
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Application of Graph Theory in Navigation in Open-

World Games

Nathaniel Evan Gunawan - 13516055

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13516055@std.stei.itb.ac.id

Abstract—Games have become an inseparable part of our lives.

Among these games are open-world games that allow the player to

freely explore a given world and approach the game as the player

wishes. Navigation has become a necessity in many, if not all open-

world games. In this paper we look at how graph theory and A*

algorithm may be implemented in these games, and how point-to-

point navigation in these games may work.

Keywords— A* algorithm, Dijkstra’s algorithm, BFS algorithm,

graph theory

I. HISTORY OF GAMES

The rapid advancement of technology during the past several

centuries brought about the dawn of digital computers in the

20th century, which back in its early days in the 1930s used to

be large, bulky, heavy and much slower, the earliest of which

taking up spaces up to the size of a room, and operating at 5 to

10Hz. Since then, it is only a matter of time until computers start

taking over a lot of aspects of our daily lives, one of them being

entertainment. At this day and age, we find ourselves

surrounded by computers to the point where we probably cannot

live several consecutive days - let alone an entire year - without

having to interact with a computer.

The development of computers also brought about the birth of

video games, a form of digital entertainment that has become

widely popular and penetrated our society very deeply today,

with a lot of so-called “hardcore/competitive gamers”

dedicating their lives only to playing video games and being

extremely good at it. There have been countless debates on

whether video games are more detrimental than beneficial to our

society, and it's up to every individual to choose which side he

or she is on, but the fact that it has become quite the hot debate

topic today only proves that video games have become a major

part of the lives of millions or even billions of people, and there

is no denying it.

The first video game was invented in 1947 [1], but it was only

in the 1970s that video games started to become commercially

available to the masses, starting with “Computer Space” [2], a

coin-operated video game which utilised a black-and-white

screen for its display, and was built from much simpler

electronic components compared to today's computing systems.

Fast forward to today's era, and it only becomes evident how

much video games have evolved; they have become

tremendously more complex, with advancements in graphics

and game engine far beyond what gamers in the 1970s could

have possibly imagined. What started out as simple moving

lines on an oscilloscope in the 1950s would evolve into rasters

and vectors in late 1970s and early 1980s, and today we have

gone far beyond that; we are already seeing tens of thousands of

polygons in our current generation video games with

photorealistic graphical effects. There simply is no telling what

is about to come a decade or two from now.

II. ABOUT OPEN-WORLD GAMES

This rapid growth of video games has also introduced new

genres to the table, including open world games. Open world

games are games in which players are given open, virtual worlds

for them to roam freely, enabling them to approach the game's

objectives as the players wish, as opposed to games with a fixed,

linear gameplay. The concept of free-roaming exploration was

introduced by the 1976 text adventure game “Colossal Cave

Adventure” [3], but it wasn't until the 1980s that the open-world

concept finally took on a definite concept [3]. Open-world

games like "The Legend of Zelda" and “Ultima” also happened

to be received very positively by the masses and critics alike.

Since then, numerous open-world games have been spawned,

several notable examples being “Super Mario 64”, the “Grand

Theft Auto” series, “The Elder Scrolls” series, “World of

Warcraft”, “Minecraft”, and the “Assassin's Creed” series. The

open-world “genre” has only become increasingly popular since

then, mostly favoured by players who prefer extensive

explorations and countless possibilities in their games.

Open-world is, for the most part, not usually a separate genre.

There exist various kinds of games within the realm of open-

world itself. Some of these games can be considered as open-

world racing games (the "Need for Speed" franchise is a notable

example of this) due to being essentially a racing game but

featuring an open world. Some others can be classified as open-

world first person shooter (FPS) games, open-world role-

playing games (RPG), or open-world adventure games.

Whatever the game is, if it features an open world to roam about

and explore freely, it counts as an open-world game.

Within the span of 40 years, it is only natural that open-world

video games start to introduce more complex mechanics and

vaster open worlds to explore, with an unprecedented level of

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

attention to detail in the design of the open worlds, sometimes

spanning up to several multiple cities, with objectives and other

game items scattered around that massive map. This calls for a

working real-time navigation system inside the game, that

allows the players to pinpoint a specific location in the open

world, and have the game provide these players with directions

that enable them to get to anywhere in the gigantic map,

accomplish numerous objectives and/or simply explore the open

world to its farthest corners. In other words, a navigation system

is only necessary if the developers of the open-world game want

the players to play the game how it is intended to be played.

This navigation system is where graph theory and the A*

algorithm comes into play. The application of graph theory in

open-world games allows the massive open worlds featured in

those games to be charted as a weighted graph, and we apply the

A* (pronounced as "A star") algorithm to find the shortest path

between two points on the map, which is basically the essence

of a navigation system. We would also elaborate why the A*

algorithm is preferable compared to three other algorithms,

namely Dijkstra's algorithm, the breadth-first-search (BFS)

algorithm, and the greedy version of BFS.

III. GRAPH THEORY

A. Graphs and Their Types

A graph is a discrete structure consisting of several objects,

some pairs of which are connected directly to each other. These

objects are called vertices, and they are connected to each other

or to itself by means of edges. To be precise, the mathematical

definition of a graph is as follows:

A graph is an ordered pair (V, E) consisting of a nonzero set

of vertices (represented by V) and a set of edges that connect the

vertices (represented by E). [4] As part of the definition of a

graph in discrete mathematics, the set of vertices (V) must not

be empty, whereas E may be empty. In such a case where a

graph doesn't have any edges, the graph is said to be an empty

graph.

There are several different types of graphs, depending on

whether: 1) there are any multiple edges that connect the same

pair of vertices, 2) the edges have directions, 3) there are any

edges that connect a vertex to itself, and 4) whether a certain

number (weight) is assigned to each of the edges.

A graph which do not have multiple edges connecting the

same pair of vertices, whose edges are not directed and all

connect different pair of vertices, is called a simple graph. A

graph that may have multiple edges connecting the same pair of

vertices is called a multigraph. A pseudograph is a graph that

may have not only multiple edges connecting the same pair of

vertices, but also loops, i.e. edges that connect a vertex to itself.

Note that all the aforementioned types of graphs are undirected

graphs, meaning that the edges do not have directions. Graphs

whose edges have directions are called directed graphs.

A directed graph which do not have loops, nor multiple edges

connecting the same pair of vertices is called a simple directed

graph, whereas a multiple directed graph is a directed graph

that may have loops, and edges connecting the same vertices. A

mixed graph is a graph that may have both directed edges and

undirected edges, in addition to loops and multiple edges

connecting the same pair of vertices. A graph whose edges are

assigned with a certain number that represents the weight of the

edge, is called a weighted graph.

Consider the mixed graph in Figure 2a, as shown below:

e4 and e5 are edges which connect the same pair of vertices,

namely V3 and V5. e6 is a directed loop, meaning that it is an

edge that originates from and points to the same vertex (hence

loop) and has a direction shown by the arrow (hence directed).

If we take away the direction of e6, the graph in Figure 2 will

become a pseudograph, whereas if we add a direction to the rest

of the edges, it will become a multiple directed graph. If we

omit e6 entirely, the graph becomes a multigraph. Omit both e6

and e5, and the result is a simple graph. Omitting both e6 and e5

and adding a direction to the rest of the edges will result in a

simple directed graph. Add a weight to each of the edges, and

the result is a weighted graph.

B. Terminologies Related to Graphs

1. Adjacency

Any two vertices that are directly connected to each other

by an edge are called adjacent. In Figure 2, V1 and V2 are

Figure 2a: a mixed graph. Source:

http://www.brainkart.com/media/extra/N3jePsE.jpg

(accessed on Sunday, 3 December 2017)

Figure 1: A screenshot of "Watch Dogs 2", an open-world

action-adventure video game made by Ubisoft. Source:

http://totalgamingnetwork.com/attachment.php?attachmentid=

6131 (accessed on Sunday, 3 December 2017)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

adjacent to each other, and so are V2 and V4, and so on.

2. Incidency

 An edge can be called incident to a pair of vertices if the

edge connects a vertex directly to the other vertex. In Figure

2, it can be said that the edge e2 is incident to both V2 and V3,

e1 is incident to V1 and V2 and so on.

3. Degree

 The degree or valency of a vertex is the number of edges

incident to it. In Figure 2, for example, the vertex V2 has a

degree of 3, while V1 has a degree of 1.

4. Connectivity

 A pair of vertices is said to be connected if there is at least

a pathway that connects the two vertices, directly or

indirectly. A graph is considered connected if every possible

pair of vertices in the graph are connected. Taking Figure 2

for example, V1 and V2 are directly connected, whilst V1 and

V3 are indirectly connected, but nevertheless both pair of

vertices are connected, and so is every other possible pair of

vertices, making the graph in Figure 2 a connected graph.

5. Subgraph

 A graph G1 = (V1, E1) is considered a subgraph of the

graph G = (V, E) if V1 is a subset of V (V1 ⊆ V) and E1 is a

subset of E (E1 ⊆ E). One of the possible subgraphs of the

graph in Figure 2 is illustrated in Figure 2b below:

C. Application of Graphs

The application of graphs in various aspects of daily life is

nothing new; it was first done in the 18th century when Leonhard

Euler mathematically solved the notable problem of “Seven

Bridges of Königsberg”, which resulted in what is regarded as

the first paper in the history of graph theory, laying down the

very foundations of graph theory in the process. [5] In a nutshell,

Euler illustrated the problem of “Seven Bridges of Königsberg”

by representing each land mass as vertices, and the bridges as

edges, as shown in Figure 3 below:

Figure 3: The famous problem of "Seven Bridges of

Königsberg" and its graph representation. Source:

http://www.mathscareers.org.uk/wp-

content/uploads/2015/07/Koenigsberg_bridges.jpg (accessed

on Monday, 4 December 2017)

In this paper, we will be applying this very graph theory to a

map of a fictitious city in an open-world game. This map will be

re-interpreted as a massive, weighted graph with numerous

vertices and edges assigned with a weight that represents the

distance between two consecutive intersections (which will be

represented as vertices). We will also find one search algorithm

best suited for the task of navigating from one point to another

point on the map.

IV. SEARCH ALGORITHMS

Finding the shortest distance from point to point in large scale

is not the easiest problem that can be solved manually by

humans. This is exactly the reason why we are using a search

algorithm to tackle the problem; we are giving this strenuous

task to the computer to solve, then we simply reap the results.

For this purpose, there are 4 search algorithms that we are

about to consider: the breadth-first-search (BFS) algorithm,

Dijkstra’s algorithm, the greedy BFS algorithm, and the A*

algorithm. We will then show which algorithm is best suited to

tackle this problem.

Let us initialise a starting point and an end. Using BFS, the

program will start searching from the starting point by exploring

every adjacent vertex from that starting point. From there, it

keeps expanding its search area, checking every adjacent vertex

of the previous vertices, while keeping track of the vertices that

have been visited during the process. Once the destination point

has been reached, the program has successfully generated a path

to the destination point. Figure 4a below illustrates how BFS

accomplishes its goal; the darkened, numbered tiles on the grid

collectively represent the search area BFS must explore to reach

the designated destination point, the red star represents the

starting point, and the purple cross as the destination point.

Figure 2b: One of the possible subgraphs of the graph in

Figure 2a. Source:

http://www.brainkart.com/media/extra/N3jePsE.jpg (edited

by the author and accessed on Sunday, 3 December 2017)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Figure 4a: How BFS works in a non-weighted graph. Source:

https://www.redblobgames.com/pathfinding/a-

star/introduction.html (accessed on Monday, 4 December 2017)

The BFS algorithm alone isn’t quite effective. While it

manages to find the shortest path between two points, BFS

works blindly without any heuristics to accelerate the process,

making it slow and unsuitable for real-time navigation.

Moreover, it only works on non-weighted graphs, meaning that

it’s not suitable to find the shortest path between two points in a

map where the distance between any two points on a map may

wildly vary.

This is where Dijkstra’s algorithm comes into play. Dijkstra’s

algorithm is essentially BFS, but improves on it by taking the

distance between two vertices into account, making it suitable

for weighted graphs like maps. [6] Every “step” of the resulting

path is then taken based on how “far” it is from the starting

point. To grasp a better sense of how Dijkstra’s algorithm

works, let us observe Figure 4b below, which compares the BFS

to Dijkstra’s algorithm side by side on a sample grid. The red

star represents the starting point, the purple cross as the

destination point, the khaki-coloured tiles are vertices which

have a weight of 1 between them, and the green-coloured tiles

being vertices which have a weight of 5 between them.

Figure 4b: BFS vs. Dijkstra's in a weighted graph. Source:

https://www.redblobgames.com/pathfinding/a-

star/introduction.html (accessed on Monday, 4 December 2017)

As evident from Figure 4b above, Dijkstra’s algorithm works

better to find the shortest path between any two vertices in a

weighted graph. However, since Dijkstra’s algorithm is

essentially BFS for weighted graphs, it is still not fast enough

for real-time navigation in open-world games, since Dijkstra’s

algorithm still must expand its search area to all possible

directions in the map, which is redundant if we are only looking

to find the shortest distance from one point to another point.

The greedy version of BFS now includes heuristics as part of

its algorithm. [6] These heuristics serve as a guide for the

algorithm to reach its goal efficiently without blindly exploring

the entire map, making it work more efficiently than regular

BFS or Dijkstra’s algorithm. Imagine a person sitting in the

living room of a house, and he or she suddenly smells food being

cooked from the kitchen. That smell serves as the person’s

heuristics, guiding him to where the smell comes from, which

in this case is his or her destination point. (The heuristic, in this

case, is the Manhattan distance between the two points.)

This greedy version of BFS is still very far from ideal; while

it reduces the search area needed to find a path from the starting

point to the destination point, it fails to show the shortest path

between the two points when we start introducing complexity in

the graph by adding barriers. The reason for this is because

greedy BFS is only guided by its heuristics; that is, it only tries

to get as close as possible to the destination point, not caring

how many steps it takes to get there from the starting point.

Figure 4c below illustrates how greedy BFS fails to deliver what

it is intended to do. In a similar fashion to Figure 4a, the

darkened tiles represent the area both algorithms have traversed

through, the red star represents the starting point, the purple

cross as the destination point, and the blue tiles represent the

area that is currently being explored.

Figure 4c: Greedy BFS works faster, but fails to find the shortest

path between the two points. Source:

https://www.redblobgames.com/pathfinding/a-

star/introduction.html (accessed Monday, 4 December 2017)

Finally, the optimal solution is to combine the “accuracy” of

Dijkstra’s algorithm and the heuristics of greedy BFS,

resulting in algorithm that is both accurate and fast. This

algorithm is called the A* algorithm. The A* algorithm works

by calculating both the distance of a certain grid from the

starting point, and its approximate distance to the destination

point. [6] If we are to represent the distance of a certain grid

from the starting point as 𝑔 and its approximate distance to the

destination point as ℎ, then the weight of each tile will be

represented as 𝑓 = 𝑔 + ℎ. [7] Figure 4d below illustrates how

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

the A* search algorithm works. The darkened tiles represent

the algorithm’s search area, while the numbers on the darkened

tiles are the value of every tiles’ 𝑓. (Again, the heuristic, in this

case, is the Manhattan distance between the two points.)

Figure 4d: How A* search works. Source:

https://www.redblobgames.com/pathfinding/a-

star/introduction.html (accessed Monday, 4 December 2017)

V. GRAPH REPRESENTATION OF OPEN-WORLD MAP

In this paper, I am going to take the 2009 open-world racing

game “Burnout Paradise” as an example of an open-world game

which utilises real-time navigation in its gameplay. Being an

open-world game, the game obviously features a map of its open

world, and this map can be represented as a gigantic graph with

many edges and vertices.

Figure 5a: A screenshot of the game "Burnout Paradise". The

faint sign reading "Franke Av" indicates that the player is

suggested to take a right turn to Franke Avenue at the next

intersection. This is the navigation feature of the game.

In this game there are 3 types of events that utilise real-time

navigation: “Races”, “Burning Routes” and “Marked Man”. In

“Races”, the player races against 7 other CPU players from

point to point, the objective being to arrive first at the other end

of the race route. “Burning Routes” are like “Time Attack” in

other racing games in which the player must get to a certain

destination within a certain time limit to win the event. “Marked

Man” is a type of event in which the player must arrive at the

destination without being taken down more than 3 times by a

group of enemies. What all these types of events have in

common, is that they all are essentially point-to-point events

where the player is free to choose his or her own route from the

start point to the destination point. However, the game has a

real-time navigation feature, and when the player participates in

any of these events, the game will show the player the quickest

route which can be taken to help the player reach the destination

point of the event as quick as possible.

This navigation feature may be possible thanks to the A*

algorithm, which we have shown to be the most effective in

finding the shortest route from a point to another point in the

map. In fact, it might even be possible that the developers of the

game used the very same algorithm for this navigation feature,

considering that the algorithm enjoys widespread use today.

We will take a “race” event as an example. This race event is

named “Baseball Battle”, and the map is as follows:

Figure 3:The start and finish point of the event, along with the

relevant part of the map. Red dots represent intersections as

vertices/nodes, and the blue lines represent the roads as edges

connecting the vertices.

The red dots represent intersections as vertices/nodes, and the

blue lines represent the roads as edges connecting the vertices,

thereby effectively creating a graph (or to be more accurate, a

subgraph of the entire map of the open world) with a defined

starting point and a destination. The graph is not a directed

graph, since the player is free to drive along the roads in any

direction. It is weighted, though, since there’s a distance

between any two consecutive nodes and the distance widely

varies depending on the location.

The game tracks the position of the player real-time, and

provides navigation to the player according to the player’s

location and the endpoint that the player must reach to complete

the event. The navigation guidance is shown when the player is

nearing an intersection and the player must make a turn to take

the fastest route (as shown in Figure 5a). The resulting fastest

route is as shown in Figure 5c:

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Figure 5c: The fastest route to complete the event, shown by red

line. The red line, red dots and red arrow was not captured in-

game, but rather drawn by the author as illustration.

VI. CONCLUSION

Among four of the most common type of search algorithms

for finding the shortest route from point to point, namely the

BFS algorithm, Dijkstra’s algorithm, the greedy BFS algorithm

and the A* algorithm, it is evident that the A* algorithm works

best for this purpose, and therefore enjoys widespread use today.

It can be implemented in various navigation software, including

but not limited to open-world video games that feature real-time

navigation as an in-game feature.

VII. ACKNOWLEDGMENT

The author would like to thank Dr. Ir. Rinaldi Munir, MT. as

the lecturer of the author’s Discrete Mathematics class. The

author would also like to thank the authors of the resources

which the author has referenced to in this paper.

REFERENCES

[1] U.S. Patent 2455992. [Online] Available:
https://www.google.com/patents/US2455992 (link accessed Sunday, 3

December 2017)

[2] Marvin Yagoda (2008). 1972 Nutting Associates Computer Space.
[Online] Available:

https://web.archive.org/web/20081228061939/http:/www.marvin3m.com

/arcade/cspace.htm (link accessed Sunday, 3 December 2017)
[3] Moss, Richard (March 25, 2017). Roam free: A history of open-world

gaming. [Online] Available:
https://arstechnica.com/gaming/2017/03/youre-now-free-to-move-about-

vice-city-a-history-of-open-world-gaming/ (link accessed Sunday, 3

December 2017)
[4] Rosen, Kenneth H. Discrete mathematics and its applications, 7th ed.

New York: McGraw-Hill, 2012, pp. 641.

[5] University of Kansas, The Seven Bridges of Königsberg. [Online]
Available: https://www.math.ku.edu/~jmartin/courses/math105-

F11/Lectures/chapter5-part1.pdf (link accessed Monday, 4 December

2017)
[6] Red Blob Games, Introduction to A*. [Online] Available:

https://www.redblobgames.com/pathfinding/a-star/introduction.html

(link accessed Monday, 4 December 2017)
[7] GeeksforGeeks, A* Search Algorithm. Available:

http://www.geeksforgeeks.org/a-search-algorithm/ (link accessed

Monday, 4 December 2017)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 4 Desember 2017

Ttd (scan atau foto ttd)

Nathaniel Evan Gunawan (13516055)

https://www.google.com/patents/US2455992
https://web.archive.org/web/20081228061939/http:/www.marvin3m.com/arcade/cspace.htm
https://web.archive.org/web/20081228061939/http:/www.marvin3m.com/arcade/cspace.htm
https://arstechnica.com/gaming/2017/03/youre-now-free-to-move-about-vice-city-a-history-of-open-world-gaming/
https://arstechnica.com/gaming/2017/03/youre-now-free-to-move-about-vice-city-a-history-of-open-world-gaming/
https://www.math.ku.edu/~jmartin/courses/math105-F11/Lectures/chapter5-part1.pdf
https://www.math.ku.edu/~jmartin/courses/math105-F11/Lectures/chapter5-part1.pdf
https://www.redblobgames.com/pathfinding/a-star/introduction.html
http://www.geeksforgeeks.org/a-search-algorithm/

