
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

AKS Primality Test: What It Is and Why It Is

Important

Senapati Sang Diwangkara 13516107

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

diwangs@s.itb.ac.id

Abstract—In this paper, the author tries to explain the inner

working of the AKS Primality Testing Algorithm and discusses its

significance over the theoretical computer science in a laymen’s

term. Primality testing is an algorithm that determines whether a

given number is prime or composite. The problem was known to

be of class non-deterministic polynomial, but the AKS Primality

Test has disproven that conjecture. This has a very big impact on

the problem of computational complexity: Is P = NP?

Keywords—complexity, deterministic, polynomial, prime,

testing.

I. INTRODUCTION

Prime number is one of, if not the most, challenging type of

number to deal with. Despite of its simple definition – any

natural number that has exactly 2 factors: 1 and itself – prime

numbers are hard to tame if the given number is enormous.

Testing the primality of a number is a simple task if the number

is relatively small, but what if we want to test a number that has

22 338 618 digits, like 274 207 281 − 1 ?

Humankind’s inability to test the primality of a gigantic

number is one of the foundation of modern day cryptography,

where 2 monstrous prime numbers are used to generate a private

and public key pair in RSA algorithm.

A. Trial Division Algorithm

An intuitive algorithm to test the primality of a number that

might come to your mind is to divide the number with every

natural number between 1 and itself (exclusive) and check if the

result is not a fraction, since, by definition, a prime number is a

number that can’t be evenly divided by every natural number in

that range. This naïve algorithm is usually known by the name

Trial Division.

This Trial Division algorithm has an asymptotic time

complexity of 𝑂(𝑘⌊log𝑘(𝑝)⌋) where 𝑘 is the base of the number

(decimal is 10 and binary is 2) and 𝑝 is the test subject. This

algorithm grows exponentially, which means that we can’t solve

the problem in a reasonable amount of time given a sufficiently

large input. We need something better.

Many people have tried to perfect the algorithm. One

modification is to limit the search range to √𝑝 where 𝑝 is the

number that is being tested.

Proof:

• Suppose 𝑝 is composite. It has, at least, 2 factors. Let

the factor be 𝑎 and 𝑏. 𝑝 = 𝑎 ∙ 𝑏

• If 𝑎 and 𝑏 both are greater than √𝑝, then 𝑎 ∙ 𝑏 > 𝑝,

a contradiction.

• Then one of the factors (either 𝑎 or 𝑏) must be less

than or equal to √𝑝 so that the multiplication equals

to 𝑝.

The other modification is to only use odd number and 2 as the

divisor, because every even number are evenly divided by 2.

The generalization of this concept is to only use prime divisor

to test the number, since every composite number has its unique

prime factor, as provided by the Fundamental Theory of

Arithmetic. This method is usually called the Sieve of

Eratosthenes.

But despite of the improvements, even with all of those

modifications combined, the algorithm still runs with an

exponential time complexity.

B. Fermat’s Little Theorem

However, over the course of the 20th century, the quest to

discover an efficient primality testing algorithm has primarily

been focused on a theorem: Fermat’s Little Theorem.

This theorem states that if 𝑝 is prime and 𝑎 and 𝑝 are coprime

then the following congruence holds.

Ideally, we can use this theorem to examine the congruence

for various 𝑝 and 𝑎 and determine the primality of 𝑝. However,

this theory has a fatal flaw: the converse of this theorem doesn’t

hold. There also exists composite number that satisfies the

theorem (which will be referred to as ‘Fermat’s Pseudoprime’,

such as 341 for 𝑎 = 2) which render the test indeterministic: if

a natural number 𝑝 satisfies this congruence, it is probably

prime. So why is this theorem useful? Because it is relatively

efficient: it has a polylogarithmic asymptotic time complexity.

𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

C. Miller-Rabin Primality Testing Algorithm

Many have tried to build a primality testing algorithm with

Fermat’s Little Theorem as its foundation.

One example is the Miller-Rabbin Algorithm. This algorithm

takes the modified version of the algorithm (where the left-hand

side of the congruence is 𝑎𝑝−1 and the right-hand side of the

congruence is 1) and repeatedly divides the exponent of 𝑎 by 2

to eventually get an odd number. Because of the fact that 𝑥2 ≡
1 (𝑚𝑜𝑑 𝑝) is equivalent to 𝑥 ≡ ± 1 (𝑚𝑜𝑑 𝑝), if the congruence

doesn’t hold, then 𝑝 is composite. This step cuts a significant

amount of processing in the Fermat’s Little Theorem but

unfortunately, it doesn’t solve the probabilistic nature of its

foundational theorem: it’s still indeterministic.

D. AKS Primality Testing Algorithm

 In 2002 however, 3 computer science researchers from

Indian Institute of Technology Kanpur, Manindra Agrawal,

Neeraj Kayal, and Nitin Saxena have successfully created a

deterministic algorithm based on the Fermat’s Little Theorem

while maintaining its polylogarithmic time complexity. They

called it the AKS primality testing algorithm.

II. PREREQUISITES

Here are a few prerequisites that is not being taught in ITB’s

Discrete Mathematics course:

A. Multiplicative Order

Given an integer 𝑎 and a natural number 𝑛, the multiplicative

order of 𝑎 modulo 𝑛 is the smallest natural number 𝑘 such that:

The order of 𝑎 modulo 𝑛 is usually written as 𝑂𝑛(𝑎)

B. Euler’s Totient Function

The Euler’s Totient Function 𝜙(𝑛) counts the natural number

from 1 to n (inclusive) that are relatively prime to 𝑛.

C. Soft-O Notation

The Õ(𝑔(𝑛)) notation is a variant of the Big-O notation which

is a shorthand for 𝑂(𝑔(𝑛) ∙ log2(𝑔(𝑛))
𝑘

). It ignores the

logarithmic factor because it’s often superseded by super-

logarithmic function.

III. THE ALGORITHM

For an integer 𝒑 > 𝟏

1. If 𝒑 is a perfect power, output composite

2. Find the smallest 𝒓 such that 𝑶𝒓(𝒑) > 𝐥𝐨𝐠𝟐(𝒑)𝟐

3. If 𝟏 < 𝐠𝐜𝐝(𝒃, 𝒑) < 𝒑 for some 𝒃 ≤ 𝒓, output

composite

4. If 𝒑 ≤ 𝒓 output prime.

5. For 𝟏 < 𝒂 < ⌊√𝝓(𝒓) ∙ 𝐥𝐨𝐠𝟐(𝒑)⌋,

if (𝒙 + 𝒂)𝒑 ≢ 𝒙𝒑 + 𝒂 (𝒎𝒐𝒅 𝒑, 𝒙𝒓 − 𝟏), output

composite

6. Output prime.

 The core essence (and also the most laborious step) of AKS

algorithm is the fifth step. It is a direct generalization of

Fermat’s Little Theorem, but unlike the former, the relation

between the congruence and the primality of 𝑝 holds conversely.

So, we can use it to examine the primality of a number:

Where x is an indeterminate variable.

Proof:

Suppose we have expanded the polynomial.

• Because 𝑝 is prime, then the constant terms cancel

out: they add to 𝑎𝑝 − 𝑎 (𝑚𝑜𝑑 𝑝) and 𝑎 is coprime to

𝑝, which is congruent to 0 by Fermat’s Little

Theorem. The 𝑎𝑝 term will always be positive

because there is no even prime number.

• The 𝑥𝑝 terms also cancel out (self-explanatory)

• The rest of the polynomial term will have a

coefficient of (
𝑝
𝑘

) ∙ (−𝑎)𝑝−𝑘 for the 𝑥𝑘 term.

• Since
𝑝!

𝑘!∙(𝑝−𝑘)!
 will always have 𝑝 as the one of the

denominator and 𝑝 is prime, no numerator can

cancel it out (by definition). This part is what makes

the congruence holds conversely, unlike Fermat’s

Little Theorem. So, the whole polynomial is

divisible by 𝑝: the congruence holds.

• Suppose 𝑝 is a composite (for refutation’s sake). Let

𝑓 be one of the factor of 𝑝. 𝑓 will always be in the in

the 𝑥’s rank (𝑥𝑓), because the factor of a number is

always less of the number itself. Let 𝑚 be the largest

power of 𝑓 that divides 𝑝. In the coefficient of the

𝑥𝑓𝑚
 term, the combination’s numerator will always

have enough 𝑓 to cancel the denominator including

𝑝. So, the whole polynomial is not divisible by 𝑝, a

contradiction.

Despite of its determinism, however, the congruence no

longer has a polynomial complexity. To solve this, AKS’s idea

is to check the congruence on a less restrictive condition, using

Ring Theory:

𝑎𝑘 ≡ 1 (𝑚𝑜𝑑 𝑛)

(𝑥 − 𝑎)𝑝 ≡ 𝑥𝑝 − 𝑎 (𝑚𝑜𝑑 𝑝)

If and only if 𝑝 is prime and 𝑎 is coprime to 𝑝

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

This equation basically means that (𝑥 + 𝑎)𝑝 − (𝑥𝑝 − 𝑎) can

be written as a linear combination of 𝑥𝑟 − 1 and 𝑛. The point of

doing this is to reduce the left-hand side of the congruence so

that it can be reduced to a polynomial complexity. With this

condition, the 5th step is now polynomial-time.

This step gives the algorithm a polynomial-time complexity,

but it loses its determinism. To find 𝑟 such that the 5th step can

run as efficient as possible and give the determinism back, is

described by the 2nd through the 4th step. It is essentially a Trial

Division algorithm, but limited to an 𝑟 and this 𝑟 is going to be

the one that makes the Trial Division a polylogarithmic runtime

and gives the determinism back.

It is very difficult to understand and explain the 2nd step of the

algorithm intuitively without a deep understanding of Ring

Theory, so the author can’t provide a very good rationalization

as to why this step is taken.

The theorem is:

Hence, to only let through prime numbers and not the power

of a prime number, 1st step was added to the algorithm. Also, 𝑟

is guaranteed to be found < Õ(log2(𝑝)5)

The overall complexity of the algorithm is Õ(log2(𝑝)10.5) bit

operations. [4]

• The most efficient power test algorithm runs at

Õ(log2(𝑝)3) bit operations

• The lower bound of the second step takes

Õ(log2(𝑝)2), because of 𝑟’s warranty, the second

step takes Õ(log2(𝑝)7) bit operations

• Finding the GCD with a Euclidean algorithm takes

Õ(log2(𝑝)2), because of 𝑟’s warranty, the third step

takes Õ(log2(𝑝)7) bit operations

• The expansion of the polynomial is done 𝑂(log (𝑝))

times. Fast modular exponentiation algorithm takes

Õ(log2(𝑝)7). It loops over the square root of the

totient function of 𝑟, because of 𝑟’s warranty, the

loop takes Õ(log2(𝑝)2.5). Hence, the fifth step takes

Õ(log2(𝑝)10.5)

Hence, overall the algorithm takes Õ(log2(𝑝)10.5) which is

indeed polylogarithmic.

This algorithm is the original and unoptimized version of the

AKS Primality Test Algorithm. There exists, however, a version

of this algorithm, modified by H. W. Lenstra,Jr.and Carl

Pomerance that runs at Õ(log2(𝑝)6) [6]

IV. IMPLEMENTATION AND EXAMPLES

A. p = 31

First step

Second step

Third step

Fourth step

Fifth step

Sixth step

(𝑥 + 𝑎)𝑝 ≡ 𝑥𝑝 + 𝑎 (𝑚𝑜𝑑 𝑥𝑟 − 1, 𝑛)

𝑓𝑜𝑟 𝑏 = 2 𝑡𝑜 ⌈log2(𝑝)⌉ 𝑑𝑜

 𝑖𝑓 𝑝
1

𝑏 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

Because 31 is not a perfect square, the

algorithm continues

𝑚𝑎𝑥_𝑘 = ⌊log2(𝑝)2⌋
𝑛𝑒𝑥𝑡_𝑛 = 𝑡𝑟𝑢𝑒

𝑛 = 1

𝑤ℎ𝑖𝑙𝑒 𝑛𝑒𝑥𝑡_𝑛 𝑑𝑜

 𝑛 = 𝑛 + 1

 𝑛𝑒𝑥𝑡_𝑛 = 𝑓𝑎𝑙𝑠𝑒

 𝑤ℎ𝑖𝑙𝑒 𝑘 ≤ max_𝑟 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑛𝑒𝑥𝑡_𝑟 𝑑𝑜

 𝑛𝑒𝑥𝑡_𝑟 = 𝑝𝑘 𝑚𝑜𝑑 𝑟 == 1 or 0

𝑟 is now 29

𝑓𝑜𝑟 𝑎 = 2 𝑡𝑜 𝑟 𝑑𝑜

 𝑖𝑓 1 < gcd(𝑎, 𝑝) < 𝑝, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

Because 31 is coprime to any natural numbers

less than or equal to 29, the algorithm

continues

𝑖𝑓 𝑝 ≤ 𝑟 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑖𝑚𝑒

Because 29 is smaller than 31, the algorithm

continues

𝑓𝑜𝑟 𝑎 = 1 𝑡𝑜 ⌊√𝜙(𝑟) ∙ log2(𝑝)⌋ 𝑑𝑜

 𝑟𝑒 = ((𝑥 + 𝑎)𝑝 − (𝑥𝑝 + 𝑎)) 𝑚𝑜𝑑 (𝑥𝑟 − 1)

 𝑖𝑓 𝑟𝑒 𝑚𝑜𝑑 𝑝 ≠ 0 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑖𝑡𝑒

For every 𝑎 ≤ 26, 𝑎31 − 𝑎 (𝑚𝑜𝑑 31) always

equal to zero, so the algorithm continues.

𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑖𝑚𝑒

If a given number reached this point, it must be

prime. Thus, 31 must be prime

For some 𝑟 coprime to 𝑝, if the multiplicative

order of 𝑝 modulo 𝑟 is greater than log2(𝑝)2

and if the congruence (not incongruence) on the

5th step is satisfied for some

1 < 𝑎 < 𝑂(𝑟 ∙ log2(𝑝)𝑂(1)) then 𝑝 is either a

prime or the power of a prime [3]

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

B. p = 33

First step

Second step

Third step

C. p = 13

First step

Second step

Third step

Fourth step

D. p = 343

First step

𝑚𝑎𝑥_𝑘 = ⌊log2(𝑝)2⌋
𝑛𝑒𝑥𝑡_𝑛 = 𝑡𝑟𝑢𝑒

𝑛 = 1

𝑤ℎ𝑖𝑙𝑒 𝑛𝑒𝑥𝑡_𝑛 𝑑𝑜

 𝑛 = 𝑛 + 1

 𝑛𝑒𝑥𝑡_𝑛 = 𝑓𝑎𝑙𝑠𝑒

 𝑤ℎ𝑖𝑙𝑒 𝑘 ≤ max_𝑟 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑛𝑒𝑥𝑡_𝑟 𝑑𝑜

 𝑛𝑒𝑥𝑡_𝑟 = 𝑝𝑘 𝑚𝑜𝑑 𝑟 == 1 or 0

 𝑘 = 𝑘 + 1

𝑟 is now 6

𝑓𝑜𝑟 𝑎 = 2 𝑡𝑜 𝑟 𝑑𝑜

 𝑖𝑓 1 < gcd(𝑎, 𝑝) < 𝑝, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

𝑎 = 3 satisfies the criterion, so 33 must be

composite

𝑓𝑜𝑟 𝑏 = 2 𝑡𝑜 ⌈log2(𝑝)⌉ 𝑑𝑜

 𝑖𝑓 𝑝
1

𝑏 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

Because 31 is not a perfect square, the

algorithm continues

𝑓𝑜𝑟 𝑏 = 2 𝑡𝑜 ⌈log2(𝑝)⌉ 𝑑𝑜

 𝑖𝑓 𝑝
1

𝑏 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

Because 13 is not a perfect square, the

algorithm continues

𝑚𝑎𝑥_𝑘 = ⌊log2(𝑝)2⌋
𝑛𝑒𝑥𝑡_𝑛 = 𝑡𝑟𝑢𝑒

𝑛 = 1

𝑤ℎ𝑖𝑙𝑒 𝑛𝑒𝑥𝑡_𝑛 𝑑𝑜

 𝑛 = 𝑛 + 1

 𝑛𝑒𝑥𝑡_𝑛 = 𝑓𝑎𝑙𝑠𝑒

 𝑤ℎ𝑖𝑙𝑒 𝑘 ≤ max_𝑟 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑛𝑒𝑥𝑡_𝑟 𝑑𝑜

 𝑛𝑒𝑥𝑡_𝑟 = 𝑝𝑘 𝑚𝑜𝑑 𝑟 == 1 or 0

𝑟 is now 19

𝑓𝑜𝑟 𝑎 = 2 𝑡𝑜 𝑟 𝑑𝑜

 𝑖𝑓 1 < gcd(𝑎, 𝑝) < 𝑝, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

Because 13 is coprime to any natural numbers

less than or equal to 19, the algorithm

continues

𝑖𝑓 𝑝 ≤ 𝑟 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑖𝑚𝑒

Because 13 is smaller than 19, 13 must be

prime

𝑓𝑜𝑟 𝑏 = 2 𝑡𝑜 ⌈log2(𝑝)⌉ 𝑑𝑜

 𝑖𝑓 𝑝
1

𝑏 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

𝑏 = 3 satisfies the criterion, thus 343 must be

composite

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

IV. SIGNIFICANCE

The AKS primality test is not the only polynomial-time

modern prime testing algorithm that exists. There’s the Miller-

Rabin primality test which has the complexity of 𝑂(𝑖 ∙
log𝑘(𝑥)3) where 𝑖 is the number of iteration, there’s the

Solovay-Strassen primality test which also has the complexity

of 𝑂(𝑖 ∙ log𝑘(𝑥)3), and there are many more polynomial-time

algorithms like the Miller test (the origin of Miller-Rabin test),

Lucas-Lehmer test, and Baillie-PSW primality test.

However, all of those polynomial time algorithms have their

own caveat. Lucas-Lehmer test only works for Mersenne

numbers, Miller-Rabin test is an indeterministic algorithm (it

can deterministically tell if a number is composite, but it can’t

tell if a number is prime with certainty), and the Miller test is a

general and deterministic test, but it relies on the Extended

Riemann Hypothesis, which is unproven to this date.

The AKS algorithm however, is the only primality testing

algorithm to date that is general, polynomial, deterministic, and

doesn’t rely on some unproven hypothesis. Although in practice,

this algorithm is rarely used, because the number we’re testing

is relatively small (limited by computer’s memory convention).

A probabilistic or an exponential algorithm is far more superior

in that range. But from a theoretical perspective, this is a huge

breakthrough because it proves that determining the primality of

a number is not that hard of a problem after all: it’s a 𝑃 class

problem, not an 𝑁𝑃 one.

In computational complexity theory, there is a distinction

between a 𝑃 class problem and an 𝑁𝑃 class problem. 𝑃 stands

for polynomial: problems that can be solved in a reasonable

amount of time. 𝑁𝑃 stands for non-deterministic polynomial:

problems that can be verified in a reasonable amount of time.

However, there are many problems that initially considered to

be 𝑁𝑃 that are found to be 𝑃.

This leads to the (literally) million-dollar question: is 𝑁𝑃

equals to 𝑃? Does every problem that is easy to verify, easy to

solve?

This is a very broad question to answer. That’s partly the

reason of why this question hasn’t been correctly answered yet.

And this problem has a very serious implication in the real

world, such as breaking modern cryptography, which has a

serious impact on many fields, including banking, economics,

and politics. Majority of computer scientists, however, think that

this equivalence is not true (that 𝑃 ≠ 𝑁𝑃).

Thus, the discovery of this AKS primality testing algorithm

provides one more support for this question, as prime finding is

known to be an 𝑁𝑃 problem but is disproven by this algorithm.

It reminds us to remain critical and open to the new facts and

knowledge as they continue to develop and tested.

V. CONCLUSION

The AKS primality testing algorithm is the algorithm that

proves that the problem of determining whether a number is

prime or composite is a problem of class 𝑃, which previously

known to be of class 𝑁𝑃.

VI. APPENDIX

VII. ACKNOWLEDGMENT

The author would like to thank Mr. Tim Berners Lee for

inventing the world wide web, so that information searching can

be done with such an ease. The author would also like to thank

the services that’s available on the world wide web particularly

Google, Quora, and LinkedIn. The author would also praise Mr.

Terrence Tao who has such a helpful and read-worthy blog of

mathematics.

Figure 1: Photograph of Mr. Saxena,

Mr. Kayal, and Mr. Agrawal. Source:

http://www.ams.org/samplings/feature-

column/fcarc-primes6

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

REFERENCES

[1] M. Agrawal, N. Kayal, N. Saxena, “PRIMES is in P”.

https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

Accessed on December 2nd , 2017
[2] S. Bandyopadhyay, “PRIMALITY TESTING A Journey from Fermat to

AKS”. http://www.cmi.ac.in/~shreejit/primality.pdf Accessed on

December 3rd , 2017
[3] T. Tao, “The AKS Primality Test”,

https://terrytao.wordpress.com/2009/08/11/the-aks-primality-test/

Accessed on December 3rd , 2017
[4] P. Bhatnagar, “Introduction to The AKS Primality Test”,

https://www.slideshare.net/PranshuBhatnagar/introduction-to-the-aks-
primality-test Accessed on December 3rd, 2017

[5] https://www.quora.com/How-can-the-AKS-primality-testing-algorithm-

be-explained-in-laymen%E2%80%99s-terms Accessed on December 3rd,
2017

[6] H. W. Lenstra Jr., C. Pomerance, “Primality Testing with Gaussian

Period”, https://www.math.dartmouth.edu/~carlp/PDF/complexity12.pdf
Accessed on December 3rd, 2017

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

Senapati Sang Diwangkara 13516107

https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf
http://www.cmi.ac.in/~shreejit/primality.pdf
https://terrytao.wordpress.com/2009/08/11/the-aks-primality-test/
https://www.slideshare.net/PranshuBhatnagar/introduction-to-the-aks-primality-test
https://www.slideshare.net/PranshuBhatnagar/introduction-to-the-aks-primality-test
https://www.quora.com/How-can-the-AKS-primality-testing-algorithm-be-explained-in-laymen%E2%80%99s-terms
https://www.quora.com/How-can-the-AKS-primality-testing-algorithm-be-explained-in-laymen%E2%80%99s-terms
https://www.math.dartmouth.edu/~carlp/PDF/complexity12.pdf

