
IF2120 Discrete Mathematics Paper – First Semester Year 2017/2018 

 

Recursive Descent Parser in Building A Simple 

Compiler 
 

Manasye Shousen Bukit / 13516122 

Informatics Undergraduate Program 

School of Electrical Engineering and Informatics 

Bandung Institute of Technology, Ganesha Street 10 Bandung 40132, Indonesia  

13516122@std.stei.itb.ac.id 

manasyebukit@gmail.com 
 

 

Abstract—Recursivity is one of the most important concept in 

computer science and technology.One of its application is in 

building compiler.Compiler is a computer software that 

transforms one programming language,in example Pascal , C , 

C++; into another language that can be easily understood and 

processed by computer.The way programmer build a compiler 

may vary in method.One way to build a compiler is through a top-

down parsing,recursive descent parser. 

 

Keywords—compiler, recursive , grammar , parsing 

 

 

I.   INTRODUCTION 

   Humans can easily interact with others through media called 

language.There are many language that human can understand 

and learn.That is due to our brain capacity that can easily 

translate not only formal language,but also informal language 

and react towards it.On the other hand,computer does not work 

like that.Computer work in a specific way and can not interpret 

as flexible as the way humans do. 

Regardless of the that disadvantages,computer do have an 

advantage.That is,computer process things a lot faster and a lot 

more neat than human.Let us take one simple example.We 

want to calculate how many prime numbers exist in range 0 - 

100.If we count that manually,we would have a difficult 

calculation and tend to have error.That is when computer 

comes in handy. 

In order to make computers understand what we want them 

to do,we need to make a programming language.You may be 

familiar with C,C++,Java,and so on.This is the example of 

high-level programming language.High-level language tend to 

adapt with human natural language in order to make humans 

easier to use it. 

However,computer process things slight different than we 

expect and a lot more complex.We need some kind of a bridge 

that connect high-level programming language with computer 

instruction code.Therefore,compiler is built to solve this sort of 

problem. 

Developing a compiler is not an easy thing.You need to 

understand grammar and its notation.Moreover,you need to 

develop a method that can easily parse through syntax in high-

level language and give result as the user wants.There are 

several way to build a compiler.For instance, CYK 

Algorithm(Cocke-Younger-Kasami) a bottom-up syntax 

parser.There is also LR , LL Parser,and Recursive Descent 

Parser(RDP).[1] 

Recursive Descent Parser is a way to apply a Context 

Formal Language(CFG) to make an analytic syntax processing 

in a certain code.Its distinguish characteristic is this method 

recursively derivate all variable until it meet the terminal with 

or without having a back-track. A form of recursive-descent 

parsing that does not require any back-tracking is known as 

predictive parsing.Another characteristic of this method is its 

dependency with scan algorithm to retrieve tokens. 

 

 

II.  RECURSIVITY, TREE, AND GRAMMAR 

A.Recursivity 

   The process of defining an object in terms of itself is called 

recursion. A recursive function consists of two steps. 

 Basis step : part of function that contain explicitly told 

value.This part is also the part that stop the recursive 

process. 

 Recursive step : part of function where it call its own term 

while also getting closer towards basis. [2] 

 

   A function that does not have that two step is not a recursive 

function.For instance,a factorial function.We can define a 

recursive function with basis 0 that return value of function 

1.The recursive step is (n-1)! with being multiplied with value 

of n. 

 

 

 

   The example of calculating 4 factorial using this recursive 

function is shown in picture below. 

 

 










0,)!1(

0,1
!

nnn

n
n



IF2120 Discrete Mathematics Paper – First Semester Year 2017/2018 

 

Figure 2.1 Determining factorial of 4 using recursive function 

(Source : https://i.stack.imgur.com/jqbf3.png) 

 

   Basis of a recursive function does not necessarily have to be 

just one condition.For example, Fibonacci  sequence have two 

base.This Fibonacci  sequence will have a result of sequence of 

0,1,1,2,3,... 

 

 

 

 

    

   This recursive idea is widely used in many technology 

sector.In building a compiler , deriving a terminal and 

checking whether it is accepted or not is determined by 

recursive function. 

 

B.Tree 

   In mathematics, and more specifically in graph theory, a tree 

is an undirected graph in which any two vertices are connected 

by exactly one path. In other words, any acyclic connected 

graph is a tree. A forest is a disjoint union of trees.Terms 

commonly seen regarding tree are mentioned below. 

 

 Leaf 

A vertex of a tree is called a leaf if it has no children. 

 Rooted Tree 

A rooted tree is a tree in which one vertex has been 

designated as the root and every edge is directed away 

from the root 

 Parent 

Suppose that T is a rooted tree. If v is a vertex in T other 

than the root, the parent of v is the unique vertex u such 

that there is a directed edge from u to v. 

 Child 

If U is the parent of v, then v is called a child of u. 

 Siblings 

Vertices with same parent is called siblings. 

 Subtree 

If a is a vertex in a tree, the subtree with a as its root is the 

subgraph of the tree consisting of a and its descendants 

and all edges incident to these descendants. 

 Internal Vertices 

Vertices that have children is internal vertices. 

 M-ary Tree 

A rooted tree is called an m-ary tree if every internal 

vertex has no more than m children. The tree is called a 

full m-ary tree if every internal vertex has exactly m 

children. 

 Binary Tree 

A m-ary tree with m = 2 is called binary tree.This kind of 

tree is commonly used in computer science. 

 Level 

The level of vertex v in a rooted tree is the length of the 

unique path from root to this vertex 

 Height 

The maximum level of vertices is the height of the tree. 

 Balanced 

A rooted m-ary tree is balanced if all leaves are at level 

height or height-1. 

 Ordered Root Tree 

An ordered root tree is a rooted tree where the children of 

each internal vertex is in order. 

 

 

 
Figure 2.2 Tree 

(Source : https://i.stack.imgur.com/5kJXf.gif) 

 

   Tree is closely related to recursive function,especially binary 

tree.Binary tree is a recursive structure due to each node have 

branch(s) that is also a tree. Every branch of tree is called 

subtree[2]. 

 
 

Figure 2.3 Binary Tree 

(Source : https://www.cs.cmu.edu/~adamchik/15-

121/lectures/Trees/pix/tree1.bmp) 

 

   As we introduce earlier,recursive function consists of basis 

and the recursive step.In binary tree’s problem the basis should 

be empty tree is a binary tree.The recursive step should be the 

subtree of a binary tree in which is also a binary tree too. 

   This binary tree have play an important role in building a 

compiler.A terminal is node in a binary tree.Later,we will see 

that our goal is to manipulate this tree to see if a certain 

program have an error or not. 

 

C.Grammar 

   In the literary sense of the term, grammars denote syntactical 

rules for conversation in natural languages.Grammar G can be 

formally written as a 4-tuple (N, T, S, P) where : 

 N or VN is a set of variables or non-terminal symbols. 

 T or ∑ is a set of Terminal symbols. 

 S is a special variable called the Start symbol, S ∈ N 

 P is Production rules for Terminals and Non-terminals. A 

production rule has the form α → β, where α and β are 

















 1,

1,1

0,0

21 nff

n

n

f

nn

n

https://i.stack.imgur.com/jqbf3.png
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/Connected_graph
https://en.wikipedia.org/wiki/Disjoint_union
https://i.stack.imgur.com/5kJXf.gif
https://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/pix/tree1.bmp
https://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/pix/tree1.bmp


IF2120 Discrete Mathematics Paper – First Semester Year 2017/2018 

 

strings on VN ∪ ∑ and least one symbol of α belongs to 

VN. 

   Strings may be derived from other strings using the 

productions in a grammar. If a grammar G has a production α 

→ β, we can say that x α y derives x β y in G. This derivation 

is written as     x α y ⇒ x β y. 

   A context-free grammar (CFG) is a set of recursive rewriting 

rules (or productions) used to generate patterns of strings.[3] A 

CFG consists of the following components: 

 a set of terminal symbols, which are the characters of the 

alphabet that appear in the strings generated by the 

grammar. 

 a set of nonterminal symbols or variable, which are 

placeholders for patterns of terminal symbols that can be 

generated by the nonterminal symbols.Normally used 

surrounded by ‘< >’.For instance <real> define variable 

real. 

 a set of productions, which are rules for replacing (or 

rewriting) nonterminal symbols (on the left side of the 

production) in a string with other nonterminal or terminal 

symbols (on the right side of the production). 

 a start symbol, which is a special nonterminal symbol that 

appears in the initial string generated by the grammar. 

 

A CFG’s production describing real numbers in Pascal is show 

below.Noted that ‘|’ means ‘or’ and ε means empty string. 

1. <real> → <digit> <digit*> <decimal part> <exp> 

2. <digit*> → <digit> <digit*> | ε 

3. <decimal part> → '.' <digit> <digit*> | ε 

4. <exp> → 'E' <sign> <digit> <digit*> | ε 

5. <sign> → + | - | ε 

6. <digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

   A CFG is in Chomsky Normal Form(CNF) if the productions 

are in the following forms: A → a ; A → BC ; S → ε where 

A,B,C are nonterminal,a is a terminal,and S is a start 

symbol.Algorithm to convert any CFG to CNF is : 

1. If the start symbol S occurs on some right side, create a 

new start symbol S’ and a new production S’→ S. 

2. Remove Null productions (production that derive ε) 

3. Remove unit productions (production that derive just one 

nonterminal) 

4. Replace each production A → B1…Bn where n > 2 with A 

→ B1C where C → B2 …Bn. Repeat this step for all 

productions having two or more symbols in the right side. 

5. If the right side of any production is in the form A → aB 

where a is a terminal and A, B are non-terminal, then the 

production is replaced by A → XB and X → a. Repeat this 

step for every production which is in the form A → aB. 

   Deriving CFG and CNF is not alike.Some method require us 

to convert any non-CNF grammar to CNF,so the derivation 

could work.For instance For instance, CYK Algorithm(Cocke-

Younger-Kasami).Other method does not have boundaries 

whether to have a CFG or CNF as it can derives all.The 

example for this is the recursive descent parser. 

   In grammar , there are two ways to derivate production.That 

is Leftmost derivation and Rightmost derivation[5]. Now 

consider the grammar G = ({S, A, B, C}, {a, b, c}, S, P) where 

P = {S → ABC, A→ aA, A→ ε, B→ bB, B→ ε, C→ cC, C→ 

ε }.  

 

The leftmost derivation will derive the terminal as show below. 

1. S → ABC 

2. ABC → aABC 

3. aABC → aABcC 

4. aABcC → aBcC 

5. aBcC → abBcC 

6. abBcC → abBc 

7. abBc → abbBc 

8. abbBc → abbc 

 

Otherwise, the rightmost derivation will derive the terminal as 

show below.  

1. S → ABC 

2. ABC → ABcC 

3. ABcC → ABc 

4. ABc → AbBc 

5. AbBc → AbbBc 

6. AbbBc → Abbc 

7. Abbc → aAbbc 

8. aAbbc → abbc 

 

   Different derivations result in quite different sentential 

forms, but for a CFG, it really does not make much difference 

in what order we expand the variables.But commonly in 

practice,we use the leftmost derivation technique.Recursive 

Descent Parser use leftmost derivation technique. 

 

 

III.   RECURSIVE DESCENT PARSER 

   A parser is a program that determines the grammatical 

structure of a phrase in the language/grammar. This is the first 

step in determining the meaning of the phrase,which for a 

programming language means translating it into machine 

language.[4] 

 The parsing method that we will mention is recursive 

descent parsing with a back-tracking.Noted that not any 

grammar can be derived from recursive descent parsing.They 

have to satify certain properties.Recursive descent parsing is a 

top-down parsing that build tree from root symbol.  
Each production corresponds to one recursive 

procedure.Each procedure recognizes an instance of a non-

terminal, returns tree fragment for the non-terminal.The 

method of the this method is recursively check for the grammar 

and derive the syntax from Start to all terminals. 

If one rule in grammar can not derive all terminals,it will go 

back-tracking to find other rules that can satisfies.If all rules 

have been implemented yet there still no rules that can do the 

derivation,our compiler deduce that the program is not 

accepted. 

In order to do parsing,we need several things to do.First we 

need to determine certain grammar that satisfies one 

programming language.Our RDP will parse according to this 

grammar.This grammar does not have to be CFG or CNF as it 



IF2120 Discrete Mathematics Paper – First Semester Year 2017/2018 

 

can parse through both of them.The next thing we need is a 

tokenizer.Event though tokenizer seems optional,tokenizer 

translate terminals to one alphabet for speeding up purposes. 

 

 
Figure 3.1 Simple pascal program that we want to parse 

(Images taken by author) 

 

Let us take an example based on Figure 3.1.First of all,we 

need to make grammar regarding that example. 

1. <start> → <header> <var> <main_body> 

2. <header> → program <identifier> ; 

3. <var> → var <identifier> <identifier> <more_var> 

<colon> <var_type> <semicolon> | ε 

4. <more_var> → <comma> <identifier> <more_var> | ε 

5. <main_body> → begin <code> end. 

6. <code> → ε 

7. <identifier> → <0..9> <identifier> | <a..z> <identifier> 

<A..Z> <identifier> | ε 

    

   We restrict the <code> production to an empty for now.If we 

want to develop program mechanism such as assignment 

variable,for-loop,while-loop,if-else , we could make a grammar 

regarding each mechanism.The pseudo code for the recursive 

descent parses  is shown below. 

 
Figure 3.2 Pseudo code for  getting grammar production 

stored in CFG_file (Images taken by author) 

 
Figure 3.3 Pseudo code for  getting all terminals in str_file 

(Images taken by author) 

 

   To understand this recursive descent parser,let us visualize it 

by drawing the parse tree.Understand the terminal that we want 

to derive is program test ; begin end. 

 
Figure 3.4 Checking the derivability of the production 

(Images taken by author) 

 

   From the start variable it will try the first derivation,which is 

<header><var><main_body>.The header part will derive 

program immediately.The first terminal can be generated  from 

header so it will advance to other terminal without 

backtracking.<Identifier> could derived test and also will 

advance to semicolon and also accepted. 

 
 

 



IF2120 Discrete Mathematics Paper – First Semester Year 2017/2018 

 

Figure 3.5 Example of back-tracking 

(Images taken by author) 

 

   As it goes to <var> production ,first production will derive 

var and it’s not what current terminal is.So it will backtrack 

and search for another <var> production. 

 
 

Figure 3.6 Skipping empty string production / ε 

(Images taken by author) 

 

   When the production meet empty production,it will skip to 

the next production with still the same current terminal. 

 

 
Figure 3.7 Finishing the parsing 

(Images taken by author) 

 

   It will go to <main_body> derivation and find ‘begin’ and it 

matched with the current terminal.It will advance again to 

<code> and find empty production and skip it again.It will 

advance to meet ‘end.’ .As soon as  it has parse the whole 

terminal,our program will return true and conclude that the 

syntax is accepted. 

   Recursive is used to searching the non-terminal derivation.If 

the derivation is still consist of variable(non-terminal),it will 

call the function again until it meet a terminal. 

The other key in this parsing is the idea of backtracking.If the 

derivation do not match the current terminal,it will search for 

other possibilities and if it can not be backtracked anymore,that 

is when a certain program concluded not accepted. 

 

 

IV.   APPLICATION 

   Recursive Descent Parser is used in many application.In 

order to make a more complex compiler, the method of this 

parsing need to be more efficient and also the CFG need to be 

more complex as the rules increases.The parsing strategy is 

used not only to make a compiler,but also for another string 

parsing. 

   For instance,a calculator check expression could be derive 

from the Recursive Descent Parser.The grammar should be 

changed due to different purpose . After determining the 

grammar,we need a function that could calculate the operation 

based on token (+,-,*,/,div,mod). 

 

 
Figure 4.1 Application of RDP in calculator check expression 

(Source : http://basitadhi.blogspot.co.id/2009/10/pembuatan-

compiler-dengan-metode.html) 

 

 

V.   CONCLUSION 

Building a simple compiler could be done with the help of 

recursive concept in recursive descent parser.Not only in 

generating a compiler,the recursive descent parser could be 

used in many other application too.The algorithm for recursive 

descent parser is discussed and implemented in this 

paper.However,this implementation leaves much room for 

improvement as it is still lack of efficiency. 

 

 

VI.   ACKNOWLEDGMENT 

   The first and foremost thanks from the author is to God for 

providing the author inspiration,time,and facility to be able to 

write and finish this paper.Special acknowledgment to Dra 

Harlili S.M.Sc as the lecturer of the author’s Mathematical 

Discrete class,for guidance in preparing this paper.Last but not 

least,the author took credits for author’s parents who always 

supporting the author’s education in Bandung Institute 

Technology.   

 

 

http://basitadhi.blogspot.co.id/2009/10/pembuatan-compiler-dengan-metode.html
http://basitadhi.blogspot.co.id/2009/10/pembuatan-compiler-dengan-metode.html


IF2120 Discrete Mathematics Paper – First Semester Year 2017/2018 

 

 

REFERENCES 

[1] Zery,      Recursive Descent Parser.        Available: 

http://duniazery.blogspot.co.id/2013/04/recursive-descent-parser-rekursif.html. 
(Retrieved November 26, 2017 ,21:16) 

[2]Rinaldi Munir,Diktat Kuliah IF2110 Matematika Diskrit, Informatics 

Undergraduate Program School of Electrical Engineering and Informatics 

Bandung Institute of Technology,2006. 
[3]Nelson,Context Free Grammar.Available: https://www.cs.rochester.edu/ 

~nelson/courses/csc_173/grammars/cfg.html (Retrieved December 1, 2017 
,05.12) 

[4]http://math.hws.edu/javanotes/c9/s5.html (Retrieved December 1, 2017 

,16:57) 
[5] Matuszek ,Leftmost and Rightmost Derivation .Available in: 

https://www.seas.upenn.edu/~cit596/notes/dave/cfg8.html (Retrieved 

December 2, 2017 ,19:43) 
 

 

 
 

PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang saya tulis 

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan 

dari makalah orang lain, dan bukan plagiasi. 

 

Bandung, 3 Desember 2017    

 

 
 

 

Manasye Shousen Bukit - 13516122 

 

 

http://duniazery.blogspot.co.id/2013/04/recursive-descent-parser-rekursif.html
https://www.cs.rochester.edu/
http://math.hws.edu/javanotes/c9/s5.html
https://www.seas.upenn.edu/~cit596/notes/dave/cfg8.html

