
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Minimum Spanning Tree-based Image Segmentation
and Its Application in Cutout Filter

Yonas Adiel Wiguna - 13516030

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
ya@students.itb.ac.id

Abstract—Images are actually matrices of single color combined
from red, green, and blue value called pixel. To get a better grasp
about information provided by the image automatically, sometimes
we need a step called image segmentation. This step divides image
into many segment based on color, to be processed into much more
advance and applicative process such as face recognition, optical
character recognition, etc. This paper discuss one of techniques
used to segment an image: Minimum Spanning Tree (MST) based
clustering using Kruskal’s Algorithm and its application in order
to apply cutout filter in the image. Cutout filter itself is a filter
commonly used in graphic design to make an image looks like it’s
made of several layers of colored paper.

Keywords—cutout filter, image processing, image segmentation,

minimum spanning tree.

I. INTRODUCTION

Image segmentation is one of interesting topic nowadays,

remembering digital images with colors are available to many
people. Image with colors, compared to grayscale image, can
provide more information. This way, a computer can process the
image and make an educational guess about the image. Whether
it is fake or not, contains a face or not, reconstruct it as a text,
and many more. However, an image is seen by computer as bit
– sequence of 0’s and 1’s that defined the image itself. Eight bit
define a byte; a byte define a color; red, green, andblue color
define a pixel; matrix of pixel define an image. We have to make
computer learn an image through some sort of algorithm. In
order to do so, we have to cluster the image into some segment
and simplify the image.

A classical technique for clustering is k-means algorithm [1].
A different approach is using MST, which is O(E log V) in
general. The pixels are considered as nodes, and minimum
spanning tree is constructed by Kruskal Algorithm [2].

This way, many advance process can be done to the simplified
image. There are numerous application, such as face detection,
optical character recognition (OCR), biometrics, etc. One of the
simplest application is cutout filter in graphic design. This filter
minimzed usage of colors in a picture. Gradient and similiar
color are grouped into one same color. This is commonly used
in some design, even one of popular image editing program
includes this filter.

II. GRAPH, TREES, AND MINIMUM SPANNING TREE

A. Graph
A graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) consists of 𝑉𝑉, a nonemptu set of vertices

(or nodes) and 𝐸𝐸, a set of edges. Each edge has either one or two
vertices associated with it, called its endpoints. An edge is said
to connect its endpoints [3]. Two vertices 𝑢𝑢 and 𝑣𝑣 are adjacent
to each other if and only if there is at least one edge 𝑒𝑒 that
connect those two vertices. Then, 𝑒𝑒 can be called incident with
vertices 𝑢𝑢 and 𝑣𝑣 and representated as (𝑢𝑢,𝑣𝑣).

There are some special graphs. A graph where all of its
vertices are adjacent to all other vertices are called complete
graph. Tree is graph with special properties that will be
explained in next section.

Graph can be categorized by its properties. Weighted graph is
a graph where every edges has a value assigned. In the other
hand, unweighted graph is a graph without values on their edges.
One can see a unweighted graph as weighted graph with all of
its edges have same value. Then, a directed graph is a graph
where every edges has direction. One of the endpoint is the
source, and the other endpoint is the destination. Then, an edge
𝑒𝑒 with source 𝑢𝑢 and destination 𝑣𝑣 is connecting 𝑢𝑢 to 𝑣𝑣. Then, if
𝑢𝑢 is connected to 𝑣𝑣, 𝑣𝑣 is not necessarily connected to 𝑢𝑢.
Undirected graph is the opposite; no direction in edge. Thus, if
𝑢𝑢 is connected to 𝑣𝑣, 𝑣𝑣 must be also connected to 𝑢𝑢.

We can present graph with some representation. There are
some representation, such as adjacency list, adjacency matrix,
and edge list. There are some other representation that are not
mentioned, because it is not really relevant to this paper.

Adjacency list is assigned every vertices with a list of its
neighbors. Then, a vertex 𝑣𝑣 is connected to vertex 𝑢𝑢 if and only
if 𝑢𝑢 is listed on 𝑣𝑣’s adjacency list. If the graph is weighted, the
adjacency list will be populated with tuple (𝑢𝑢, 𝑤𝑤) where 𝑤𝑤 is the
weight. In programming, this representation is useful when we
want to traverse the graph, such as flood-fill or BFS algorithm.

Adjacency matrix is a matrix that define the graph. Dimension
of the matrix is the number of vertices for both matrix row and
columns. Every element of the matrix is either 1 (one) or 0
(zero). Then, an edge (𝑢𝑢,𝑣𝑣) exist in the graph if and only if
element 𝐴𝐴𝑢𝑢,𝑣𝑣 is 1. Otherwise, element 𝐴𝐴𝑢𝑢,𝑣𝑣 is 0. In weighted
graph, the element 𝐴𝐴𝑢𝑢,𝑣𝑣 can be replaced as the weight. In
programming, this representation is useful when we need to

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

check whether an edge is exist or not, or whether a vertex is
directly connected to other vertex or not.

Edge list is a list that contains all of the edges in a graph. A
vertex 𝑢𝑢 is connected to vertex 𝑣𝑣 if and only if there is a tuple
(𝑢𝑢,𝑣𝑣) in the list. If the graph is weighted, the tuple will have 3
element, with the third element is 𝑤𝑤, the weight of the edge. In
programming, this representation is useful when we need to
iterate all of the edges in a graph.

A graph 𝐺𝐺’ = (𝑉𝑉’,𝐸𝐸’) is a subgraph of graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) if and
only if 𝑉𝑉’ is subset of 𝑉𝑉, and 𝐸𝐸’ is subset of 𝐸𝐸 [3]. A subgraph
can be generated from w graph with removing some of its edges,
or removing some of its vertices with their incedent edges.

A path is a sequence of vertices with every two adjacent
vertices in this sequence have edge between them. A path is said
simple path if the sequence can be traversed without using any
edge more than once. A circuit is a path where its beginning and
the end is the same vertex. Again, simple circuit is a circuit when
the sequence can be traversed without using any edge more than
once.

B. Trees
A tree is a connected undirected graph with no simple circuit

[3]. The term connected graph means for every vertices 𝑢𝑢 and 𝑣𝑣,
there is some path between them. With a little observation, we
can found that for every two vertices, there are only one unique
path. A tree with 𝑉𝑉 vertices has 𝑉𝑉 − 1 edges. This theorem can
be proved by induction proof.

A graph consist of multiple trees are called a forest. Formally,
a forest is an undirected graph without simple circuit. A forest
can be made with removing one or more edges from a tree.

Some of the tree have root. When a tree have a root, every
vertex have a parent, except the root itself. Every edge are
directed away from the root [3]. This way, all vertices who have
parent of a vertex are called as children. Sibling are term for
vertices with same direct parent. If there is a path away from the
root from vertex 𝑢𝑢 to vertex 𝑣𝑣, 𝑣𝑣 is called as descendant of 𝑢𝑢.
The reversal, 𝑢𝑢 is ancestor of 𝑣𝑣. Of course, all vertex are the
descendant of the root except the root itself. Vertices who don’t
have child are called as leaves.

Some rooted trees are called n-ary tree, if every vertices has
either no child or n child except one vertices. Full n-ary tree with
𝑖𝑖 internal vertices contains 𝑚𝑚 = 𝑛𝑛𝑖𝑖 + 1 vertices.

A spanning tree is made from a graph with removing its edge
without disconnecting its vertices. Formally, a spanning tree is
a tree containing every vertex of its graph.

A spanning tree can be made with DFS or BFS algorithm.
These two algorithm are often used to traversing a graph. BFS
focused on visit nearest vertices from source first, before
advancing further. Meanwhile, DFS focused on traversing until
the current vertex doesn’t have any other neighbor that have
been visited. BFS can be used on general graph, while DFS are
limited to tree or other special case of graph. Both algorithms
are solution for Single Source Path (SSP) traversing.

C. Minimum Spanning Tree
A Minimum spanning tree in a connected weighted graph is a

spanning tree that has the smallest possible sum of weights of its

edges [3]. This problem is useful on network design, planning
traffic/road, clustering, and more. There are two famous
algorithms that are used to calculate the minimum spanning tree
of a graph: Prim’s and Kruskal’s.

Prim’s algorithm begins by choosing a starting vertex, flag it
as taken, and enqueues a pair of information int a priority queue:
the weight and the other endpoint for every edge incident with
the starting vertex. Then, while the priority queue isn’t empty,
we take top element of priority queue with minimum weight and
add the edge into MST. Flag the other endpoint with visited, and
repeat this step until all of the vertces are flagged as taken or
𝑉𝑉 − 1 edges have already taken with 𝑉𝑉 is number of vertices. [4]

The pseudocode can be found below.

priority_queue pq sorted desc
visited ← false for every vertices
MST ← empty_list()

push (0, 0) to pq
visited[e[0].source] ← true

while pq not empty:
 t ← top element of pw
 pop top element of pq
 for every e incident with t.vertex:
 if not visited[e.destination]:
 visited[e.destination] ← true
 add e to MST
 push (e.weigth, e.destination) to pq

This algorithm runs in O(E log V) where E is number of edges

and V is number of vertices. Adjacency list representation of
graph is preferred when it comes to Prim’s Algorithm.

Meanwhile, Kruskal’s algorithm use Union-Find Disjoint Set
(UFDS). Kruskal’s Algorithm begins as follows. Pick edge with
minimum weight (𝑢𝑢,𝑣𝑣). If 𝑢𝑢 and 𝑣𝑣 is not connected yet in MST,
add edge (𝑢𝑢,𝑣𝑣) to MST. Repeat those step for every edge, until
all vertices are connected in MST. Edges with minimum weight
are processed first [4].

edge_list.sortby(weight, desc)
MST ← empty_list()
i ← 0
UFDSinit()

while (MST.length <= vertex.length-1):
 edge ← edge_list[0]
 if (not UFDSsameSet(edge.from, edge.to)):
 add edge to MST
 UFDSunionSet(edge.from, edge.to)

This algorithm runs in O(E), excluding the O(E log V)
sorting. Actually, the UFDS is affecting the MST, but its
complexity is nearly constant because of path compression.
Edge list representation is preferred when we want to use
Kruskal’s algorithm. As for UFDS, here is the implementation
in pseudocode.

parent = []
def UFDSinit():

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

 for i in range(vertex.length):
 parent[i] ← i

def UFDSlookAncestor(child):
 if (parent[child] != child):
 parent[child] = UFDSlookAncestor(parent[child])
 return parent[child]

def UFDSsameSet(from, to):
 p1 = UFDSlookAncestor(from)
 p2 = UFDSlookAncestor(to)
 return p1 == p2

def UFDSunionSet(from, to):
 p = UFDSlookAncestor(from)
 parent[p] = to

The UFDS algorithm includes path compression algorithm,

which means path from child to its ancestor is minimized. This
will reduce recursive calls. Then, every time it calls
UFDSlookAncestor, the function usually only look at its parent
without doing the recursion.

III. IMAGE SEGMENTATION

Digital images are actually consist of pixels, aligned in certain

amount of row and columns. Every pixels has three values,
representing its color. Color system that is used commonly is
RGB, where combination of red, green, and blue color are used
to define millions of color. For example, yellow are defined as
combination of red and green in nearly same amount, with
nearly zero value in blue. There are some color system such as
CMYK and HSL, but RGB is the commonly used in digital
pictures, including our eyes. Red, green, and blue values are
ranged between 0 to 255, inclusive.

In order to analyze image using graph theory, the original
image must be modeled as graph. Every pixels is seen as a vertex
in the graph. Its adjacent pixels are its neighbor in the graph.
This is similiar to grid system in graph, where every cell is seen
as single vertex and its adjacent cells as its neighbor. We can
construct an undirected graph, but we still need weight to see the
relation between nodes.

There are two notions to apprasie the clustering result for the
data set. The first is the smaller the intra-variance in cluster of
the subset is, the more similiarity the objects hold. The second
is the larger the variance between clusters of the subsets is, the
less similiarity the objects hold [2].

Therefore, difference between pixels are used to give every
edge its weight. For example, we have two pixels 𝑢𝑢 and 𝑣𝑣
denoted as (𝑃𝑃𝑢𝑢𝑅𝑅 ,𝑃𝑃𝑢𝑢𝐺𝐺 ,𝑃𝑃𝑢𝑢𝐵𝐵) and (𝑃𝑃𝑣𝑣𝑅𝑅 ,𝑃𝑃𝑣𝑣𝐺𝐺 ,𝑃𝑃𝑣𝑣𝐵𝐵). In order to
maximize the weight between two pixels with different colors
and minimize the weight between two pixels with similiar
colors, so we can use this formula:

𝑤𝑤(𝑢𝑢, 𝑣𝑣) = �𝑃𝑃𝑢𝑢𝑅𝑅 − 𝑃𝑃𝑣𝑣𝑅𝑅�
2 + �𝑃𝑃𝑢𝑢𝐺𝐺 − 𝑃𝑃𝑣𝑣𝐺𝐺�

2 + �𝑃𝑃𝑢𝑢𝐵𝐵 − 𝑃𝑃𝑣𝑣𝐵𝐵�
2
 (1)

1 Distance between two points strictly based on sum of horizontal distance

and vertical distance.

With this formula, same different pixels with same RGB
values will have zero (minimum) weight edge, and two pixels
with different colors (any of its red, green, or blue value) will
have non-zero wight. The more different the color of two pixels,
the greater its weight.

However, this rule for generating the graph is still not perfect.
In practice, many images, especially photos have noises. We
have to handle cases where the image have noises, then we need
to change the definition of adjacency of two pixels. In our new
system, two pixels are considered as neighbor to each other if
their manhattan distance1 between two pixels is less or equal to
a constant. We call this constant as radius, and we can find it by
trial and error process.

Here is the pseudocode for graph constructor.

def manhattan_distance(point a, point b):
 return abs(a.x – b.x) + abs(a.y – b.y)

def pixels_distance(pixel a, pixel b):
 return (a.r – b.r)**2 +
 (a.g – b.g)**2 +
 (a.b – b.b)**2

for every v in vertices:
 for every u in vertices:
 if (manhattan_distance(u,v) <= radius):
 create edge(u, v, pixel_distance(u,v))

If we done with mapping to weighted undirected graph
process, we can explore the graph with graph properties.
However, in programming we can’t understand the pixels. For
program, the image is just a bunch of RGB values. The idea is
creating segmentation of the image to get a better grasp of the
image. Then, we can make the algotihms we needed: OCR, face
detection, etc. To make the segmentation, we need to divide the
image to some smaller segment with similiar color. Then, pixels
with similiar color (which is defined by weight formula) are
belongs to one segment.

This idea is called clustering. There are many application of
clustering algorithm, especially in machine learning and data
mining. There are some algorithm used in data clustering. One
of the well known algorithm is k-means clustering. This
algorithm see the data as n point in d-dimensional coordinate
system. The data will be clustered to k cluster. This is not suit
our graph representation well. The next clustering method is
MST-based clustering. It as easy as it sound: we find the MST
of the graph we discussed earlier. Then, we delete some of edges
which has greatest weight. We repeat this step until the edge
with heaviest weight is not exceeding our threshold. When we
were done, we have a forest. The threshold will be found with
trial and error.

To run this MST, we will need the Kruskal’s algorithm.
Kruskal’s algorithm is preferred for MST-based clustering
because of its algorithm similiarity with clustering process.
Actually, the clustering can be simplified by stopping our
Kruskal’s when there are no more edges with weight less than
our threshold. Because of Kruskal’s algorithm, we prefer to use

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

edge list to representating the graph.
Here is the pseudo code for our modified MST Kruskal’s

algorithm.

edge_list.sortby(weight, desc)
forest ← empty_list()
i ← 0
UFDSinit()

while (forest.length <= vertex.length-1 and
 edge_list[i].weight <= threshold):
 edge ← edge_list[0]
 if (not UFDSsameSet(edge.from, edge.to)):
 forest.add(edge)
 UFDSunionSet(edge.from, edge.to)

The result of MST-based clustering will be a forest with every

tree in forest is belong to one segment (or cluster). They have
edges between them, so every edges inside one segment must
have weight equal or less than threshold. It will be guaranteed
that for every two pixels in one segment there is unique path
separating those two pixels apart with every consecutive pixels
have weigth equal or less than threshold.

The rest is find the constant radius and variable threshold.
Threshold is a variable, which means every image can have its
own threshold. The author have tried and found value 150 for
threshold variable is good enough for most of images tested.
Sometimes, it is depend on the purpose of the image
segmentation too. In cutout filter, the author found value 80 is
more appropriate. Value 200 is fitted more when it comes to
separating image from its background. In the other hand, greater
the radius, better the result. But, number of edges increases
quadratically. So, for better performance, it is recommended to
use 2 as radius constant.

IV. APPLICATION IN CUTOUT FILTER

In graphic design, there is a filter named cutout filter. This

filter can turn a photo to a photo with minimized color.

Figure 1. Example of before and after cutout filter in Adobe

Photoshop CS6.

2 https://helpx.adobe.com/photoshop/using/filter-effects-reference.html,

retrieved December 3rd, 2017

As stated in Adobe Support2, cutout means makes an image

appear as though it were constructed from roughly cut pieces of
colored paper. High-contrast images appear as if in silhouette,
and colored images are built up from several layers of colored
paper.

The idea behind using MST-based image segmentation for
cutout image filter is exploiting the result of image segmentation
and change the pixels RGB value to its set average RGB value.
To do that, we need to count the average of RGB values in every
set. The algorithm is trivial, but we need to pay attention to how
we search the set a pixel is belong. Some programming language
make user have to linear search the set every time it needs to
find its parent. It is recommended to make a binary search
function outside the loop, or even we can precompute it before
th loop. The rest of it is trivial, we can just assign the average of
every set to its vertices value.

Alternative way to color all the vertices to its average is by
traversing all of sets, starting from one of the element in every
sets. We can use (Breadth-First Search) BFS or (Depth-First
Search) DFS algorithm with same time complexity, because all
of the vertices are connected to each other. But, the author won’t
describe it here because the trivial algorithm is fast enough and
easier to code.

BFS or DFS algorithm can be used on other application of
the MST-based Image Segmentation, e.g. deleting all blue color,
removing background color, or coloring only one segment. This
way, not all of the vertices traversed.

Below are some result of author’s implementation on some
images. Images are intentionally selected to find both power and
weakness in author’s implementation in cutout filter.

Figure 2. Example of before and after cutout filter based on Image

Segmentation with threshold 80 and radius 3. The colors are easy to
differentiatte, so it is relative easy to make the cutout.

Figure 3. Example of before and after cutout filter based on Image
Segmentation with threshold 80 and radius 3. The result is good

enough and not decreasing its artistic value.

https://helpx.adobe.com/photoshop/using/filter-effects-reference.html

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Figure 4. Example of before and after cutout filter based on Image

Segmentation with threshold 60 and radius 3.

Figure 5. Example of before and after cutout filter based on Image
Segmentation with threshold 60 and radius 2. Some of details are

disappear, but the simplification of the details make it more
interesting.

Figure 6. Example of before and after cutout filter based on Image

Segmentation with threshold 60 and radius 3. The result is both better
and worse than the Adobe Photoshop’s cutout in each of its aspect.

From the result, we can see that many image details are

removed. Some of them are good, while some of them ruin the
image itself. For example, the details in balloon are removed for
good, while details in the person’s hair are gone and make the
hair weird. In the mountains, white snow make the cutout effect
has better result, meanwhile the mountain without snows is not
really good compared to the one with snows.

After all, the term good and bad, better and worse, are
subjective and can’t be defined scientifically. Readers can be the
judge for the results itselves. The result may not clear because
of the size, so the high resolution image can be found in
appendix of this paper, included with author’s implementation.

In the experiment, the author intentionally add timestamp for
every process. Then, the time consumed for each step can be
viewed as seconds. From the shown elapsed time, the code runs
pretty fast when making nodes, sorting the edges, searching all
the set every nodes belong to, counting average, and creating the
output pixels. But, it runs quite slowly when generating edge list
and running the Kruskal’s MST algorithm. In average, it runs
nearly a half minute with < 200,000 pixels and radius value 3

and it runs nearly a quarter minute with < 200,000 pixels and
radius value 2. The time grows polynomial to number of pixels
and radius. The time complexity is heavily affected by time for
generating all possible edges and generating the MST.

Here is the comparison of time elapsed on the same picture,
with different radius:

Figure 7. left: execution time for radius value 3, right: execution time

forradius value 2. Both run on same picture with same threshold.
Note: MST time are sum of sorting and making MST.

Even though we expect Kruskal’s (with time complexity O(E
log V)) slower than generating edges (with time complexity
O(VR2)), we see that the difference between radius value 2 and
3 is much affecting the runtime. In addtion, when program
listing all of vertices neighboring the vertex, it loops 4 times for
each direction. Because the author use 4 direction system, the
loops are increased by coefficient 4. But, in complexity notation,
this constant/coefision is removed.

In practice, MST are stopped when minimum edges weigth
are more than the threshold. This heavily affect the runtime, then
in average case, MST is much faster than generating edge list.
Still, the worst case is when all of the pixels have the same color
so the big-Oh notation holds O(max(E log V, VR2)).

From the complexity, we can see that the algorithm increases
heavily when the resolution of the picture is increased. Resizing
the picture to become bigger will need much more time to
process. In graphic design, we can compress the picture to give
a preview first, then actual size will be render after the user
satisfied with the result. In Adobe Photoshop CS6, this filter also
use many resource and time, so the MST-based cutout filter is
not really bad compared to other approach, but still have room
for development.

V. CONCLUSION

Image Segmentation is one of image processing step that is

very useful for advance image processing application. There are
numerous application: face recognition, Optical Character
Recognition (OCR), biometrics verification, image recognition,
brake light and pedestrian recognition, and many other topics.
MST-based clustering is used and discussed in this paper for
image segmentation and cutout filter is used for example of its
application in graphic design field.

Total complexity of the program is O(max(E log V, VR2)).
MST-based clustering approach is still one of good and efficient
algorithm, but the algorithm still can be developed to be more
efficient and giving better result.

In cutout filter, image segmentation can give its best result
when the image have many sharp details, but make the image
worse when the image have many gradients.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

VI. APPENDIX

The author’s implementation of algorithm discussed in this

paper can be found in author’s github repository
(https://github.com/yonasadiel/mst-based-image-
segmentation). All of the original and result image have been
stored in the repository. It used Python3.6 language with PIL
(Python Imaging Library) module. Usage, sample images, and
the output from sample images can be found in readme file and
image folder.

The sample images are retrieved at December 3rd, 2017 from
urls listed:
• house: http://www.palmatin.com/wp-

content/uploads/2013/06/painted-square-log-house1.jpg
• mountains: https://static.pexels.com/photos/15382/pexels-

photo.jpg
• balloon:

https://i.ytimg.com/vi/7_Y3QFdmpHw/maxresdefault.jpg
• flower: https://static.pexels.com/photos/36753/flower-

purple-lical-blosso.jpg
The last sample image is photo of the author, therefore the
source is not included.

VII. ACKNOWLEDGMENT

The author wans to thank Dr. Judhi Santoso, M.Sc as the

lecturer of Discrete Mathematics IF2120 course in author’s
class. The author also would thank Bandung Institute of
Technoloy for its access to IEEE document and papers. Many
inspirations and references affect author works. The author
would also thank the contributors to open source PIL python
library which helped author’s implementation of image
segmentation algorithm. The author also thanks Jonathan
Christopher, Bandung Institute of Technology junior student for
the inspiration of this paper.

REFERENCES

[1] Anandarup Roy, Swapan Kumar Parui, Amitav Paul; Utpal Roy. 2008. “A
Color Based Image Segmentation and its Application to Text
Segmentation” Computer Vision, Graphics & Image Processing, 2008.
ICVGIP '08. Sixth Indian Conference on doi: 10.1109/ICVGIP.2008.69

[2] Xue-xi Zhang and Yi-min Yang. (2008). “Minimum Spanning Tree and
Color Image Segmentation” Networking, Sensing and Control, 2008.
ICNSC 2008. IEEE International Conference on
doi:10.1109/ICNSC.2008.4525344

[3] K.H. Rosen, Discrete Mathematics and Its Application, 7th ed. New York:
McGraw-Hill, 2012, pp. 641-802.

[4] S. Halim and F. Halim, Competitive Programming 3. Singapore: Lulu,
2013, pp 49-53 and 121-139.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

Ttd

Yonas Adiel Wiguna

13516030

https://github.com/yonasadiel/mst-based-image-segmentation
https://github.com/yonasadiel/mst-based-image-segmentation
http://www.palmatin.com/wp-content/uploads/2013/06/painted-square-log-house1.jpg
http://www.palmatin.com/wp-content/uploads/2013/06/painted-square-log-house1.jpg
https://static.pexels.com/photos/15382/pexels-photo.jpg
https://static.pexels.com/photos/15382/pexels-photo.jpg
https://i.ytimg.com/vi/7_Y3QFdmpHw/maxresdefault.jpg
https://static.pexels.com/photos/36753/flower-purple-lical-blosso.jpg
https://static.pexels.com/photos/36753/flower-purple-lical-blosso.jpg

	I. Introduction
	II. Graph, Trees, and Minimum Spanning tree
	A. Graph
	B. Trees
	C. Minimum Spanning Tree

	III. Image Segmentation
	IV. Application in Cutout Filter
	V. Conclusion
	VI. Appendix
	VII. Acknowledgment
	References
	PeRNYATAAN

