
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Algorithm Complexity Analysis of Merge Sort

Variant

Shandy 13516097

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

shandy.gunawan@rocketmail.com

Abstract—Sorting algorithm is one of the most popular

algorithm in computer science. There are a lot of algorithms to

achieve a same result, that is a sorted array. This paper will take a

look at merge sort algorithm as one of the most popular and fastest

sorting algorithm and its variation based on the algorithm

complexity.

Keywords—sorting, algorithm complexity, merge sort, variation.

I. INTRODUCTION

Sorting algorithm is one of the most important algorithm in

human life and have been used since a long time ago. An

example of the usage of a sorting algorithm is the librarian’s step

to sort books alphabetically.

The usage of sorting algorithm has been increasing since the

end of the 20th century, along with the development of

information technology. The introduction of internet, gadget,

along with the increasing number of implementation of

information technology among institutions and companies has

played a large part of the increase in the amount of information

and data available around the world. Here is a graph showing

the explosion of digital information since 2005 [1].

Figure 1.1 Bar graph of Digital Data Explosion

Let us remind ourselves that 1 Zettabytes (ZB) is equal to 1015

Megabytes (MB). If we take the average size of MP3 music file,

which is approximately 3.5 MB [2]. The difference size of

digital information between 2005 and 2015, which is a roughly

8 ZB, is enough to contain 2.28x1015 MP3 files. To put it in

scale, Apple iTunes’ music collection contains3 43 million songs

or 4.3x107 songs, which is just 0.0000000188% of 2.28x1015.

The big amount of digital data stored and used by companies

and institutions makes it difficult for programmers to handle the

data manually or with a heuristic approach because the

drawback in performance and time will be very significant.

This is one of many reasons that encourages programmers and

algorithm developers to improve the existing algorithms and

methodologies that handle big data management, sorting

algorithm being one of them.

Today, there are a lot of sorting algorithms used by

programmers to complete the task. Examples of some popular

sorting algorithms are bubble sort, insertion sort, merge sort,

radix sort, shell short, quick sort, and bogo sort. Each of these

algorithms uses a very different technique to sort processed data.

Bubble sort bubbles it’s biggest element to the top or bottom of

the array, quick sort picks a pivot in the middle of the array and

place corresponding elements to the left or right of the pivot, etc.

Each of these algorithms has its own advantages and

disadvantages. One algorithm can be better than other

algorithms in specific cases.

 To compare these algorithms, we use a technique called

algorithm complexity analysis. A complexity of an algorithm is

determined by its time complexity and memory complexity.

Time complexity, noted by T(n) with n as the amount of data

processed, shows how fast the algorithm will be processed from

the start to finish. A good algorithm has a low time complexity

which shows the algorithm uses little time to finish the job.

Memory complexity, noted by S(n), shows the amount of

memory used to run the algorithm, this algorithm takes the data

structure being used by the algorithm into account. A good

algorithm has a low memory complexity which shows the

algorithm uses little memory to be executed. Here is a graph

showing how each algorithm performs based on time

complexity [3].

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Figure 1.2 Comparison of Sorting Algorithms

The above graph shows that merge sort has a very consistent

low runtime, which means it has a low time complexity

compared to other sorting algorithms. This graph encouraged

the writer to research more about merge sort and found that

merge sort has two variant of sorting techniques. These

techniques are called bottom up merge sort and top down merge

sort. Then, the writer tried to compare these techniques of merge

sort using the algorithm complexity analysis.

II. THEORY

A. Definition of Sorting

The sorting word itself derived from the basic root word of

sort. According to Oxford online dictionaries[4], the word ‘sort’

in the computing aspect is defined as the arrangement of data in

a prescribed sequence. In computer science, a sorting algorithm

is an algorithm that puts elements of a list in a certain order.

Numerical order and lexicographical order are usually used as

the base for sorting. A sorting algorithm is important for other

algorithms to work correctly. For example, binary search, which

is more efficient than sequential search, can only work in a

sorted database.

The sorting problem, despite its simple requirement and

outcome, has become one of the most researched problem in

computer science. Researchers and programmers have been

trying to develop the sorting algorithm to become more efficient

both in time and memory.

B. Algorithm Complexity

Algorithm, according to Rosen, is a finite sequence of precise

instructions for performing a computation or for solving a

problem. An algorithm can be analyzed mathematically by using

the algorithm complexity, which is time complexity and

memory complexity.

Time complexity (T(n)) defines the steps required for an

algorithm to accomplish a specific task with n number of data.

Good algorithms have a lower time complexity compared to

other algorithms to accomplish similar task, which means, the

algorithm requires fewer steps to complete the task. Time

complexity usually written as a polynomial.

Memory complexity (S(n)) defines the memory required for an

algorithm to work correctly with n number of data. The memory

complexity of an algorithm is affected by the data structure

being used in the algorithm. Good algorithms have a lower

memory complexity compared to other algorithms to

accomplish similar task, which means, the algorithm requires

lesser memories to work correctly.

C. Definition of Big O Notation

Big-O notation has been used in mathematics for more than a

century with Paul Bachmann, a German mathematician,

introduced it in 1892. Big-O notation widely used in the analysis

of algorithms in computer science.

A big O notation is defined as the following statement [6]:

Let f and g be functions from the set of integers or the set of

real numbers to the set of real numbers. We say that f(x) is

O(g(x)) if there are constants C and k such that.

|f(x)| ≤ C|g(x)|

whenever x > k. [This is read as “f(x) is big-oh of g(x).”].

The constants C and k in the definition of big-O notation are

called witnesses to the relationship f(x) is O(g(x)).

D. Application of Big-O Notation in Time Complexity

The definition of Big-O notation can be tweaked to fit the

context of time complexity [7].

Let T(n) = O(f(n)) (This is read as “T(n) is O(f(n))” which

means T(n) has f(n) as the biggest order) if there exist the

constants C and no such that

T(n) ≤ C(f(n))

for n ≥ no.

f(n) is the upper bound of T(n) for a very big n.

Theorem in Big-O notation:

1. Exponential dominates any power (yn > np, y>1).

2. Power dominates ln n (np > ln n).

3. All logarithms grow in the same rate (a log(n) = b

log(n)).

4. n log n grows faster than n but slower than n2.

Example of T(n) conversion to big-O notation:

 T(n) = 2n + 2n2 = O(2n).

 T(n) = 2n log(n) + 3n = O(n log(n)).

 T(n) = log(n3) = 3 log(n) = O(log(n)).

 T(n) = 2n log(n) + 3n2 = O(n2).

E. Classification of Algorithm Based on Big-O Notation

Big-O notation can be used to classify algorithms based on

their complexity. Below is the table showing the classification

of algorithm [7].

Classification Name

O(1) Constant

O(log n) Logarithmic

O(n) Linear

O(n log n) n log n

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential

O(n!) Factorial

Table 2.1 Big-O Classification of Algorithm

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

The order sequence of the classification from the fastest to

the slowest is.

O(1)<O(log n)<O(n)<O(n log n)<O(n2)<O(n3)<O(2n)<O(n!).

F. Classification of Sorting Algorithm

Sorting algorithms can be classified by [6]:

 Computational Complexity.

Sorting algorithms can be classified based on its

performances in best, average, and worst scenario.

Best case scenario for comparison-based sorting

algorithms is O(nlogn) and the worst case is O(n2).

 Memory usage

Some sorting algorithms are called “In-Place”

algorithm. In In-Place algorithm, no additional data

structure required for sorting.

 Recursion

Some sorting algorithms use recursive method, some

use non-recursive method, and some use both.

 Stability

The stability of sorting algorithm is determined by

the technique used by the algorithm. A stable

algorithm sorts identical elements in the same order

that they appear in the input.

 Adaptability

An adaptive algorithm changes its complexity based

on pre-sortedness of the input. A non-adaptive

algorithm does not change its complexity regardless

of the input.

G. Types of Sorting Algorithm

The curiosity of the researchers to optimize sorting algorithm

resulted in many types of sorting algorithms. There are bubble

sort, selection sort, insertion sort, counting sort, quick sort, and

merge sort.

 Bubble Sort

Bubble sort starts at the beginning of the data set.

Then, it compares the first two elements, and if the

first is greater than the second, it swaps them. This

step will continue for each pair until the end of data

set. Then, the algorithm starts again from the first

two elements, repeating until there is no swap could

be done so it is not efficient to sort a large data set.

The average and worst case for bubble sort is O(n2).

 Selection Sort

Selection sort finds the minimum value of the data

set, then swaps it with the value in the first position.

This step will be repeated for the remainder of the

list. Selection sort has O(n2) complexity, like bubble

sort, is not efficient to sort a large data set.

 Insertion Sort

Insertion sort works by taking elements from the list

one by one and inserting them in correct position

into a new sorted list. Insertion operation is

expensive so this algorithm is not preferred for a

large data set.

 Counting Sort

Counting sort only works if each input is known to

belong to a particular set S. It works by creating an

integer array of size |S| and using the ith bin to count

the occurrences of the ith member of S in the input.

Counting sort have O(|S|+n) time complexity and

O(|S|) space complexity where n is the length of the

input.

 Quick Sort

Quick sort works by choosing a pivot in the middle

of the data set. Then, move lesser elements of data

set in the left of the pivot and the greater elements in

the right. Then, the lesser and greater sublists are

recursively sorted. Quick sort works in O(n log n).

 Merge Sort

Merge sort will be discussed further in later chapters.

H. Introduction to Divide and Conquer Algorithm.

Divide and conquer algorithm divides a problem into smaller

sub-problems and then each problem is solved independently.

The sub-problems will keep divided into small sub-problems

until the stage where no more possible division is reached.

Those “atomic” smallest possible sub-problem are solved and

merged with other solution of atomic sub-problems in order to

obtain the solution of an original problem [8].

Figure 2.1 Illustration of Divide and Conquer

Algorithm

The divide and conquer algorithm can be divided into a

three-step process.

1. Divide/Break

This step involves breaking the problem into smaller

sub-problems. This step usually takes a recursive

approach to divide the problem until atomic sub-

problem is reached.

2. Conquer/Solve

This step receives a lot of smaller sub-problems to be

solved and solve them with intended operation.

3. Merge/Combine

When the smaller sub-problems are solved, this stage

recursively combines them until they formulate a

solution of the original problem.

I. Introduction to Merge Sort

Merge sort was invented by John Von Neumann in 1945 and

has become one of the most popular sorting algorithm. Merge

sort based on divide and conquer algorithm and is a comparison-

based sorting algorithm. Merge sort use a recursive method and

its implementation produces a stable sort, which means that the

implementation preserves the input order of equal elements in

the sorted output. The best, worst, and average scenario for

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

merge sort is O(n log(n)), which means that merge sort is not an

adaptive algorithm. Memory wise, worst case for merge sort is

O(n). In real life implementation, there are at least two major

variations for merge sort, which is bottom-up merge sort and

top-down merge sort.

J. Algorithm of Merge Sort

Conceptually, merge sort divides a list into two halves or two

sub-lists until it can no more be divided (consists only one

element). Then, the algorithm will merge the sub-list into a

sorted list by traversing both of the sub-lists and insert the lower

valued element into the list. The algorithm of merge sort can be

expressed by these steps:

1. If it is only one element in the list, it is already

sorted, return.

2. Divide the list recursively into two halves until it can

no more be divided.

3. Merge the smaller lists into new list in sorted order

III. ALGORITHM COMPLEXITY ANALYSIS OF MERGE

SORT VARIANT

A. Algorithm of Merge Sort Variant

In real life implementation, there are two major variations of

merge sort. They are top-down merge sort and bottom-up merge

sort.

The most common example of merge sort is the top-down

merge sort, as this method also used as the example in the

previous chapter. The top-down merge sort uses recursion. It

starts by splitting the list into two, make the recursive calls, and

merge the results. To elaborate, the writer will divide the top-

down merge sort into two parts. The first part is the divide part,

the algorithm will keep splitting the list into two halves until

each of the sub-lists consist only one element from the initial

list. The second part is the conquer part, the algorithm will

merge the sub-lists, starting from the sub-lists with one element,

and continue to merge the merged lists to form a new sorted list

until all the elements of the initial list sorted. The top-down

merge sort can be illustrated as below.

Figure 3.1 Visualization of Top-Down Merge Sort

Bottom-up merge sort also uses recursion. It directly starts at

the sub-lists consists of one element and proceed by iterating

over the pieces and merging them. To elaborate, the algorithm

starts by comparing the elements 1-by-1 and merges them, then

move to the next pair, this step will keep repeating until the end

of the list, then the algorithm makes the recursive call and start

comparing the pairs that have been merged from the previous

algorithm call. These steps will continue until all the elements

of the list sorted. In other words, bottom-up merge sort is almost

identical with top-down merge sort but without the splitting part.

The bottom-up merge sort can be visualized below.

Figure 3.2 Visualization of Bottom-Up Merge Sort

B. Merge Sort Variant in C-like Language

The two variations of merge sort can be implemented in C

language as shown below.

The C-like example of Top-Down merge sort:

// Array A has the items to sort; array B is a work array.

TopDownMergeSort(A[], B[], n)

{

 CopyArray(A, 0, n, B); // duplicate array A into B

 TopDownSplitMerge(B, 0, n, A); // sort data from B into A

}

// Sort the given run of array A using array B as a source.

// iBegin is inclusive; iEnd is exclusive (A[iEnd] is not in the

set).

TopDownSplitMerge(B[], iBegin, iEnd, A[])

{

 if(iEnd - iBegin < 2) // if run size == 1

 return; // consider it sorted

 // split the run longer than 1 item into halves

 iMiddle = (iEnd + iBegin) / 2; // iMiddle = mid point

 // recursively sort both runs from array A into B

 TopDownSplitMerge(A, iBegin, iMiddle, B); // sort the left

run

 TopDownSplitMerge(A, iMiddle, iEnd, B); // sort the

right run

 // merge the resulting runs from array B[] into A[]

 TopDownMerge(B, iBegin, iMiddle, iEnd, A);

}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

// Left source half is A[iBegin:iMiddle-1].

// Right source half is A[iMiddle:iEnd-1].

// Result is B[iBegin:iEnd-1].

TopDownMerge(A[], iBegin, iMiddle, iEnd, B[])

{

 i = iBegin, j = iMiddle;

 // While there are elements in the left or right runs...

 for (k = iBegin; k < iEnd; k++) {

 // If left run head exists and is <= existing right run head.

 if (i < iMiddle && (j >= iEnd || A[i] <= A[j])) {

 B[k] = A[i];

 i = i + 1;

 } else {

 B[k] = A[j];

 j = j + 1;

 }

 }

}

CopyArray(A[], iBegin, iEnd, B[])

{

 for(k = iBegin; k < iEnd; k++)

 B[k] = A[k];

}

The C-like example of bottom-up merge sort:

// array A has the items to sort; array B is a work array

void BottomUpMergeSort(A[], B[], n)

{

 // Each 1-element run in A is already "sorted".

 // Make successively longer sorted runs of length 2, 4, 8, 16...

until whole array is sorted.

 for (width = 1; width < n; width = 2 * width)

 {

 // Array A is full of runs of length width.

 for (i = 0; i < n; i = i + 2 * width)

 {

//Merge two runs:

//A[i:i+width-1] and A[i+width:i+2*width-1] to B[]

 // or copy A[i:n-1] to B[] (if(i+width >= n))

 BottomUpMerge(A, i, min(i+width, n), min(i+2*width,

n), B);

 }

 // Now work array B is full of runs of length 2*width.

 // Copy array B to array A for next iteration.

 // A more efficient implementation would swap the roles

 // of A and B.

 CopyArray(B, A, n);

 // Now array A is full of runs of length 2*width.

 }

}

// Left run is A[iLeft :iRight-1].

// Right run is A[iRight:iEnd-1].

void BottomUpMerge(A[], iLeft, iRight, iEnd, B[])

{

 i = iLeft, j = iRight;

 // While there are elements in the left or right runs...

 for (k = iLeft; k < iEnd; k++) {

 // If left run head exists and is <= existing right run head.

 if (i < iRight && (j >= iEnd || A[i] <= A[j])) {

 B[k] = A[i];

 i = i + 1;

 } else {

 B[k] = A[j];

 j = j + 1;

 }

 }

}

void CopyArray(B[], A[], n)

{

 for(i = 0; i < n; i++)

 A[i] = B[i];

}

C. Time Complexity Analysis on Merge Sort Variant

The usual typical operation for most comparison-based

sorting algorithm is the comparison and swap operation. Merge

sort is no difference. In both of the merge sort variations, the

typical operation is the comparison of elements in sub-lists that

are going to be inserted into a new sorted list. The most typical

operation in both variations can be seen from the clipped

illustration below.

for (k= iLeft; k < iEnd; k++) {

 if (i < iRight && (j >= iEnd || A[i] <= A[j])) {

 B[k] = A[i];

 i = i + 1;

 } else {

 B[k] = A[j];

 j = j + 1;

 }

}

To elaborate the above illustration, A is the working array and

B is the result array. Variable k will be the index of B, variable

i will be the iterative index for the left half of A and variable j

for the right half. The for loop will iterate all the elements in

array A. Then the if condition will check if variable i is less than

the starting index of the right half (iRight) and another check if

variable j is bigger than the last index of the array A (iEnd) or

the left half’s element is less or equal to the right half’s element.

If those conditions are true then the algorithm will insert the left

half’s element into B and if the conditions fail, the algorithm

will insert the right half’s element into B.

This operation takes n time with n is the length of the array.

Each time the algorithm divides the array into halves, the

operation will take half the previous time but doubling in

number of operation performed. The doubling and halving

cancel each other so the operation time for each sub-array

remains constant n. The time complexity requires cn(log(n)+1)

with c is a constant coefficient. The big-O notation for

cn(log(n)+1) is O(nlog(n)).

In the pseudocode for each of the merge sort variation, both

of them use the same operation to merge sub-arrays into an

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

array, which means, that both of the algorithms have the time

complexity of O(nlog(n)).

D. Space Complexity Analysis on Merge Sort Variant

Both of the variations have the same time complexity which

is O(n log(n)), but the same statement can also be said for their

space complexity. Both algorithms have O(n) for their space

complexity since merge sort is not an In-Place sorting algorithm.

It makes a copy of the entire array being sorted. From the

example, we can see that there are two arrays, A and B that is

used in the algorithm with A is the array with the initial unsorted

items and B is the working array. Researchers have been trying

to optimize merge sort into an In-Place sorting algorithm but the

results still have not satisfactory and sometimes too complicated

to use.

IV. CONCLUSION

The merge sort is one of the most popular sorting algorithm

in computer science. It has two major variations in its

implementation. They are called top-down merge sort and

bottom-up merge sort. Both algorithms have the same time

complexity (O(nlog(n)) and space complexity (O(n)) despite

having a different technique to sort array elements.

VI. APPENDIX

1. Algorithm : a finite sequence of precise

instructions for performing a

computation or for solving a

problem

2. Array : a data structure that contains a

group of elements in sequence with

the same data type.

VII. ACKNOWLEDGMENT

All my deepest gratitude to Ir. Rinaldi Munir, M.T. as my

lecturer in IF2130 – Matematika Diskrit course and giving such

this assignment to develop my understanding of discrete

mathematics.

Also my special thanks for all of my family members and

friends who have supported me in the process of creating this

paper.

REFERENCES

[1] http://www.blackcloudanalytics.com/news/who-needs-big-data/

(accessed November 29th, 2017 20:20).
[2] https://www.apple.com/lae/itunes/music/

(accessed November 29th, 2017 20:30).

[3] http://www.cs.toronto.edu/~jepson/csc148/2007F/notes/sorting.html
(accessed November 29th, 2017 21:13).

[4] https://en.oxforddictionaries.com/definition/sort
(accessed November 29th, 2017 21:18).

[5] Rosen, Kenneth H, Discrete Mathematics and Its Applications 7th Edition.

Monmouth University. New York:McGraw-Hill, 2011, pp. 205.
[6] condor.depaul.edu/ichu/csc383/notes/notes2/sorting.pdf

(accessed November 30th, 2017, 18:30).

[7] Munir, Rinaldi, MATEMATIKA DISKRIT Revisi Kelima. Bandung:
Penerbit Informatika. 2012.

[8] https://www.tutorialspoint.com/data_structures_algorithms/divide_and_c

onquer.htm (accessed December 2nd, 2017 23:33)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

Shandy - 13516097

