
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Compression Using Huffman Coding on Digital

Image for LSB Steganography

Dionesius A Perkasa – 135160431
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

113516043@std.stei.itb.ac.id

Abstract—LSB steganography is one common method in digital
steganography. Its implementation is simple but it has several

limitations. One limitation is that the size of the cover image is

much larger than the file concealed within it. To solve this

limitation, the author attempts to compress the concealed file in the

form of an image using Huffman coding method in order to reduce
its size and therefore reduce the size required to hide that image.

Keywords—Data compression, digital image, Huffman coding,
LSB method, steganography.

I. INTRODUCTION

Steganography is the practice of hiding an information or file

within another file. One common method used in digital

steganography is LSB steganography. LSB method simply

replaces the last bit of every byte of an image with the bits of the

hidden information or file.

For a byte of concealed data, it needs 8 bytes of data to cover

it. This means, for a standard 8-bit grayscale image, it requires

8 times the size of that image to conceal it. The cover-to-hidden

data ratio is 8:1. This ratio is amplified if the hidden image is

colored. For an RGB image, with R, G, and B channel, it needs

another image with 8 × 3 = 24 times its size to be hidden. The

ratio becomes 24:1.

This becomes a problem if the size of the file which is to be

hidden is large. It needs an even larger cover file to be concealed

within. One solution for this problem is to reduce the size or

compress the hidden file so that it doesn’t need a very large

space to be concealed.

To reduce the size of a file, a data compression algorithm can

be used. A common and simple algorithm for data compression

is Huffman coding. It was first introduced in 1952 by David A.

Huffman. It uses statistical information in a file or data in order

to reduce the average length of representing bits or binary codes

which correspond to all symbols in the file, therefore reducing

the file size itself.

A data compression does not change the amount of vital

information in a data. It just changes the way the data is

represented, often by reducing the length of the representing

binary codes. It stores the data in a more efficient way.

In this paper, a series of attempts to compress data are made.

The data used are in the form of 8-bit colored and grayscale

bitmap image files with various sizes. In total, there are 6

images, 3 colored images and 3 grayscale images. An average

of compression ratio will be calculated for colored and grayscale

images and these information will be used in calculating

theoretical cover-to-hidden data ratio.

II. DATA COMPRESSION

Compression is the process of reducing the data quantity used

to represent a file without excessively reducing the quality of the

original data. It also reduces the number of bits required to store

and transmit digital media [1]. There are some techniques in

acquiring the purpose, one of them is to reduce redundant

information within the file. Another one is to simply throw away

the less important parts of the data and keep the important ones.

A. Digital Data Representation

Digital data consist of a sequence of symbols from a set of

finite alphabet. For a data compression to still contain

meaningful information, there is a standard representation for

the original data that codes each symbol using the same number

of bits. For a text file, for example, every symbol is represented

by an ASCII code, which is a one byte long binary code that

corresponds to every symbol in a standard keyboard.

A data compression is successful when the compressed data

can be represented by shorter codes on average than the original

data. So for a compression to be meaningful, there must be a

standard representation canonized for the data compression.

B. Types of Data Compression

There are two main classifications of data compression based

on the information retention.

Lossy compression means that some information is lost

during the compression process . Lossy compression is based on

the fact that there are some limitations on what human sensory

ability can and cannot perceive. Thus some little information in

the file whose presence human can't really tell can be removed.

It is commonly used in the compression of media files such as

MPEG and MP3 compression.

Lossless compression means that no information is lost

during the compression process. When the data is

decompressed, the result matches perfectly bit-by-bit with the

original data. The compressed data uses less space than the

original data, but no information is removed, thus making it

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

more efficient. An example of program that uses lossless

compression is the popular compressing program WinZIP. One

example of lossless data compression is Huffman coding.

C. Data Compression Techniques

Simple repetition is simply replacing series of successive

symbols which occur in a sequence with another token or flag.

For example, 319607000000000000000000000000000000 can

be replaced with 319607z30. The symbol ‘z’ is the flag for zero.

Application of simple repetition includes zero length

suppression (such as the example above), silence in audio files,

images with bitmap format, and whitespaces (blanks, new line

symbols, or tabs) in text files.

Run-length encoding or RLE is the method to rewrite the

data as pairs of values (v,n) with v is the value (for example, in

the case of an image, the color value) and n is the number of

successive occurrence. As an example, see Fig. 1.

Fig. 1. Simple three colored 5x5 grid image

First, a symbol is assigned to each of the colors, B for blue, Y

for yellow, and G for green. The image is stored with the symbol

representation, i.e. BBBBYYGGGBBYYYGYGGGBBBBBY.

The image size is 25 characters long.

Now RLE is applied on the symbol representation using the

value pairs (vi,ni). For example, the first reoccurring color is 4

blocks of blue. For these 4 blocks of blue, the pair is (B,4).

Doing this for all the data, the result is (B,4), (Y,2), (G,3), (B,2),

(Y,3), (G,1), (Y,1), (G,3), (B,5), (G,1). To store this compressed

data, the representation is B4Y2G3B2Y3G1Y1G3B5G1, which

is just 80% of the original size.

The disadvantage of RLE is that if the image or data is too

irregular or has too much noise, the compression might yield a

data with larger size than the original. RLE is used as a

complementary method in JPEG compression.

Huffman coding is an algorithm for lossless data

compression. The concepts and algorithm for Huffman coding

will be discussed further in another section.

III. HUFFMAN CODING

Huffman Coding, first introduced by David A. Huffman in

1952, is an algorithm for lossless data compression. The concept

is to assign some codes with variable length to input characters.

The length of the code is based on the frequency of its

corresponding characters. Character with the most occurrence

gets the shortest code and the one with the least occurrence gets

the longest code.

In order to achieve an effective and non-ambiguous set of

code for a particular set of input characters, there are some

restrictions in the coding. The following basic restrictions will

be imposed on an ensemble code:

(a) There will not be 2 messages consisting of identical

arrangements of coding digits.

(b) The message codes will be constructed in a way such that

there is no need of any additional indication to specify

where a message code begins and ends once the starting

point of a sequence of messages is known.

As Huffman [2] stated, restriction (b) necessitates that no

message be coded in such a way that its code appears, digit for

digit, as the first part of any message code of greater length. It is

to state that no code should be a prefix code of any other code.

A. Prefix Codes

To understand prefix codes, look at this little example below.

Let there be four input characters A, B, C, D, and their

corresponding codes 0, 1, 00, and 01 respectively. This way of

coding leads to ambiguity since character A’s code is a prefix of

the codes assigned to C and D. For example, if the result of

compression is 00100100, the decompressed original data might

be CBADC, AABCAD, ADADC, or some other possibilities.

Now let’s see another way of code assigning. Let’s assign

codes 00, 01, 10, 11 to input characters A, B, C, and D. If we

now get the same string of compression result as above

(00100100), we can be sure that the decompressed original data

is ACBA. There’s no ambiguity in this coding.

B. Generating a Huffman Tree

An efficient way to assign codes to a set of input characters is

by using a Huffman tree. A Huffman tree is a binary tree for

determining what code should be assigned to which character.

The algorithm for generating a Huffman tree for a text file ,

referencing from [3], is as follows.

1. Count the occurrence frequency of every symbol in the

text.

2. Take two symbols with the least occurrences (e.g. P and

Q which, for example, have 1/7 probability each) and

treat them both as parent nodes.

3. Make parent nodes from those two nodes so that there is

a new symbol PQ with 1/7 + 1/7 = 2/7 probability.

4. Take the next two symbols, including the new symbol,

with the least occurrences. Do step 3 so that another new

symbol with its probability is acquired.

5. Repeat step 4 until there is one parent node which

represents every symbol and has the probability of

occurrence 1.

6. Label every node in a way that the left branches are

labeled 0 and the right branches are labeled 1.

7. The label on every leaf corresponds to the symbol in

which the leaf represents.

With this algorithm, the least frequent symbols will

correspond to the relatively longer codes and the most frequent

symbols will correspond to the relatively shorter ones. This also

ensures that no code is a prefix of any other code, eliminating

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

any ambiguity. See Fig. 2 for an example.

Fig. 2. Huffman tree for the string that constructs the author's name,
"DIONESIUS AGUNG ANDIKA PERKASA" and the corresponding code for

each symbol.

(Source: http://huffman.ooz.ie/?text=
DIONESIUS%20AGUNG%20ANDIKA%20PERKASA)

B. Huffman Coding for Digital Images

Compressing digital images using Huffman coding is similar

with using Huffman coding for compressing text files. One

major difference is that in a digital image, there are some bytes

in the beginning of the file which serve as the file header. This

file header contains information about the file itself. It describes

how bits are used to encode information in a digital storage. This

file header cannot be altered, thus the compression process skips

this section.

The next section is the actual file itself. This section is

variable-sized. It also can be modified. However, if a special

modification is performed, such as changing the binary

representation, a new file header that informs how to read the

file is needed. Therefore, a new file format might be needed for

storing this new compressed file.

An illustration in Fig. 3 describes how a grayscale image can

be compressed using Huffman coding.

Fig. 3. Grayscale 6x6 grid image

In Fig. 3, a 1x1 square represents a pixel. The value of a pixel

in grayscale images is represented in integer from 0 to 255 in

decimal or 00000000 to 11111111 in binary (8-bit). Value 0

refers to black and value 255 refers to white. In the image there

are 5 values of gray. Let’s say, from darkest to lightest, they are

0, 51, 102, 153, and 255 (00000000, 00110011, 01100110,

10011001, and 11111111 in binary).

Suppose that the image in Fig. 3 is in 8 bit-per-pixel (8bpp)

bitmap format which has at least 21 bits of header file. Then the

file size is (36 × 8) + 21 = 309 bits or 39 bytes. The binary

code of image file is like this.

<21 bits of file header> ...

00000000 00110011 01100110 10011001

00000000 11111111 00110011 00000000

11111111 01100110 10011001 00000000

10011001 01100110 00000000 00110011

11111111 01100110 01100110 10011001

11111111 00000000 00110011 01100110

00110011 01100110 10011001 00000000

00000000 00000000 00000000 00110011

11111111 10011001 00110011 01100110

A compression will be performed onto the image. Similar

with Huffman coding for text files, a Huffman tree is generated

to make Huffman codes for the corresponding pixel values.

Fig. 4. Huffman tree for image in Fig. 3. A refers to value 0, B to 51, C to

102, D to 153, and E to 255.
(Source:

http://huffman.ooz.ie/?text=ABCDAEBAECDADCABECCDEABCBCDAAA
ABEDBC)

As seen in Fig. 4, the code length for every color is decreased

from 8 bits per pixel to on average 2.4 bits per pixel. Now

replacing the bytes with Huffman codes will yield this.

10 00 01 111 10 110 00 10 110 01 111

10 111 01 10 00 110 01 01 111 110 10

00 01 00 01 111 10 10 10 10 00 110

111 00 01

Suppose the header, despite contains different information,

increases to 30 bits, the size of the compressed file is

((5 + 6) × 3) + ((7 + 8 + 10) × 2) + 30 = 219 bits

or 27 bytes. This compression has a compression ratio of 1.4:1.

IV. STEGANOGRAPHY

The word steganography comes from two Greek words,

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

steganos meaning “concealed” or “protected” and graphein

meaning “writing”. As defined by D. Kundur and K. Ahsan [4],

steganography is the process of discreetly hiding data in a given

host carrier with the intent to enhance value or concealedly

exchange information.

The host carrier is any message of some sort which contains

redundancy or irrelevancy. For example, digital image files are

often used to embed secret information; the limitation of human

vision in noticing subtle differences between hues allows data

hiding of this type of media.

A. Steganography on Digital Images

According to A. A. J. Altaay, S. bin Sahib, and M. Zamani

[5], steganography has 3 important measurements: capacity,

imperceptability, and robustness.

Fig. 5. Measurement triangle of steganography [5]
(Source: [5])

Capacity is the maximum size of secret information can be

embedded in a file. As explained in [5],

Capacity either can be defined as an absolute value in term

of number of bits for particular cover or as a relative number

regarding necessary bits to save final stego file (Altaay,

2012).

Capacity value depends on embedding function and cover

properties. For example, for an 8-bit grayscale image as a cover

in LSB steganography technique with 1 bit per pixel embedding,

the capacity would be equal to or less than 1/8 or 12.5% of the

image size since the header, the first 7 bits of every byte is not

embeddable.

A stego image should not have important perceptual artifact,

hence imperceptability. The higher fidelity of the stego image,

the more imperceptable it is. This is to mention that the stego

image and the original image must not be distinguishable.

One important method for measuring imperceptability is

called Peak Signal to Noise Ratio (PSNR). PSNR is a metric to

evaluate the ratio between possible peak signal and effect of

noise caused by manipulation to fidelity of its representation.

This method is formulated as follows.

PSNR = 10 × log
10

(
MAX1

2

MSE
)

MSE =
1

mn
∑ ∑[I(i,j) − K(i,j)]2

n−1

j=0

m−1

i=0

Robustness is property of harness of eliminating secret

information from stego image. In other words, it is the resistance

level of the stego image when being intentionally distorted by

another party. Robustness metrics of steganographic algorithms

have distortion classifications such as geometric

transformations or additive noise [5].

V. LSB STEGANOGRAPHY

Least significant bit steganography or LSB steganography

one of the main techniques in spatial domain image

steganography [6]. It simply makes use of the fact that the level

of precision in image formats (e.g. the RGB levels) is far greater

than what the average human eye can perceive. This means, if

the color value of an image is altered slightly, the altered image

will be indistinguishable from the original image without the aid

of a computer.

The standard 8-bit image LSB steganography with 1 bit-per-

byte embedding, which means 1 bit of secret information is

embedded in every byte of the image, requires eight bytes of

pixels to store 1 byte of secret information. That is why, in the

previous chapter, the theoretical maximum size of the secret

information can be hidden is only 1/8 or 12.5% the size of the

image.

Fig. 6. Illustration of LSB steganography and how the secret information
bits are stored within the image.

As illustrated in Fig. 6, bits of the secret information are

spread into 8 different bytes of the image.

A. Embedding Secret Information

As LSB steganography replaces only the last bit of every

pixels, the method of embedding secret information bits into the

cover image is quite simple. The following is the steps to

embedding the bits.

1. If the information bit value is 1 and the pixel value

modulo 2 is 0, increase the pixel value by 1.

2. If the information bit value is 0 and the pixel value

modulo 2 is 1, decrease the pixel value by 1.

3. If the information bit value is equal to the pixel value

modulo 2, no alteration needed and jump to the next

information bit and next pixel.

See the example below for more explanation.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Fig. 7. Binary representation of secret information, original image, and
stego image.

Note that the secret information in Fig. 7 is stored backwards,

the last bit is stored first.

In Fig. 7, assume that the image used is grayscale image, the

gray values of the original image are as follows.

 1st pixel : 101110012 = 18510

 2nd pixel : 011100102 = 11410

 3rd pixel : 111010012 = 23310

 4th pixel : 011000112 = 9910

 5th pixel : 110011102 = 20610

 6th pixel : 010100102 = 8210

 7th pixel : 100110112 = 15510

 8th pixel : 110111112 = 22310

Now, doing the steps mentioned above will yield the stego

image as in Fig. 7.

1. 1st pixel value is 185 and the secret information bit value

is 0. Because 185 mod 2 = 1, decrease the pixel value by

1.

2. 2nd pixel value is 114 and the secret information bit

value is 1. Because 114 mod 2 = 0, increase the pixel

value by 1.

3. 3rd pixel value is 233 and the secret information bit value

is 0. Because 233 mod 2 = 1, decrease the pixel value by

1.

4. 4th pixel value is 99 and the secret information bit value

is 1. Because 99 mod 2 = 1, skip and jump to the next

step.

5. 5th pixel value is 206 and the secret information bit value

is 1. Because 206 mod 2 = 0, increase the pixel value by

1.

6. 3rd pixel value is 82 and the secret information bit value

is 0. Because 82 mod 2 = 0, skip and jump to the next

step.

7. 7th pixel value is 155 and the secret information bit value

is 0. Because 155 mod 2 = 1, decrease the pixel value by

1.

8. 8th pixel value is 223 and the secret information bit value

is 1. Because 223 mod 2 = 1, leave it as it is.

As elaborated before, a difference of 1 or 2 levels in the color

value of an image doesn’t change the way human eyes see them.

They are still perceived as pretty much the same color by a

person with an average vision. For an 8-bit grayscale image,

gray value 103 and 104 are pretty much the same gray. With this

method, the stego image will be altered at most by 1 level for

each pixel value from the original image, hence no perceivable

difference between the two images.

B. Retrieving Secret Information from a Stego Image

Retrieving secret information from a stego image is just the

matter of reversing the embedding process. The steps to

extracting the secret information embedded in an image is as

follow.

1. Calculate the difference for every pixel value between

the original and the stego image. The difference for every

pixel must be -1, 0, or 1.

2. If the difference is -1, the information bit value is 0.

3. If the difference is 1, the information bit value is 1.

4. If the difference is 0, the information bit value is equal to

the byte’s LSB of the stego image.

The steps above can be expressed mathematically as below.

In = {

0, BSn
− BOn

= −1

1, BSn
− BOn

= 1

LSB(BSn
), BSn

− BOn
= 0

I = I1 I2 I3 … In

In is the pixel value difference between nth byte of the stego

image (BSn
) and original image (BOn

) and I is the secret

information.

Take the previous example for a quick calculation (note that

I8 is on the first pixel, I7 is on the second pixel, and so on).

1. 101110002 − 101110012 = −1 ⟶ I8 = 0

2. 011100112 − 011100102 = 1 ⟶ I7 = 1

3. 111010002 − 111010012 = −1 ⟶ I6 = 0

4. 011000112 − 011000112 = 0 ⟶ I5 = 1

5. 110011112 − 110011102 = 1 ⟶ I4 = 1

6. 010100102 − 010100102 = 0 ⟶ I3 = 0

7. 100110102 − 100110112 = −1 ⟶ I2 = 0

8. 110111112 − 110111112 = 0 ⟶ I1 = 1

Now that I1 to I8 is acquired, the final step is to arrange I1 to

I8 so that the secret information is constructed.

I = I1 I2 I3 … In
I = I1 I2 I3I4 I5 I6I7 I8

I = 10011010

V. METHODOLOGY

An experiment was conducted to find the average

compression ratio of Huffman coding for bitmap image

compressing. The compressed image will then be hidden into a

cover image (the carrier) by LSB steganography.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

In theory, after the image compression, the image size will be

smaller, thus an information (image) whose original size is

larger than 12.5% the carrier size (the standard maximu m

information size for 8-bit LSB steganography) can be

embedded.

The test images and Huffman coding result can be viewed in

Fig. 8 and Table 1 below.

Fig. 8. Test images: (a) lena-color.bmp, (b) lena-grayscale.bmp, (c) girl-
color.bmp, (d) girl-grayscale.bmp, (e) peppers-color.bmp, and (f) peppers-

grayscale.bmp.

(Source:
http://informatika.stei.itb.ac.id/~rinaldi.munir/Koleksi/Citra%20Uji/CitraUji.ht

m)

T ABLE 1
HUFFMAN CODING RESULT FOR 6 IMAGES

Name Type &

Format

Original

Size

Cmp’d

Size

Cmp’n

Ratio

lena-

color.bmp
Colored

bitmap

image

786.5 kB 766.0 kB 1.03:1

girl-

color.bmp

66.6 kB 65.3 kB 1.02:1

peppers-

color.bmp

786.5 kB 756.9 kB 1.04:1

lena-

gray.bmp
Grayscale

bitmap

image

66.6 kB 54.1 kB 1.23:1

girl-

gray.bmp

66.6 kB 63.3 kB 1.05:1

peppers-

gray.bmp

263.2 kB 251.2 kB 1.05:1

Based on the test result, the average compression ratio for

colored bitmap image is

CRC =
1.03 + 1.02 + 1.04

3
= 1.03

and the average compression ratio for grayscale bitmap image is

CRG =
1.23 + 1.05 + 1.05

3
= 1.11

VI. THEORETICAL CALCULATIONS

Based on the conducted experiment, the average compression

ratio for color bitmap image is 1.03 and for grayscale bitmap

image is 1.11.

If the concealed file (secret information) and the cover image

are grayscale images, with Huffman coding, the maximu m

information size is equivalent to Imax = 1.11 × 12.5% =

13.80% the size of the cover image, which means the cover-to-

hidden ratio is decreased from 8:1 to 7.21:1.

VII. CONCLUSION AND FURTHER WORKS

Based on the test result, it can be inferred that Huffman

coding is more effective and gives a bigger compression ratio if

there are less color value variations within the image. The

average compression ratio for colored bitmap image is 1.03:1

and for grayscale bitmap image is 1.11:1.

With Huffman encoding, the maximum information size that

can be embedded into a cover image using LSB Steganography

can be increased from 12.5% to 13.88%.

For further efforts, the author hopes to improve his huffman

coding algorithm source code as his code at the time of this

paper being released doesn’t perform very well at compressing

bitmap images, but performs really well at compressing text

files.

Another works in the future includes researching the actual

possible maximum information after doing Huffman

compression and comparing the result with the theoretical

results calculated in this paper.

VIII. ACKNOWLEDGMENT

The author is highly grateful to God Almighty for His

amazing grace and blessings so that the author can finish this

paper. Also to Dr. Ir. Rinaldi Munir, M.T. as the lecturer of

IF2120 Discrete Mathematics K01 for his dedication in lecturing

his students for this semester. The author also wishes to express

his gratitude to his parents, brother, and friends for their support

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

in finishing this paper.

REFERENCES

[1] M. Sharma, "Compression Using Huffman Coding,"

International Journal of Computer Science and Network

Security, vol. 10, no. 5, 2010.

[2] D. A. Huffman, "A method for the Construction of

Minimum-Redundancy Codes," Proceedings of the IRE,

September 1952.

[3] R. Munir, Matematika Diskrit, Bandung: Departemen

Teknik Informatika Institut Teknologi Bandung, 2003.

[4] D. Kundur and K. Ahsan, "Practical Internet

Steganography: Data Hiding in IP," Texas Wksp. Security

of Information Systems, College Station, 2003.

[5] A. A. J. Altaay, S. bin Shahib and M. Zamani, "An

Introduction to Image Steganography Techniques," in

2012 International Conference on Advanced Computer

Science Applications and Technologies, 2012.

[6] B. S. Champakamala, K. Padmini and D. K. Radhika,

"Least Significant Bit algorithm for image

steganography," International Journal of Advanced

Computer Technology, vol. 3, no. 4, 2015.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

Dionesius Agung Andika Perkasa

13516043

	I. Introduction
	II. Data Compression
	A. Digital Data Representation
	B. Types of Data Compression
	C. Data Compression Techniques

	III. Huffman Coding
	A. Prefix Codes
	B. Generating a Huffman Tree
	B. Huffman Coding for Digital Images

	IV. Steganography
	A. Steganography on Digital Images

	V. LSB Steganography
	A. Embedding Secret Information
	B. Retrieving Secret Information from a Stego Image

	V. Methodology
	VI. Theoretical Calculations
	VII. Conclusion and Further Works
	VIII. Acknowledgment
	References
	Pernyataan

