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 Abstract—Transactions of any kind has been the backbone of 
our economy since the earliest civilizations. Therefore, it is only 
fitting for us to find yet better ways to transact. In it’s early form, 
transactions are made between parties solely based on trust in 
each other. As time progressed, more and more values are at stake 
in each transactions. In order to reduce risks, these trust between 
parties are put on more centralized bodies such as banks and 
governments. But since all the transactions data are stored in 
centralized locations, this also presents a huge vulnerability of a 
breach that may lead to large-scale fraud. With this situation in 
mind, a new method of transaction is gaining popularity. This 
method, called blockchain, differs from it’s predecessors in which 
it does not require trust to be put anywhere besides mathematics. 
This paper will discuss how a cryptographic hash function, called 
SHA256, enables this new form of transaction. 

 Keywords—cryptographic hash functions, SHA256 algorithm, 
blockchain, trustless transaction. 

I.   INTRODUCTION 

 A normal, centralized transaction requires the participating 
parties to put trust in a bank, organization, or any other 
centralized bodies to verify the transaction. These centralized 
bodies also keeps track of all past transaction in some form of  
a ledger. This system makes it easier for transacting parties to 
be sure that their transaction is safe and recorded in the ledger
—hence, universally acknowledged. However, this situation 
also makes it easier for anyone looking to hack into these 
ledger because it’s all located in only a handful of centralized 
locations. 

 Figure 1.1 Two graphs comparing a visualization of centralized 
systems (red) and distributed systems (blue). 

 A trustless transaction, on the other hand, does not require 
any centralized bodies to verify and record transactions in a 

ledger. In order to achieve this, instead of having one 
centralized ledger, a system should have many distributed 
ledgers that are all the same and equally and universally 
acknowledged. These ledgers can be kept by each transacting 
parties or any groups the transacting parties choose. Every 
transaction can be recorded in each one of these ledgers but 
every ledgers in the system also have to record this transaction. 
 The first problem is how to ensure the validiy of each entry 
in the ledger without any centralized authority. This problem is 
addressed by using a technology called blockchain. In a 
blockchain, transaction entries are grouped into many blocks 
that chains together to create a complete ledger—hence the 
name blockchain. Each entries in a blockchain is given a  
‘digital signature’ that ensures it’s validity. The underlying key 
to making a digintal signature is by using a form of 
cryptographic hash functions, in this case it is SHA256. 
 The second problem is how to tell all other ledgers—in this 
case blockchains—in the system if a new transaction has been 
recorded in one of those ledgers. The system also has to keep 
all of these blockchains the same and if there are any conflicts, 
resolve them. A way to make this work is by using another 
technology called distributed blockchains.  
 In a distributed blockchain system, there are many 
blockchains kept by each transacting parties or any group the 
transacting parties choose. In each occuring transaction, it’s 
record is added to a blockchain before being verified and 
broadcast to all other blockchains in the system. This 
verification process takes a very large amount of computational 
power and acts as a ‘proof-of-work’. This ‘proof-of-work’ tells 
other blockchains that it is safe to add this block to their 
existing chain of blocks, therefore updating them and all 
blockchains are kept the same.[1] 
 As you can see, this ‘proof-of-work’ is the basis that keeps 
the integrity of the system. Just like the ‘digital signature’ 
concept, the key that enables this is also the SHA256 hashing 
algorithm. In this paper, we will discuss how such algorithm 
makes this system of distributed blockchains works. 
 As a side note, this system is already widely implemented in 
the form of many cryptocurrencies. That is, currencies that 
entirely rely it’s existence on a distributed blockchain. The first 
and the most popular decentralized cryptocurrency is Bitcoin. 
In the last five years alone, Bitcoin has grown it’s value by 
over 79.000 percent to over 9.000 US dollars per one Bitcoin. 
It’s creation was proposed in a 2008 paper titled ‘Bitcoin: A 
Peer-to-Peer Electronic Cash System’ by an unnamed author 
known as Satoshi Nakamoto. That paper was also first to 
propose the idea of the distributed blockchain.[2] 
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Figure 1.2 The skyrocketing price of Bitcoin in the last five years. 
(Source: screenshot from https://www.buybitcoinworldwide.com/price 

at December 2nd 2017) 

II.   HASH, HASHCHAINS, AND PUBLIC KEY 
CRYPTOGRAPHY 

What lies in the heart of a blockchain-based trustless 
transaction system is a cryptographic hash function called 
SHA256. This section will explain what such functions are and 
how they work. 

A. Hash Functions 

 Hash functions are methods to map data of arbitrary size into 
data of predefined length, called hash or digest. Hash functions 
has many properties that make them useful. The first is 
determinism, that is, for a given input value it must always 
generate the same hash value. The second is uniformity, that is, 
a good hash function should map the expected inputs as evenly 
as possible over its output range. That means every hash value 
in the output range should be generated with roughly the same 
probability. The reason for this is to minimize the collision 
happening tho different input values—two different inputs that 
generate a same value. One of the most common use of this 
function is in a data structure called hash table.[3] 
 One of the simplest hash functions is the modulo operation. 
Any data can be converted into a number (possibly very big), 
then this number can be divided by a constant and the 
remainder of that division is the result, or hash. Obviously the 
result is deterministic because the same string should result in 
the same modulo value. But, it will result in a lot of collisions 
since the output range is very small. 

!  
Figure 2.1 A hash function collision. 

(Source: Wikimedia Commons) 

B. SHA256 Cryptographic Hash Function 

 The traditional hash function is simple but at the same time 
not widely used outside data structures because people want to 

have another property to enable it to be used in cryptography 
that is one-way computation.  
 One-way computation means it should be easy to compute 
the hash, but finding any input to the hash function (finding the 
reverse function) must be very difficult, or better impossible. 
This form of hash functions are called cryptographic hash 
functions. Such functions digest the bits of the input data in a 
very convoluted way to make the reversible computation 
impossible. The best known cryptographic hash functions are 
MD5, SHA1 and SHA2. The most common form of SHA2 and 
the one discussed in this paper is SHA256. Here is an example 
of the SHA256 algorithm in action:  

SHA256(”hello”)=2cf24dba5fb0a30e26e83b2a
c5b9e29e1b161e5c1fa7425e73043362938b9824 

The result is a 256-bit string shown here in the hexadecimal 
format. 
 Because there is no way (at least yet) of reversing the hash. 
The only way to get the correct input is to guess every possible 
input combination. In the case of SHA256 that would be, in 
average, two to the power of 256 guesses before one gets the 
correct input. This means, with the current speed of processors, 
it is virtually impossible to reverse a SHA256 hash value 
because it would take an impossibly long time to guess the 
correct input. 

 !  

Figure 2.2 Visualization of a cryptographic hash function. 

 Even more than traditional hash functions, cryptographic 
hash functions are supposed to be collision-free. This means 
that it should be impossible (or at least very, very hard) to find 
two different input that generates the same hash values.  
 The cryptographic reasoning behind this is very straight 
forward. Suppose you want to make a program that use a 
cryptographic hash function to verify a password. First, you 
should hash your chosen password and save the result in the 
program. Then, if someone wants to guess your password, the 
program don’t have to compare it to your password to check if 
they are the same. It just need to hash that person’s password 
and check if the result matches you password’s hash. This way, 
you don’t have to store your password in the program, you just 
need to store the hash. In fact, this is how Linux systems verify 
your password.  
 But, what if there are more than one input that can result in 
the same hash values. If that is the case, that means someone 
with a completely different password than yours can open your 
computer with a bit of luck. Of course you don’t want this, that 
is why cryptographic hash functions have to be collision free. 
With these very powerful properties, much more than classic 
encryption algorithms, cryptographic hash functions are the 
heart and soul of modern cryptography. 
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 If a hash value, represented in some form, is fed again into 
the hash function, a new hash is obtained. If this process is 
repeated and the results are combined into a sequence of 
hashes, one obtains what’s called a hashchain.[3] 

C. Hashchains 

 Hashchain is a sequence of homogeneous piece of data, or 
blocks, linked together by a hash function. This link is 
achieved by successively applying a cryptographic hash 
function to a piece of data and adding new data (blocks) in 
each hashing step. The first block of data is hashed and the 
resulting hash is combined with another block of data and then 
hashed again before combined with another block and hashed 
again. This process continues until all of the desired blocks of 
data is hashed. 

!  
Figure 2.3 A visualization of hashchain. 

(Source: Mazonka. Oleg. (2016). “Blockchain: Simple Explanation”) 

 A hashchain has a very interesting and important property. 
That is no data in any blocks can be modified without affecting 
the integrity of the subsequent blocks. For example, if the 
payload of the first block is changed, then the hash of the 
second block will be changed as well, and hence the hash of 
the third, and so on. This means that no one can change the 
data in any blocks without changing the whole hashchain 
therefore making it invalid. This also means that in order to 
add a new block to the hashchain one needs to have the hash of 
the previous blocks. 
 This property, combined with public key cryptography will 
become the basis of a single blockchain. 

C. Public Key Cryptography 

 Public key cryptography works by using pairs of keys: public 
keys and private keys. A public key of an individual may be 
stored publicly and can be seen by anyone. Whereby the 
private key must be stored privately and should not be revealed 
to anyone besides the owner. These keys accomplishes two 
functions: authentication, which is when the public key is used 
to verify an encrypted messeage that it is sent by the holder of 
the paired private key, and encryption, whereby only the holder 
of the paired private key can decrypt the message encrypted 
with the public key. 
 The basic idea of public key encryption system is similar to 
that is of a hash function which is one way computation. In a 
public key encryption system, any person can encrypt a 
message using the public key of the receiver, but such a 
message can be decrypted only with the receiver's private key. 
For this to work it must be computationally easy for a user to 
generate a public and private key-pair to be used for encryption 
and decryption. The strength of a public key cryptography 
system relies on the degree of difficulty (computational work 
needed) for a properly generated private key to be determined 
from its corresponding public key. It has to be very difficult, or 
better impossible, to get the paired private key from a public 

key. If this degree of difficulty is achieved, security then 
depends only on keeping the private key private, and the public 
key may be published without compromising security.[4] 
 Let’s say there are two person trying to exchange messages 
privately: Alice and Bob. They both have their own public and 
private keys. Each person keeps their private key to their own 
and put the public key public for anyone to see. If Alice wants 
to send Bob a private message m, Alice first have to encrypt the 
message using her private key resulting in EncB(m) (the 
subscript B denotes that it is encrypted using Bob’s public key 
which is available to Alice) and send it to Bob. Then Bob 
should be able to decrypt it using the paired private key that is 
used to encrypt the message, that is his private key. So 
DecB(m) should produce the original message m. Now, let’s 
say Bob wants to reply to Alice with another message m’. First 
he needs to encrypt the message using Alice’s public key 
(EncA(m’)) then sends the message. But unknown to Bob 
and Alice, there is another person (Charles) tapping their 
communication and stealing the message. Now Charles wants 
to encrypt and read the content of the message. Unfortunately 
for him, because he only knows the public key of Alice and 
Bob, there is no way he can encrypt the message because that 
will require him to have the paired public key that is used to 
encrypt the message which is Alice’s private key. As you can 
see, the communication is kept private. 

!  
Figure 2.4 A diagram showing the flow of encryption in a public key 

cryptography. 
(Source: Wikimedia Commons) 

 There are two main scenarios where this system works. The 
first is when one party wants to send a secure message to 
another (just like outlined above). The only vulnerability of 
this method (apart from the theoretical one by cracking the 
math) is knowing and trusting the public key in the first place. 
To attack this problem a whole system of hierarchical public 
keys must exists. For example, the internet addresses this with 
the https protocol.[4] 
 The second scenario is quite opposite to the first. Given 
some data, Alice encrypts it using its private key (or encrypts 
only hash from the original data) and then publishes both data: 
the original and encrypted. Anyone knowing the public key can 
verify that encrypted data is actually computed using the 
private key that is paired with the public key used for decryp- 
tion. This verification works as a validation that Alice actually 
did that. That process is called digital signing and the 
encrypted part is called digital signature.[4] 
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III.   BLOCKCHAIN AND DIGITAL SIGNATURES 

 After in previous sections explain the basic concepts that 
ultimately makes the trustless transaction system possible, this 
section will further explain in detail how the SHA256 hashing 
algorith in particular acts as the key in enabling the system of 
trustless transaction. The the first key use of SHA256 is in 
making digital signatures in a blockchain. But before that we 
need to understand what a blockchain is and why digital 
signatures are at all required. 

A. Blockchain 

 Basically, a blockchain is a ledger that keeps track of 
transactions. It does so by grouping transaction entries into 
many blocks that chains together to create a complete ledger. 
Transactions grouped into blocks for a reason, that is to enable 
blockchain to be a distributed system. We will discuss that in 
the next chapter, so now we will focus on how a single block 
inside a blockchain works.  
 Inside each block of a blockchain there is a hashchain 
containing all the transaction entries of that particular block. 
Therefore, you can think of a blockchain as a hashchain of a 
hashchain. The transaction entries are structured using a 
hashchain because of it’s property that has been explained 
earlier. That is, no one can change the contents of any 
transaction entries without changing the whole hashchain, 
therefore making it incompatible with the rest of the system. 
The hashchain used here is a special form called binary-
hashchain or Merkle tree. 

!
Figure 3.1 A Merkle tree with four data blocks. 

(Source: Wikimedia Commons) 

 The top hash of the Merkle tree is called the combined hash. 
This combined hash is placed in the header of every block in 
the blockchain along with a time stamp and a proof-of-work 
which we will get to in the next section. 
 Each transaction recorded consist of a payee and a paid 
party. In order to act as a confirmation from the payee, each 
transaction entries must have somekind of a signature from the 
payee to verify it’s autheticity. This is where digital signatures 
is used. 

B. Generating Digital Signatures Using SHA256 

 Let’s say Alice wants to pay Bob some money and record it 
in the blockchain. In order to make sure that Alice really did  
pay Bob (not that Bob made it up), Alice must put somekind of  
a signature in the record. In the real world, this may her 

handwritten signature or her biometrics data. But in this digital 
world, there is actually a stronger signature. 
 Just as explained before, public key cryptography can be 
used to create a digital signature. So, this is what Alice should 
use. In this case of a blockchain, Alice should sign the 
transaction by hashing the transaction data with her private key 
using the SHA256 algorithm. The result will be a 256-bit 
signature that is unique to this combination of transaction data 
and Alice’s private key.  

!  

Figure 3.2 Digital signatures in trustless transactions. 

 Anyone looking to validate this transaction can easily use 
Alice’s public key to confirm that it is indeed Alice that signed 
that transaction. This can also be used to keep the integrity of 
the transaction record since a signle alteration in the 
transaction will create a completely different signature. 
 This way everyone can be sure that each transaction entries 
added to the blockchain is indeed done by the transacting 
parties and the content’s integrity is preserved. 
 Another way to think about this is by visualizing the flow of 
values—in the case of cryptocurrencies, a coin—in the system. 
In the original Bitcoin paper[1], the author explains that we can 
define an electronic coin as a chain of digital signatures. Each 
owner transfers the coin to the next by digitally signing a hash 
of the previous transaction and the public key of the next 
owner and adding these to the end of the coin. A payee can 
verify the signatures to verify the chain of ownership.[1] 

!  
Figure 3.3 A representation of the flow of values as a chain of digital 

signatures. 
(Source: Nakamoto, Satoshi. “Bitcoin:  

A Peer-to-Peer Electronic Cash System”. 2008) 

IV.   DISTRIBUTED BLOCKCHAINS AND PROOF-OF-WORK 

 This section will explain another application of SHA256  
algorithm in enabling a trustless transaction system. This 
involves how the algorithm is used to enable a concept called 
proof-of-work and why it is needed to keep the integrity of a 
distributed blockchain system. 
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A. Distributed Blockchains 

 In a distributed blockchain system, there are many 
blockchains kept by each transacting parties or any group the 
transacting parties choose. In each occuring transaction, it’s 
record is added to a blockchain and should be broadcasted to 
all other blockchains in the system to ensure eveyone is on the 
same page.  
 But if there are two conflictiong transactions occuring in 
different blockchains being broadcasted, then how can we be 
sure which new block is to be added. And if there are blocks 
containing fraud transactions, how can we find it and keep in 
form propagating to other blockchains in the system.  
 This problem is addressed by choosong whichever block has 
the most computational work put into it. This way, it would 
require a very huge amount of computational work for 
fraudulent or conflicting blocks to stay relevant in the system. 
Of course, there also should be a way to determine how much 
computational work has been put into each blocks. The way to 
do that is to give each block a proof-of-work as a sign of 
computational work being done before being broadcasted. 

B. Generating a Proof-of-Work Using SHA256 

 The proof-of-work involves scanning for a value that when 
hashed, in this case with SHA-256, the hash begins with some 
number of zero bits. The average computational work required 
is exponential in the number of zero bits required and can be 
easily verified by executing a single hash. 
 One can implement the proof-of-work by finding some value 
that when hashed together with a block produces the required 
number of zero bits. This value is called the nonce and is stored 
in each block’s header. Once the CPU effort has been expended 
to make it satisfy the proof-of-work, the block cannot be 
changed without redoing the work. As later blocks are chained 
after it, the work to change the block would include redoing all 
the blocks after it. 

!  
Figure 4.1 The content of a block header in a blockchain.  

 The proof-of-work also solves the problem of determining 
representation in majority decision making. This is crusial to 
ensure the unifrmity of all of the blockchains in the system. If 
the majority were based on one-IP-address-one-vote, it could 
be subverted by anyone able to allocate many IPs. Proof-of-
work is essentially one-CPU-one-vote. The majority decision is 
represented by the longest chain, which has the greatest proof-
of-work effort invested in it. If a majority of CPU power is 
controlled by honest nodes, the honest chain will grow the 
fastest and outpace any competing chains. To modify a past 
block, an attacker would have to redo the proof-of-work of the 

block and all blocks after it and then catch up with and surpass 
the work of the honest nodes. It will require an impossibly 
large amount of computational work, therefore ensuring the 
integrity of the system. The next section will show that the 
probability of a slower attacker catching up diminishes 
exponentially as more and more blocks are added to the 
system.[1] 
 In practice, to compensate for increasing hardware speed and 
varying interest in running nodes over time, the difficulty to 
generate a proof-of-work is determined by a moving average 
targeting an average number of blocks per hour. If they're 
generated too fast, the difficulty increases and vice versa.[1] 

C. The Protocol 

Based on all the technologies explained in previous sections, 
protocols are set to enable the distributed blockchain system to 
work. These rules are needed to keep the integrity of the 
network intact therefore allowing a completely trustless 
transaction system. These rules are set in the original Bitcoin 
paper in 2008. The rules for each node of the distributed 
blockchain network (each blockchain) are as follows: 

1. New transactions are broadcast to all nodes. 
2. Each node collects new transactions into a block. 
3. Each node works on finding a difficult proof-of-work 

for its block. 
4. When a node finds a proof-of-work, it broadcasts the 

block to all nodes. 
5. Nodes accept the block only if all transactions in it are 

valid and not already spent. 
6. Nodes express their acceptance of the block by working 

on creating the next block in the chain, using the hash 
of the accepted block as the previous hash. 

 Nodes always consider the longest chain to be the correct 
one and will keep working on extending it. If two nodes 
broadcast different versions of the next block simultaneously, 
some nodes may receive one or the other first. In that case, 
they work on the first one they received, but save the other 
branch in case it becomes longer. The tie will be broken when 
the next proof-of-work is found and one branch becomes 
longer; the nodes that were working on the other branch will 
then switch to the longer one.[1] 
 New transaction broadcasts do not necessarily need to reach 
all nodes. As long as they reach many nodes, they will get into 
a block before long. Block broadcasts are also tolerant of 
dropped messages. If a node does not receive a block, it will 
request it when it receives the next block and realizes it missed 
one.[1] 

V.   SECURITY AND TRANSPARENCY 

A. Overview 

 The traditional centralized transaction systems achieve a 
level of security by liming access to the ledger whereby only a 
handful of people besides the owners have direct access to 
manipulate the transaction database. While transparency is 
achieved by revealing the trasaction data whenever an 
authoritative body requests it. A s you can see, a lot trust must 
be put in the mantainers of these centralized systems. 
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 While this system has been working quite reliably in the last 
feq hundred years, it is still far from perfect. A centralized 
system like this concentrates weak points in the system to only 
a handful of locations and thereby giving attackers fewer 
variables to cope with. 
 The distributed system, on the other hand, doesn’t require 
any centralized bodies to mantain the security of the system. A 
distributed system like the one explained in this paper can take 
care of the security of the system by itself. It is protected by the 
irreversabilty of the SHA256 hashing algorithm. In other 
words, it is protected by the principles of mathematics. 
 This way, you can see that in a distributed system powered 
by the security of the SHA256 algorithm, trust does not need to 
be put anywhere besides the principles of mathematics. Which 
is as secure as anything can be. 
 In terms of transparency, because the whole distributed 
ledger is publicly available to anyone, nothing can be hidden 
and every transaction is public. Regarding privacy, we can 
easily make the system to swap public keys regularly to keep 
the transacting parties’ identities safe. 
 Also worth mentioning is the significantly lower 
maintenance cost needed to run this distributed network 
because there is no need to build any rigorously secure 
database to store all the transactions like in the case of a 
centralized system. 

B. Calculations 

 The original Bitcoin paper from 2008 addressed any doubts 
regarding the security of the system against any fraudulent 
transactions. This security is achieved largely because the use 
of the SHA256 hashing algorithm that makes it impossibly 
hard to compromise the integrity of the system. The original 
paper calculates the security of the system as follows (with 
some edits): 
 Let’s consider the scenario of an attacker trying to generate 
an alternate (fraudulent) chain faster than the honest chain. 
Even if this is accomplished, it does not throw the system open 
to arbitrary changes, such as creating value out of thin air or 
taking money that never belonged to the attacker. Nodes are 
not going to accept an invalid transaction as payment, and 
honest nodes will never accept a block containing them. An 
attacker can only try to change one of his own transactions to 
take back money he recently spent.[1] 
 The probability of an attacker catching up from a given 
deficit is analogous to a Gambler's Ruin problem. Suppose a 
gambler with unlimited credit starts at a deficit and plays 
potentially an infinite number of trials to try to reach 
breakeven. We can calculate the probability he ever reaches 
breakeven, in the case of blockchains, that an attacker ever 
catches up with the honest chain, as follows[5]: 

p  = the probability an honest node finds the next block 
q  = the probability the attacker finds the next block 
qz  = probability the attacker will ever catch up    
   from z blocks behind 

!  

 Given our assumption that p > q, the probability of the 
attacker catching up drops exponentially as the number of 
blocks the attacker has to catch up with increases. With this 
huge disadvantage against the attacker, if he doesn't somehow 

have an also huge head start early on, his chances become 
vanishingly small as he falls further behind. As this head start 
is practically not possible because new blocks keep being 
broadcast to the system, the possibility of a fraud node 
catching up the rest of the system is virtually impossible.[1] 

VI.   SOCIAL AND ECONOMIC IMPLICATIONS 

 The trustless transation system powered by distributed 
blockchain technology has the power to completely rewrite the 
way societies carry on their economic and social functions. Its 
trustless nature, its security, its transparency, and its ability to 
let anyone register and transfer value and data and, allow us to 
use it to increase the efficiency and the efficacy of various 
economic and social institutions, both in the private and public 
sectors. Also, as explained in previous chapters, all of this is 
largely thanks to the irreversible propery of the SHA256 
hashing algorithm. 
 The power of this system goes to the advantage of both those 
who are directly benefitting from those institutions, and those 
who are not. This is made possible by its reduction of the costs 
and risks associated with those institutions, to its increase of 
scalability and inclusivity.[6] 
 Moreover, the trustless transaction system also opens the 
door to new ways of recording and owning a value such as 
keeping track of land ownership and many other things. This 
also makes possible many new institutions which in the legacy 
centralized system are made impractical by their high costs and 
risks. 
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