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Abstract—In this paper, the author tries to explain the inner 

working of the AKS Primality Testing Algorithm and discusses its 

significance over the theoretical computer science in a laymen’s 

term. Primality testing is an algorithm that determines whether a 

given number is prime or composite. The problem was known to 

be of class non-deterministic polynomial, but the AKS Primality 

Test has disproven that conjecture. This has a very big impact on 

the problem of computational complexity: Is P = NP? 

 

Keywords—complexity, deterministic, polynomial, prime, 

testing.  

 

 

I.   INTRODUCTION 

Prime number is one of, if not the most, challenging type of 

number to deal with. Despite of its simple definition – any 

natural number that has exactly 2 factors: 1 and itself – prime 

numbers are hard to tame if the given number is enormous. 

Testing the primality of a number is a simple task if the number 

is relatively small, but what if we want to test a number that has 

22 338 618 digits, like 274 207 281 − 1  ? 

Humankind’s inability to test the primality of a gigantic 

number is one of the foundation of modern day cryptography, 

where 2 monstrous prime numbers are used to generate a private 

and public key pair in RSA algorithm. 

 

A. Trial Division Algorithm 

An intuitive algorithm to test the primality of a number that 

might come to your mind is to divide the number with every 

natural number between 1 and itself (exclusive) and check if the 

result is not a fraction, since, by definition, a prime number is a 

number that can’t be evenly divided by every natural number in 

that range. This naïve algorithm is usually known by the name 

Trial Division. 

This Trial Division algorithm has an asymptotic time 

complexity of 𝑂(𝑘⌊log𝑘(𝑝)⌋ ) where 𝑘 is the base of the number 

(decimal is 10 and binary is 2) and 𝑝 is the test subject. This 

algorithm grows exponentially, which means that we can’t solve 

the problem in a reasonable amount of time given a sufficiently 

large input. We need something better.   

Many people have tried to perfect the algorithm. One 

modification is to limit the search range to √𝑝  where 𝑝 is the 

number that is being tested.  

 

Proof: 

• Suppose 𝑝 is composite. It has, at least, 2 factors. Let 

the factor be 𝑎 and 𝑏. 𝑝 = 𝑎 ∙ 𝑏 

• If 𝑎 and 𝑏 both are greater than √𝑝, then 𝑎 ∙ 𝑏 > 𝑝, 

a contradiction. 

• Then one of the factors (either 𝑎 or 𝑏) must be less 

than or equal to √𝑝 so that the multiplication equals 

to 𝑝. 

The other modification is to only use odd number and 2 as the 

divisor, because every even number are evenly divided by 2. 

The generalization of this concept is to only use prime divisor 

to test the number, since every composite number has its unique 

prime factor, as provided by the Fundamental Theory of 

Arithmetic. This method is usually called the Sieve of 

Eratosthenes.  

But despite of the improvements, even with all of those 

modifications combined, the algorithm still runs with an 

exponential time complexity.  

 

B. Fermat’s Little Theorem 

However, over the course of the 20th century, the quest to 

discover an efficient primality testing algorithm has primarily 

been focused on a theorem: Fermat’s Little Theorem. 

This theorem states that if 𝑝 is prime and 𝑎 and 𝑝 are coprime 

then the following congruence holds.  

 

Ideally, we can use this theorem to examine the congruence 

for various 𝑝 and 𝑎 and determine the primality of 𝑝. However, 

this theory has a fatal flaw: the converse of this theorem doesn’t 

hold. There also exists composite number that satisfies the 

theorem (which will be referred to as ‘Fermat’s Pseudoprime’, 

such as 341 for 𝑎 = 2) which render the test indeterministic: if 

a natural number 𝑝 satisfies this congruence, it is probably 

prime. So why is this theorem useful? Because it is relatively 

efficient: it has a polylogarithmic asymptotic time complexity. 

 

 

 

𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝) 
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C. Miller-Rabin Primality Testing Algorithm 

Many have tried to build a primality testing algorithm with 

Fermat’s Little Theorem as its foundation.  

One example is the Miller-Rabbin Algorithm. This algorithm 

takes the modified version of the algorithm (where the left-hand 

side of the congruence is 𝑎𝑝−1 and the right-hand side of the 

congruence is 1) and repeatedly divides the exponent of 𝑎 by 2 

to eventually get an odd number. Because of the fact that 𝑥2 ≡
1 (𝑚𝑜𝑑 𝑝) is equivalent to 𝑥 ≡ ± 1 (𝑚𝑜𝑑 𝑝), if the congruence 

doesn’t hold, then 𝑝 is composite. This step cuts a significant 

amount of processing in the Fermat’s Little Theorem but 

unfortunately, it doesn’t solve the probabilistic nature of its 

foundational theorem: it’s still indeterministic. 

 

D. AKS Primality Testing Algorithm 

 In 2002 however, 3 computer science researchers from 

Indian Institute of Technology Kanpur, Manindra Agrawal, 

Neeraj Kayal, and Nitin Saxena have successfully created a 

deterministic algorithm based on the Fermat’s Little Theorem 

while maintaining its polylogarithmic time complexity. They 

called it the AKS primality testing algorithm.   

 

 

 

II. PREREQUISITES 

Here are a few prerequisites that is not being taught in ITB’s 

Discrete Mathematics course: 

 

A. Multiplicative Order 

Given an integer 𝑎 and a natural number 𝑛, the multiplicative 

order of 𝑎 modulo 𝑛 is the smallest natural number 𝑘 such that: 

The order of 𝑎 modulo 𝑛 is usually written as 𝑂𝑛(𝑎) 

 

 

B. Euler’s Totient Function 

The Euler’s Totient Function 𝜙(𝑛) counts the natural number 

from 1 to n (inclusive) that are relatively prime to 𝑛. 

 

 

C. Soft-O Notation 

The Õ(𝑔(𝑛)) notation is a variant of the Big-O notation which 

is a shorthand for 𝑂(𝑔(𝑛) ∙ log2(𝑔(𝑛))
𝑘

). It ignores the 

logarithmic factor because it’s often superseded by super-

logarithmic function. 

 

 

 

 

 

 

 

 

 

III.  THE ALGORITHM 

For an integer 𝒑 > 𝟏 

1. If 𝒑 is a perfect power, output composite 

2. Find the smallest 𝒓 such that 𝑶𝒓(𝒑) > 𝐥𝐨𝐠𝟐(𝒑)𝟐 

3. If 𝟏 < 𝐠𝐜𝐝(𝒃, 𝒑) < 𝒑 for some 𝒃 ≤ 𝒓, output 

composite 

4. If 𝒑 ≤ 𝒓 output prime. 

5. For 𝟏 < 𝒂 < ⌊√𝝓(𝒓) ∙ 𝐥𝐨𝐠𝟐(𝒑)⌋,  

if (𝒙 + 𝒂)𝒑 ≢ 𝒙𝒑 + 𝒂 (𝒎𝒐𝒅 𝒑, 𝒙𝒓 − 𝟏), output 

composite 

6. Output prime.   
 

 The core essence (and also the most laborious step) of AKS 

algorithm is the fifth step. It is a direct generalization of 

Fermat’s Little Theorem, but unlike the former, the relation 

between the congruence and the primality of 𝑝 holds conversely. 

So, we can use it to examine the primality of a number: 

Where x is an indeterminate variable. 

 

Proof: 

Suppose we have expanded the polynomial. 

• Because 𝑝 is prime, then the constant terms cancel 

out: they add to 𝑎𝑝 − 𝑎 (𝑚𝑜𝑑 𝑝) and 𝑎 is coprime to 

𝑝, which is congruent to 0 by Fermat’s Little 

Theorem. The 𝑎𝑝 term will always be positive 

because there is no even prime number.  

• The 𝑥𝑝 terms also cancel out (self-explanatory) 

• The rest of the polynomial term will have a 

coefficient of (
𝑝
𝑘

) ∙ (−𝑎)𝑝−𝑘 for the 𝑥𝑘 term.  

• Since 
𝑝!

𝑘!∙(𝑝−𝑘)!
 will always have 𝑝 as the one of the 

denominator and 𝑝 is prime, no numerator can 

cancel it out (by definition). This part is what makes 

the congruence holds conversely, unlike Fermat’s 

Little Theorem. So, the whole polynomial is 

divisible by 𝑝: the congruence holds. 

• Suppose 𝑝 is a composite (for refutation’s sake). Let 

𝑓 be one of the factor of 𝑝. 𝑓 will always be in the in 

the 𝑥’s rank (𝑥𝑓), because the factor of a number is 

always less of the number itself. Let 𝑚 be the largest 

power of 𝑓 that divides 𝑝. In the coefficient of the 

𝑥𝑓𝑚
 term, the combination’s numerator will always 

have enough 𝑓 to cancel the denominator including 

𝑝. So, the whole polynomial is not divisible by 𝑝, a 

contradiction.  

 

Despite of its determinism, however, the congruence no 

longer has a polynomial complexity. To solve this, AKS’s idea 

is to check the congruence on a less restrictive condition, using 

Ring Theory: 

𝑎𝑘 ≡ 1 (𝑚𝑜𝑑 𝑛) 

(𝑥 − 𝑎)𝑝 ≡ 𝑥𝑝 − 𝑎 (𝑚𝑜𝑑 𝑝) 

If and only if 𝑝 is prime and 𝑎 is coprime to 𝑝 
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This equation basically means that (𝑥 + 𝑎)𝑝 − (𝑥𝑝 − 𝑎) can 

be written as a linear combination of 𝑥𝑟 − 1 and 𝑛. The point of 

doing this is to reduce the left-hand side of the congruence so 

that it can be reduced to a polynomial complexity. With this 

condition, the 5th step is now polynomial-time. 

This step gives the algorithm a polynomial-time complexity, 

but it loses its determinism. To find 𝑟 such that the 5th step can 

run as efficient as possible and give the determinism back, is 

described by the 2nd through the 4th step. It is essentially a Trial 

Division algorithm, but limited to an 𝑟 and this 𝑟 is going to be 

the one that makes the Trial Division a polylogarithmic runtime 

and gives the determinism back. 

It is very difficult to understand and explain the 2nd step of the 

algorithm intuitively without a deep understanding of Ring 

Theory, so the author can’t provide a very good rationalization 

as to why this step is taken.  

The theorem is: 

 

Hence, to only let through prime numbers and not the power 

of a prime number, 1st step was added to the algorithm. Also, 𝑟 

is guaranteed to be found <  Õ(log2(𝑝)5) 

The overall complexity of the algorithm is Õ(log2(𝑝)10.5) bit 

operations. [4] 

• The most efficient power test algorithm runs at 

Õ(log2(𝑝)3) bit operations 

• The lower bound of the second step takes 

Õ(log2(𝑝)2), because of 𝑟’s warranty, the second 

step takes Õ(log2(𝑝)7) bit operations 

• Finding the GCD with a Euclidean algorithm takes 

Õ(log2(𝑝)2), because of 𝑟’s warranty, the third step 

takes Õ(log2(𝑝)7) bit operations 

• The expansion of the polynomial is done 𝑂(log (𝑝)) 

times. Fast modular exponentiation algorithm takes 

Õ(log2(𝑝)7). It loops over the square root of the 

totient function of 𝑟, because of 𝑟’s warranty, the 

loop takes Õ(log2(𝑝)2.5). Hence, the fifth step takes 

Õ(log2(𝑝)10.5) 

 

Hence, overall the algorithm takes Õ(log2(𝑝)10.5) which is 

indeed polylogarithmic.   

This algorithm is the original and unoptimized version of the 

AKS Primality Test Algorithm. There exists, however, a version 

of this algorithm, modified by H. W. Lenstra,Jr.and Carl 

Pomerance that runs at Õ(log2(𝑝)6) [6] 

 

 

IV.  IMPLEMENTATION AND EXAMPLES 

A. p = 31 

First step 

 

Second step 

Third step 

Fourth step 

Fifth step 

 

Sixth step 

(𝑥 + 𝑎)𝑝 ≡ 𝑥𝑝 + 𝑎 (𝑚𝑜𝑑 𝑥𝑟 − 1, 𝑛) 

𝑓𝑜𝑟 𝑏 = 2 𝑡𝑜 ⌈log2(𝑝)⌉ 𝑑𝑜  

     𝑖𝑓 𝑝
1

𝑏 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

 

Because 31 is not a perfect square, the 

algorithm continues 

𝑚𝑎𝑥_𝑘 =  ⌊log2(𝑝)2⌋ 
𝑛𝑒𝑥𝑡_𝑛 =  𝑡𝑟𝑢𝑒 

𝑛 = 1 

𝑤ℎ𝑖𝑙𝑒 𝑛𝑒𝑥𝑡_𝑛 𝑑𝑜 

     𝑛 = 𝑛 + 1 

     𝑛𝑒𝑥𝑡_𝑛 = 𝑓𝑎𝑙𝑠𝑒 

     𝑤ℎ𝑖𝑙𝑒 𝑘 ≤ max_𝑟 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑛𝑒𝑥𝑡_𝑟 𝑑𝑜 

          𝑛𝑒𝑥𝑡_𝑟 = 𝑝𝑘 𝑚𝑜𝑑 𝑟 == 1 or 0 

 

𝑟 is now 29 

𝑓𝑜𝑟 𝑎 = 2 𝑡𝑜 𝑟 𝑑𝑜 

     𝑖𝑓 1 < gcd(𝑎, 𝑝) < 𝑝, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

 

Because 31 is coprime to any natural numbers 

less than or equal to 29, the algorithm 

continues  

𝑖𝑓 𝑝 ≤ 𝑟 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑖𝑚𝑒 

 

Because 29 is smaller than 31, the algorithm 

continues 

𝑓𝑜𝑟 𝑎 = 1 𝑡𝑜 ⌊√𝜙(𝑟) ∙ log2(𝑝)⌋  𝑑𝑜 

     𝑟𝑒 = ((𝑥 + 𝑎)𝑝 − (𝑥𝑝 + 𝑎)) 𝑚𝑜𝑑 (𝑥𝑟 − 1) 

     𝑖𝑓 𝑟𝑒 𝑚𝑜𝑑 𝑝 ≠ 0 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑖𝑡𝑒 

 

For every 𝑎 ≤ 26, 𝑎31 − 𝑎 (𝑚𝑜𝑑 31) always 

equal to zero, so the algorithm continues. 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑖𝑚𝑒 

 

If a given number reached this point, it must be 

prime. Thus, 31 must be prime 

For some 𝑟 coprime to 𝑝, if the multiplicative 

order of 𝑝 modulo 𝑟 is greater than log2(𝑝)2 

and if the congruence (not incongruence) on the 

5th step is satisfied for some 

1 < 𝑎 < 𝑂(𝑟 ∙ log2(𝑝)𝑂(1)) then 𝑝 is either a 

prime or the power of a prime [3] 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018 

 

B. p = 33 

First step 

 

Second step 

 

Third step 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. p = 13 

First step 

 

 

Second step 

 

Third step 

 

Fourth step 

 

 

D. p = 343 

First step 

 

 

 

 

 

 

 

𝑚𝑎𝑥_𝑘 =  ⌊log2(𝑝)2⌋ 
𝑛𝑒𝑥𝑡_𝑛 =  𝑡𝑟𝑢𝑒 

𝑛 = 1 

𝑤ℎ𝑖𝑙𝑒 𝑛𝑒𝑥𝑡_𝑛 𝑑𝑜 

     𝑛 = 𝑛 + 1 

     𝑛𝑒𝑥𝑡_𝑛 = 𝑓𝑎𝑙𝑠𝑒 

     𝑤ℎ𝑖𝑙𝑒 𝑘 ≤ max_𝑟 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑛𝑒𝑥𝑡_𝑟 𝑑𝑜 

          𝑛𝑒𝑥𝑡_𝑟 = 𝑝𝑘 𝑚𝑜𝑑 𝑟 == 1 or 0 

          𝑘 = 𝑘 + 1  

 

𝑟 is now 6 

𝑓𝑜𝑟 𝑎 = 2 𝑡𝑜 𝑟 𝑑𝑜 

     𝑖𝑓 1 < gcd(𝑎, 𝑝) < 𝑝, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

 

𝑎 = 3 satisfies the criterion, so 33 must be 

composite  

𝑓𝑜𝑟 𝑏 = 2 𝑡𝑜 ⌈log2(𝑝)⌉ 𝑑𝑜  

     𝑖𝑓 𝑝
1

𝑏 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

 

Because 31 is not a perfect square, the 

algorithm continues 

𝑓𝑜𝑟 𝑏 = 2 𝑡𝑜 ⌈log2(𝑝)⌉ 𝑑𝑜  

     𝑖𝑓 𝑝
1

𝑏 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

 

Because 13 is not a perfect square, the 

algorithm continues 

𝑚𝑎𝑥_𝑘 =  ⌊log2(𝑝)2⌋ 
𝑛𝑒𝑥𝑡_𝑛 =  𝑡𝑟𝑢𝑒 

𝑛 = 1 

𝑤ℎ𝑖𝑙𝑒 𝑛𝑒𝑥𝑡_𝑛 𝑑𝑜 

     𝑛 = 𝑛 + 1 

     𝑛𝑒𝑥𝑡_𝑛 = 𝑓𝑎𝑙𝑠𝑒 

     𝑤ℎ𝑖𝑙𝑒 𝑘 ≤ max_𝑟 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑛𝑒𝑥𝑡_𝑟 𝑑𝑜 

          𝑛𝑒𝑥𝑡_𝑟 = 𝑝𝑘 𝑚𝑜𝑑 𝑟 == 1 or 0 

 

𝑟 is now 19 

𝑓𝑜𝑟 𝑎 = 2 𝑡𝑜 𝑟 𝑑𝑜 

     𝑖𝑓 1 < gcd(𝑎, 𝑝) < 𝑝, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

 

Because 13 is coprime to any natural numbers 

less than or equal to 19, the algorithm 

continues  

𝑖𝑓 𝑝 ≤ 𝑟 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑖𝑚𝑒 

 

Because 13 is smaller than 19, 13 must be 

prime 

𝑓𝑜𝑟 𝑏 = 2 𝑡𝑜 ⌈log2(𝑝)⌉ 𝑑𝑜  

     𝑖𝑓 𝑝
1

𝑏 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

 

𝑏 = 3 satisfies the criterion, thus 343 must be 

composite 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018 

 

IV.   SIGNIFICANCE 

The AKS primality test is not the only polynomial-time 

modern prime testing algorithm that exists. There’s the Miller-

Rabin primality test which has the complexity of 𝑂(𝑖 ∙
log𝑘(𝑥)3) where 𝑖 is the number of iteration, there’s the 

Solovay-Strassen primality test which also has the complexity 

of 𝑂(𝑖 ∙ log𝑘(𝑥)3), and there are many more polynomial-time 

algorithms like the Miller test (the origin of Miller-Rabin test), 

Lucas-Lehmer test, and Baillie-PSW primality test.  

However, all of those polynomial time algorithms have their 

own caveat. Lucas-Lehmer test only works for Mersenne 

numbers, Miller-Rabin test is an indeterministic algorithm (it 

can deterministically tell if a number is composite, but it can’t 

tell if a number is prime with certainty), and the Miller test is a 

general and deterministic test, but it relies on the Extended 

Riemann Hypothesis, which is unproven to this date.  

The AKS algorithm however, is the only primality testing 

algorithm to date that is general, polynomial, deterministic, and 

doesn’t rely on some unproven hypothesis. Although in practice, 

this algorithm is rarely used, because the number we’re testing 

is relatively small (limited by computer’s memory convention). 

A probabilistic or an exponential algorithm is far more superior 

in that range. But from a theoretical perspective, this is a huge 

breakthrough because it proves that determining the primality of 

a number is not that hard of a problem after all: it’s a 𝑃 class 

problem, not an 𝑁𝑃 one. 

In computational complexity theory, there is a distinction 

between a 𝑃 class problem and an 𝑁𝑃 class problem. 𝑃 stands 

for polynomial: problems that can be solved in a reasonable 

amount of time. 𝑁𝑃 stands for non-deterministic polynomial: 

problems that can be verified in a reasonable amount of time. 

However, there are many problems that initially considered to 

be 𝑁𝑃 that are found to be 𝑃.  

This leads to the (literally) million-dollar question: is 𝑁𝑃 

equals to 𝑃?  Does every problem that is easy to verify, easy to 

solve? 

This is a very broad question to answer. That’s partly the 

reason of why this question hasn’t been correctly answered yet. 

And this problem has a very serious implication in the real 

world, such as breaking modern cryptography, which has a 

serious impact on many fields, including banking, economics, 

and politics. Majority of computer scientists, however, think that 

this equivalence is not true (that 𝑃 ≠ 𝑁𝑃).  

Thus, the discovery of this AKS primality testing algorithm 

provides one more support for this question, as prime finding is 

known to be an 𝑁𝑃 problem but is disproven by this algorithm. 

It reminds us to remain critical and open to the new facts and 

knowledge as they continue to develop and tested. 

 

  

 

 

 

 

 

 

V.   CONCLUSION 

The AKS primality testing algorithm is the algorithm that 

proves that the problem of determining whether a number is 

prime or composite is a problem of class 𝑃, which previously 

known to be of class 𝑁𝑃. 
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