
Application of SHA256 Hashing Algorithm in
Blockchain-Based Trustless Transaction

Faza Fahleraz 13516095
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13516095@std.stei.itb.ac.id

 Abstract—Transactions of any kind has been the backbone of
our economy since the earliest civilizations. Therefore, it is only
fitting for us to find yet better ways to transact. In it’s early form,
transactions are made between parties solely based on trust in
each other. As time progressed, more and more values are at stake
in each transactions. In order to reduce risks, these trust between
parties are put on more centralized bodies such as banks and
governments. But since all the transactions data are stored in
centralized locations, this also presents a huge vulnerability of a
breach that may lead to large-scale fraud. With this situation in
mind, a new method of transaction is gaining popularity. This
method, called blockchain, differs from it’s predecessors in which
it does not require trust to be put anywhere besides mathematics.
This paper will discuss how a cryptographic hash function, called
SHA256, enables this new form of transaction.

 Keywords—cryptographic hash functions, SHA256 algorithm,
blockchain, trustless transaction.

I. INTRODUCTION

 A normal, centralized transaction requires the participating
parties to put trust in a bank, organization, or any other
centralized bodies to verify the transaction. These centralized
bodies also keeps track of all past transaction in some form of
a ledger. This system makes it easier for transacting parties to
be sure that their transaction is safe and recorded in the ledger
—hence, universally acknowledged. However, this situation
also makes it easier for anyone looking to hack into these
ledger because it’s all located in only a handful of centralized
locations.

 Figure 1.1 Two graphs comparing a visualization of centralized
systems (red) and distributed systems (blue).

 A trustless transaction, on the other hand, does not require
any centralized bodies to verify and record transactions in a

ledger. In order to achieve this, instead of having one
centralized ledger, a system should have many distributed
ledgers that are all the same and equally and universally
acknowledged. These ledgers can be kept by each transacting
parties or any groups the transacting parties choose. Every
transaction can be recorded in each one of these ledgers but
every ledgers in the system also have to record this transaction.
 The first problem is how to ensure the validiy of each entry
in the ledger without any centralized authority. This problem is
addressed by using a technology called blockchain. In a
blockchain, transaction entries are grouped into many blocks
that chains together to create a complete ledger—hence the
name blockchain. Each entries in a blockchain is given a
‘digital signature’ that ensures it’s validity. The underlying key
to making a digintal signature is by using a form of
cryptographic hash functions, in this case it is SHA256.
 The second problem is how to tell all other ledgers—in this
case blockchains—in the system if a new transaction has been
recorded in one of those ledgers. The system also has to keep
all of these blockchains the same and if there are any conflicts,
resolve them. A way to make this work is by using another
technology called distributed blockchains.
 In a distributed blockchain system, there are many
blockchains kept by each transacting parties or any group the
transacting parties choose. In each occuring transaction, it’s
record is added to a blockchain before being verified and
broadcast to all other blockchains in the system. This
verification process takes a very large amount of computational
power and acts as a ‘proof-of-work’. This ‘proof-of-work’ tells
other blockchains that it is safe to add this block to their
existing chain of blocks, therefore updating them and all
blockchains are kept the same.[1]
 As you can see, this ‘proof-of-work’ is the basis that keeps
the integrity of the system. Just like the ‘digital signature’
concept, the key that enables this is also the SHA256 hashing
algorithm. In this paper, we will discuss how such algorithm
makes this system of distributed blockchains works.
 As a side note, this system is already widely implemented in
the form of many cryptocurrencies. That is, currencies that
entirely rely it’s existence on a distributed blockchain. The first
and the most popular decentralized cryptocurrency is Bitcoin.
In the last five years alone, Bitcoin has grown it’s value by
over 79.000 percent to over 9.000 US dollars per one Bitcoin.
It’s creation was proposed in a 2008 paper titled ‘Bitcoin: A
Peer-to-Peer Electronic Cash System’ by an unnamed author
known as Satoshi Nakamoto. That paper was also first to
propose the idea of the distributed blockchain.[2]

Makalah IF2120 Matematika Diskrit — Sem. 1 Tahun 2017/2018

mailto:13516095@std.stei.itb.ac.id

Figure 1.2 The skyrocketing price of Bitcoin in the last five years.
(Source: screenshot from https://www.buybitcoinworldwide.com/price

at December 2nd 2017)

II. HASH, HASHCHAINS, AND PUBLIC KEY
CRYPTOGRAPHY

What lies in the heart of a blockchain-based trustless
transaction system is a cryptographic hash function called
SHA256. This section will explain what such functions are and
how they work.

A. Hash Functions

 Hash functions are methods to map data of arbitrary size into
data of predefined length, called hash or digest. Hash functions
has many properties that make them useful. The first is
determinism, that is, for a given input value it must always
generate the same hash value. The second is uniformity, that is,
a good hash function should map the expected inputs as evenly
as possible over its output range. That means every hash value
in the output range should be generated with roughly the same
probability. The reason for this is to minimize the collision
happening tho different input values—two different inputs that
generate a same value. One of the most common use of this
function is in a data structure called hash table.[3]
 One of the simplest hash functions is the modulo operation.
Any data can be converted into a number (possibly very big),
then this number can be divided by a constant and the
remainder of that division is the result, or hash. Obviously the
result is deterministic because the same string should result in
the same modulo value. But, it will result in a lot of collisions
since the output range is very small.

!
Figure 2.1 A hash function collision.

(Source: Wikimedia Commons)

B. SHA256 Cryptographic Hash Function

 The traditional hash function is simple but at the same time
not widely used outside data structures because people want to

have another property to enable it to be used in cryptography
that is one-way computation.
 One-way computation means it should be easy to compute
the hash, but finding any input to the hash function (finding the
reverse function) must be very difficult, or better impossible.
This form of hash functions are called cryptographic hash
functions. Such functions digest the bits of the input data in a
very convoluted way to make the reversible computation
impossible. The best known cryptographic hash functions are
MD5, SHA1 and SHA2. The most common form of SHA2 and
the one discussed in this paper is SHA256. Here is an example
of the SHA256 algorithm in action:

SHA256(”hello”)=2cf24dba5fb0a30e26e83b2a
c5b9e29e1b161e5c1fa7425e73043362938b9824

The result is a 256-bit string shown here in the hexadecimal
format.
 Because there is no way (at least yet) of reversing the hash.
The only way to get the correct input is to guess every possible
input combination. In the case of SHA256 that would be, in
average, two to the power of 256 guesses before one gets the
correct input. This means, with the current speed of processors,
it is virtually impossible to reverse a SHA256 hash value
because it would take an impossibly long time to guess the
correct input.

 !

Figure 2.2 Visualization of a cryptographic hash function.

 Even more than traditional hash functions, cryptographic
hash functions are supposed to be collision-free. This means
that it should be impossible (or at least very, very hard) to find
two different input that generates the same hash values.
 The cryptographic reasoning behind this is very straight
forward. Suppose you want to make a program that use a
cryptographic hash function to verify a password. First, you
should hash your chosen password and save the result in the
program. Then, if someone wants to guess your password, the
program don’t have to compare it to your password to check if
they are the same. It just need to hash that person’s password
and check if the result matches you password’s hash. This way,
you don’t have to store your password in the program, you just
need to store the hash. In fact, this is how Linux systems verify
your password.
 But, what if there are more than one input that can result in
the same hash values. If that is the case, that means someone
with a completely different password than yours can open your
computer with a bit of luck. Of course you don’t want this, that
is why cryptographic hash functions have to be collision free.
With these very powerful properties, much more than classic
encryption algorithms, cryptographic hash functions are the
heart and soul of modern cryptography.

Makalah IF2120 Matematika Diskrit — Sem. 1 Tahun 2017/2018

https://en.wikipedia.org/wiki/Probability

 If a hash value, represented in some form, is fed again into
the hash function, a new hash is obtained. If this process is
repeated and the results are combined into a sequence of
hashes, one obtains what’s called a hashchain.[3]

C. Hashchains

 Hashchain is a sequence of homogeneous piece of data, or
blocks, linked together by a hash function. This link is
achieved by successively applying a cryptographic hash
function to a piece of data and adding new data (blocks) in
each hashing step. The first block of data is hashed and the
resulting hash is combined with another block of data and then
hashed again before combined with another block and hashed
again. This process continues until all of the desired blocks of
data is hashed.

!
Figure 2.3 A visualization of hashchain.

(Source: Mazonka. Oleg. (2016). “Blockchain: Simple Explanation”)

 A hashchain has a very interesting and important property.
That is no data in any blocks can be modified without affecting
the integrity of the subsequent blocks. For example, if the
payload of the first block is changed, then the hash of the
second block will be changed as well, and hence the hash of
the third, and so on. This means that no one can change the
data in any blocks without changing the whole hashchain
therefore making it invalid. This also means that in order to
add a new block to the hashchain one needs to have the hash of
the previous blocks.
 This property, combined with public key cryptography will
become the basis of a single blockchain.

C. Public Key Cryptography

 Public key cryptography works by using pairs of keys: public
keys and private keys. A public key of an individual may be
stored publicly and can be seen by anyone. Whereby the
private key must be stored privately and should not be revealed
to anyone besides the owner. These keys accomplishes two
functions: authentication, which is when the public key is used
to verify an encrypted messeage that it is sent by the holder of
the paired private key, and encryption, whereby only the holder
of the paired private key can decrypt the message encrypted
with the public key.
 The basic idea of public key encryption system is similar to
that is of a hash function which is one way computation. In a
public key encryption system, any person can encrypt a
message using the public key of the receiver, but such a
message can be decrypted only with the receiver's private key.
For this to work it must be computationally easy for a user to
generate a public and private key-pair to be used for encryption
and decryption. The strength of a public key cryptography
system relies on the degree of difficulty (computational work
needed) for a properly generated private key to be determined
from its corresponding public key. It has to be very difficult, or
better impossible, to get the paired private key from a public

key. If this degree of difficulty is achieved, security then
depends only on keeping the private key private, and the public
key may be published without compromising security.[4]
 Let’s say there are two person trying to exchange messages
privately: Alice and Bob. They both have their own public and
private keys. Each person keeps their private key to their own
and put the public key public for anyone to see. If Alice wants
to send Bob a private message m, Alice first have to encrypt the
message using her private key resulting in EncB(m) (the
subscript B denotes that it is encrypted using Bob’s public key
which is available to Alice) and send it to Bob. Then Bob
should be able to decrypt it using the paired private key that is
used to encrypt the message, that is his private key. So
DecB(m) should produce the original message m. Now, let’s
say Bob wants to reply to Alice with another message m’. First
he needs to encrypt the message using Alice’s public key
(EncA(m’)) then sends the message. But unknown to Bob
and Alice, there is another person (Charles) tapping their
communication and stealing the message. Now Charles wants
to encrypt and read the content of the message. Unfortunately
for him, because he only knows the public key of Alice and
Bob, there is no way he can encrypt the message because that
will require him to have the paired public key that is used to
encrypt the message which is Alice’s private key. As you can
see, the communication is kept private.

!
Figure 2.4 A diagram showing the flow of encryption in a public key

cryptography.
(Source: Wikimedia Commons)

 There are two main scenarios where this system works. The
first is when one party wants to send a secure message to
another (just like outlined above). The only vulnerability of
this method (apart from the theoretical one by cracking the
math) is knowing and trusting the public key in the first place.
To attack this problem a whole system of hierarchical public
keys must exists. For example, the internet addresses this with
the https protocol.[4]
 The second scenario is quite opposite to the first. Given
some data, Alice encrypts it using its private key (or encrypts
only hash from the original data) and then publishes both data:
the original and encrypted. Anyone knowing the public key can
verify that encrypted data is actually computed using the
private key that is paired with the public key used for decryp-
tion. This verification works as a validation that Alice actually
did that. That process is called digital signing and the
encrypted part is called digital signature.[4]

Makalah IF2120 Matematika Diskrit — Sem. 1 Tahun 2017/2018

III. BLOCKCHAIN AND DIGITAL SIGNATURES

 After in previous sections explain the basic concepts that
ultimately makes the trustless transaction system possible, this
section will further explain in detail how the SHA256 hashing
algorith in particular acts as the key in enabling the system of
trustless transaction. The the first key use of SHA256 is in
making digital signatures in a blockchain. But before that we
need to understand what a blockchain is and why digital
signatures are at all required.

A. Blockchain

 Basically, a blockchain is a ledger that keeps track of
transactions. It does so by grouping transaction entries into
many blocks that chains together to create a complete ledger.
Transactions grouped into blocks for a reason, that is to enable
blockchain to be a distributed system. We will discuss that in
the next chapter, so now we will focus on how a single block
inside a blockchain works.
 Inside each block of a blockchain there is a hashchain
containing all the transaction entries of that particular block.
Therefore, you can think of a blockchain as a hashchain of a
hashchain. The transaction entries are structured using a
hashchain because of it’s property that has been explained
earlier. That is, no one can change the contents of any
transaction entries without changing the whole hashchain,
therefore making it incompatible with the rest of the system.
The hashchain used here is a special form called binary-
hashchain or Merkle tree.

!
Figure 3.1 A Merkle tree with four data blocks.

(Source: Wikimedia Commons)

 The top hash of the Merkle tree is called the combined hash.
This combined hash is placed in the header of every block in
the blockchain along with a time stamp and a proof-of-work
which we will get to in the next section.
 Each transaction recorded consist of a payee and a paid
party. In order to act as a confirmation from the payee, each
transaction entries must have somekind of a signature from the
payee to verify it’s autheticity. This is where digital signatures
is used.

B. Generating Digital Signatures Using SHA256

 Let’s say Alice wants to pay Bob some money and record it
in the blockchain. In order to make sure that Alice really did
pay Bob (not that Bob made it up), Alice must put somekind of
a signature in the record. In the real world, this may her

handwritten signature or her biometrics data. But in this digital
world, there is actually a stronger signature.
 Just as explained before, public key cryptography can be
used to create a digital signature. So, this is what Alice should
use. In this case of a blockchain, Alice should sign the
transaction by hashing the transaction data with her private key
using the SHA256 algorithm. The result will be a 256-bit
signature that is unique to this combination of transaction data
and Alice’s private key.

!

Figure 3.2 Digital signatures in trustless transactions.

 Anyone looking to validate this transaction can easily use
Alice’s public key to confirm that it is indeed Alice that signed
that transaction. This can also be used to keep the integrity of
the transaction record since a signle alteration in the
transaction will create a completely different signature.
 This way everyone can be sure that each transaction entries
added to the blockchain is indeed done by the transacting
parties and the content’s integrity is preserved.
 Another way to think about this is by visualizing the flow of
values—in the case of cryptocurrencies, a coin—in the system.
In the original Bitcoin paper[1], the author explains that we can
define an electronic coin as a chain of digital signatures. Each
owner transfers the coin to the next by digitally signing a hash
of the previous transaction and the public key of the next
owner and adding these to the end of the coin. A payee can
verify the signatures to verify the chain of ownership.[1]

!
Figure 3.3 A representation of the flow of values as a chain of digital

signatures.
(Source: Nakamoto, Satoshi. “Bitcoin:

A Peer-to-Peer Electronic Cash System”. 2008)

IV. DISTRIBUTED BLOCKCHAINS AND PROOF-OF-WORK

 This section will explain another application of SHA256
algorithm in enabling a trustless transaction system. This
involves how the algorithm is used to enable a concept called
proof-of-work and why it is needed to keep the integrity of a
distributed blockchain system.

Makalah IF2120 Matematika Diskrit — Sem. 1 Tahun 2017/2018

A. Distributed Blockchains

 In a distributed blockchain system, there are many
blockchains kept by each transacting parties or any group the
transacting parties choose. In each occuring transaction, it’s
record is added to a blockchain and should be broadcasted to
all other blockchains in the system to ensure eveyone is on the
same page.
 But if there are two conflictiong transactions occuring in
different blockchains being broadcasted, then how can we be
sure which new block is to be added. And if there are blocks
containing fraud transactions, how can we find it and keep in
form propagating to other blockchains in the system.
 This problem is addressed by choosong whichever block has
the most computational work put into it. This way, it would
require a very huge amount of computational work for
fraudulent or conflicting blocks to stay relevant in the system.
Of course, there also should be a way to determine how much
computational work has been put into each blocks. The way to
do that is to give each block a proof-of-work as a sign of
computational work being done before being broadcasted.

B. Generating a Proof-of-Work Using SHA256

 The proof-of-work involves scanning for a value that when
hashed, in this case with SHA-256, the hash begins with some
number of zero bits. The average computational work required
is exponential in the number of zero bits required and can be
easily verified by executing a single hash.
 One can implement the proof-of-work by finding some value
that when hashed together with a block produces the required
number of zero bits. This value is called the nonce and is stored
in each block’s header. Once the CPU effort has been expended
to make it satisfy the proof-of-work, the block cannot be
changed without redoing the work. As later blocks are chained
after it, the work to change the block would include redoing all
the blocks after it.

!
Figure 4.1 The content of a block header in a blockchain.

 The proof-of-work also solves the problem of determining
representation in majority decision making. This is crusial to
ensure the unifrmity of all of the blockchains in the system. If
the majority were based on one-IP-address-one-vote, it could
be subverted by anyone able to allocate many IPs. Proof-of-
work is essentially one-CPU-one-vote. The majority decision is
represented by the longest chain, which has the greatest proof-
of-work effort invested in it. If a majority of CPU power is
controlled by honest nodes, the honest chain will grow the
fastest and outpace any competing chains. To modify a past
block, an attacker would have to redo the proof-of-work of the

block and all blocks after it and then catch up with and surpass
the work of the honest nodes. It will require an impossibly
large amount of computational work, therefore ensuring the
integrity of the system. The next section will show that the
probability of a slower attacker catching up diminishes
exponentially as more and more blocks are added to the
system.[1]
 In practice, to compensate for increasing hardware speed and
varying interest in running nodes over time, the difficulty to
generate a proof-of-work is determined by a moving average
targeting an average number of blocks per hour. If they're
generated too fast, the difficulty increases and vice versa.[1]

C. The Protocol

Based on all the technologies explained in previous sections,
protocols are set to enable the distributed blockchain system to
work. These rules are needed to keep the integrity of the
network intact therefore allowing a completely trustless
transaction system. These rules are set in the original Bitcoin
paper in 2008. The rules for each node of the distributed
blockchain network (each blockchain) are as follows:

1. New transactions are broadcast to all nodes.
2. Each node collects new transactions into a block.
3. Each node works on finding a difficult proof-of-work

for its block.
4. When a node finds a proof-of-work, it broadcasts the

block to all nodes.
5. Nodes accept the block only if all transactions in it are

valid and not already spent.
6. Nodes express their acceptance of the block by working

on creating the next block in the chain, using the hash
of the accepted block as the previous hash.

 Nodes always consider the longest chain to be the correct
one and will keep working on extending it. If two nodes
broadcast different versions of the next block simultaneously,
some nodes may receive one or the other first. In that case,
they work on the first one they received, but save the other
branch in case it becomes longer. The tie will be broken when
the next proof-of-work is found and one branch becomes
longer; the nodes that were working on the other branch will
then switch to the longer one.[1]
 New transaction broadcasts do not necessarily need to reach
all nodes. As long as they reach many nodes, they will get into
a block before long. Block broadcasts are also tolerant of
dropped messages. If a node does not receive a block, it will
request it when it receives the next block and realizes it missed
one.[1]

V. SECURITY AND TRANSPARENCY

A. Overview

 The traditional centralized transaction systems achieve a
level of security by liming access to the ledger whereby only a
handful of people besides the owners have direct access to
manipulate the transaction database. While transparency is
achieved by revealing the trasaction data whenever an
authoritative body requests it. A s you can see, a lot trust must
be put in the mantainers of these centralized systems.

Makalah IF2120 Matematika Diskrit — Sem. 1 Tahun 2017/2018

 While this system has been working quite reliably in the last
feq hundred years, it is still far from perfect. A centralized
system like this concentrates weak points in the system to only
a handful of locations and thereby giving attackers fewer
variables to cope with.
 The distributed system, on the other hand, doesn’t require
any centralized bodies to mantain the security of the system. A
distributed system like the one explained in this paper can take
care of the security of the system by itself. It is protected by the
irreversabilty of the SHA256 hashing algorithm. In other
words, it is protected by the principles of mathematics.
 This way, you can see that in a distributed system powered
by the security of the SHA256 algorithm, trust does not need to
be put anywhere besides the principles of mathematics. Which
is as secure as anything can be.
 In terms of transparency, because the whole distributed
ledger is publicly available to anyone, nothing can be hidden
and every transaction is public. Regarding privacy, we can
easily make the system to swap public keys regularly to keep
the transacting parties’ identities safe.
 Also worth mentioning is the significantly lower
maintenance cost needed to run this distributed network
because there is no need to build any rigorously secure
database to store all the transactions like in the case of a
centralized system.

B. Calculations

 The original Bitcoin paper from 2008 addressed any doubts
regarding the security of the system against any fraudulent
transactions. This security is achieved largely because the use
of the SHA256 hashing algorithm that makes it impossibly
hard to compromise the integrity of the system. The original
paper calculates the security of the system as follows (with
some edits):
 Let’s consider the scenario of an attacker trying to generate
an alternate (fraudulent) chain faster than the honest chain.
Even if this is accomplished, it does not throw the system open
to arbitrary changes, such as creating value out of thin air or
taking money that never belonged to the attacker. Nodes are
not going to accept an invalid transaction as payment, and
honest nodes will never accept a block containing them. An
attacker can only try to change one of his own transactions to
take back money he recently spent.[1]
 The probability of an attacker catching up from a given
deficit is analogous to a Gambler's Ruin problem. Suppose a
gambler with unlimited credit starts at a deficit and plays
potentially an infinite number of trials to try to reach
breakeven. We can calculate the probability he ever reaches
breakeven, in the case of blockchains, that an attacker ever
catches up with the honest chain, as follows[5]:

p = the probability an honest node finds the next block
q = the probability the attacker finds the next block
qz = probability the attacker will ever catch up
 from z blocks behind

!

 Given our assumption that p > q, the probability of the
attacker catching up drops exponentially as the number of
blocks the attacker has to catch up with increases. With this
huge disadvantage against the attacker, if he doesn't somehow

have an also huge head start early on, his chances become
vanishingly small as he falls further behind. As this head start
is practically not possible because new blocks keep being
broadcast to the system, the possibility of a fraud node
catching up the rest of the system is virtually impossible.[1]

VI. SOCIAL AND ECONOMIC IMPLICATIONS

 The trustless transation system powered by distributed
blockchain technology has the power to completely rewrite the
way societies carry on their economic and social functions. Its
trustless nature, its security, its transparency, and its ability to
let anyone register and transfer value and data and, allow us to
use it to increase the efficiency and the efficacy of various
economic and social institutions, both in the private and public
sectors. Also, as explained in previous chapters, all of this is
largely thanks to the irreversible propery of the SHA256
hashing algorithm.
 The power of this system goes to the advantage of both those
who are directly benefitting from those institutions, and those
who are not. This is made possible by its reduction of the costs
and risks associated with those institutions, to its increase of
scalability and inclusivity.[6]
 Moreover, the trustless transaction system also opens the
door to new ways of recording and owning a value such as
keeping track of land ownership and many other things. This
also makes possible many new institutions which in the legacy
centralized system are made impractical by their high costs and
risks.

VII. ACKNOWLEDGMENT

 I would like to thank Mr. Dr. Rinaldi Munir, Ms. Harilili
M.Sc, and Mr. Dr. Judhi Santoso as the lecturers of this
amazing class and also giving me this chance to explore the
interesting applications of discrete math and learn new things
along the way. I would also like to thank my families and
friends to keep me motivated during this chaotic times. And I
would also thank Paradox Development Studios for developing
Europa Universalis 4 so that I can play that game to relieve my
nerves during the stresses I experienced while writing this
paper.

REFERENCES

[1] Nakamoto, Satoshi. Bitcoin: A Peer-to-Peer Electronic
Cash System. 2008.

[2] https://www.buybitcoinworldwide.com/price Retrieved
December 2nd 2017.

[3] Mazonka, Oleg. Blockchain: Simple Explanation, 2017.
[4] Stallings, William (1990-05-03). Cryptography and

Network Security: Principles and Practice. Prentice Hall.
p. 165. ISBN 9780138690175.

[5] W. Feller, An introduction to probability theory and its
applications. 1957.

[6] https://www.interlogica.it/en/insight/blockchain-socio-
economic-effects/ Retrieved December 3rd 2017.

qz = { 1 if p ≤ q
(q /p)z if p > q

Makalah IF2120 Matematika Diskrit — Sem. 1 Tahun 2017/2018

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

!
Faza Fahleraz 13516095

Makalah IF2120 Matematika Diskrit — Sem. 1 Tahun 2017/2018

