
#
]
0
#
Figure 12. The shortest path, viewed in Microsoft Excel.
Source: author’s document

aaa:&:aaa:&:&::&::&.a:&uaaua
oo o #Hh#HooHooHooooH
H* O O B/ o oM M oM A

- s R R = B = T = (T - SR e = e R e B -

B)

#
#
0 #
o
#

E:3
E:3

Using the shortest path the algorithm has generated before, it
only needs 19 steps taken from the start vertex. It also efficiently
generates diagonal paths, makes the path shorter. This algorithm
also can generate multiple paths leading to different exits, if
there are more than one emergency exits available in the map.

V. CONCLUSION

In conclusion, it is possible to find shortest evacuation route
using Breadth-First-Search algorithm. Whether the objective is
to find one or more paths leading to multiple exits, this algorithm
is useful as well. However, it is necessary to have the building
layout first before using this algorithm, because this algorithm
generates shortest path output based on the grid that has been
given before.

VI. ACKNOWLEDGMENT

The first and the foremost thanks from the author is to our
God, Allah (swt) for giving inspiration and chance to be able to
create and finish this paper successfully. Special
acknowledgement belongs to Dr. Ir. Rinaldi, MT. as the lecturer
of the author’s IF2120 Discrete Mathematics class, for guidance
and every knowledge given so that the author can understand
about computer science deeper and also for preparing this paper.
Last but not least, the author thanks deeply to the author’s
parents for

REFERENCES

[1] E.-W. Augustijn-Beckers, J. Flacke, and B. Retsios, Investigating the
Effect of Different Pre-Evacuation Behavior and Exit Choice Strategies
Using Agent-Based Modeling. Procedia Engineering, vol. 3, pp. 23-35,
Jan. 2010.

[21 K.H.Rosen, Discrete Mathematics and its Applications, 7" ed. New York:
McGraw-Hill, 2012, pp. 641-802.

[3] S. Halim and F. Halim, Competitive programming 3: The New Lower
Bound of Programming Contests. S.1.: Lulu.com, 2013.

[4] Btech Smart Class. “Graph Traversals — BFS”.
http://btechsmartclass.com/DS/U3_T11.html, [Dec 2, 2017].

[5] A.S. Arifin, Art of Programming Contest. [On-line]. Bangladesh:
Gyankosh Prokashoni. [Dec 2, 2017].

[6] N.A.M. Sabrietal. (2014) “Simulation Method of Shortest and Safest Path
Algorithm for Evacuation in High Rise Building”. Applied Mathematical

Internet:

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2017/2018

Science. [On-line]l. 8, pp 2-3. Available: http://www.m-
hikari.com/ams/ams-2014/ams-101-104-2014/45384.html [Dec 1, 2017].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
sini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

At

Ahmad Fahmi Pratama - 13516139

http://btechsmartclass.com/DS/U3_T11.html
http://www.m-hikari.com/ams/ams-2014/ams-101-104-2014/45384.html
http://www.m-hikari.com/ams/ams-2014/ams-101-104-2014/45384.html

