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Abstract—Task scheduling is commonplace for today’s 

problems especially in the computer science field, including the 
optimization of computer’s processing power to complete a certain 
task. In the search for optimal task scheduling, graph is often 
applied in many algorithms for such problem, and also to visualize 
the process of the task completion. This paper will explore the 
application of graph in task scheduling. 
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I.   INTRODUCTION 

Graph is a mathematical model which consists of vertices and 
edges that displays the connections between vertices by its 
edges. It is one of the most important and influential subject in 
Discrete Mathematics. As such, it has substantial usage and 
deviations in almost every field of study worldwide, especially 
in computer science and information technology. 

One of the application of graph in computer science is in task 
scheduling. Task scheduling is the means to create a model that 
maps certain task that should be completed with minimal time, 
that is, with the smallest steps possible. The objective is done by 
optimizing the CPU to use its multiprocessing capability such 
that no task is conflicting with each other when discrete tasks 
are processed parallel to each other. 

DAG (Directed Acyclic Graph) is a certain type of graph used 
for representing the task in task scheduling. The DAG is used to 
model the task needed to be completed in a certain order, with a 
possibility of dependencies among some tasks to another. Such 
dependencies require special care as a certain task needs to be 
completed before a dependent task could be processed. This is 
mainly the purpose of task scheduling.  

 
 

II. BASIC THEORY 

2.1. Graph 
2.1.1. Graph Definiton 

Acording to [1], a graph G = (V, E) consists of V, a 
nonempty set of vertices (or nodes) and E, a set of 
edges. Each edge has either one or two vertices 
associated with it, called its endpoints. An edge is said 
to connect its endpoints. 

As defined, a graph couldn’t contain a nonempty set 
of vertices, but could have an empty set of edges, which 
is called a nulled graph. 

 
Figure 1. A graph of 5 vertices and 6 edges 

 
2.1.2. Graph Terminology 

Some terminologies regarding to graph are used to 
describe the properties, types, overall structure of a 
graph, as well as its characteristics. 
1. Adjacent 

Two vertices of a graph are adjacent if and only if 
they are connected directly by an edge. 

2. Incident 
An edge is incident to a vertex if the vertex is 
connected by the edge. 

3. Isolated Vertex 
A vertex is isolated if and only if it doesn’t have 
any incident edges. 

4. Null graph 
A graph is a null graph if it contains an empty set 
of edges. 

5. Degree 
Degree of a vertex is the quantity of edges incident 
to the particular vertex. 

Figure 2. Vertex B has a degree of 2 
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6. Path 

A path with length n from a vertex v0 to a vertex 
vn in a graph G is a sequence v0, e1, v1, e2, …,vn-1, 
en, vn  such that e1 = (v0, v1), e2 = (v1, v2), …, en = 
(vn-1, vn). 

7. Circuit/Cycle 
A circuit/cycle is a path in a graph G which starts 
and ends in the same vertex v0.  

8. Connected Graph 
A graph is connected if there is a path from every 
vertex to every vertex excluding itself. 

9. Subgraph 
A graph G = (V, E) has a subgraph G1 = (V1, E1) if 
and only if V1 ⊆ V and E1 ⊆ E. A subgraph G1 is 
called spanning subgraph if V = V1. 

Figure 3. A subgraph of the graph in Figure 1 
 

10. Weighted Graph 
A weighted graph is a graph in which every edge 
has a respective weight. 

 

Figure 4. Weighted graph 
 

2.1.3. Types of Graph 
Graphs can be classified into many types based on 

their distinct properties, various numbers of its 
elements, or overall structures. 

Based on the edge’s characteristics, specifically the 
edge’s direction, graphs can be distinguished into two 
types: 
1. Non-Directed Graph 

A non-directed graph consists of edges that don’t 
have specified direction. The graphs in Figure 1, 
Figure 2, and Figure 3 are all non-directed graph. 

2. Directed Graph 
A directed graph has edges in which each edge has 
a specific direction. 

 
 

 
Figure 5. A directed graph 

 
Based on the edge’s types, graphs can also be grouped 

into three types: 
1. Simple Graph 

A simple graph is a graph without any loops or 
parallel edges. Figure 1 is an example of a simple 
graph. 

2. Multigraph 
A graph that has multiple edges connecting the 
same vertices is called a multigraph. 

3. Pseudograph 
Pseudograph is a graph which has loops or multiple 
edges connecting the same vertices. 

 

Figure 6. A multigraph (left) and a pseudograph with 
multiple edges in A-B, and a loop in vertex C (right) 

 
Some simple graphs can also be classified based on its 

unique characteristics. Such graphs are called specific 
graph. Some of the specific graphs are: 

1. Complete Graph 
Graphs in which each vertex is adjacent to every other 
vertex in the graph is called a complete graph. Such 
graphs are denoted by Kn, n representing the number of 
vertices. 

Figure 7. A complete graph K5 
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2. Regular Graph 

A regular graph is a graph in which every vertex has 
the same degree. A regular graph with n-degree for 
each vertex is called an n-regular graph. 

3. Cyclic Graph 
A cyclic graph is a graph that contains at least one 
cycle. 

 
2.2. Directed Acyclic Graph 

Directed Acyclic Graph (DAG) is a special type of 
graph in which every edge in the graph has a specific 
direction, and no cycles exist in the graph, hence acyclic. 
Every DAG has a topological sort form, in which for all 
vertices, each vertex v always appears earlier before every 
other vertex reachable from v. Consequently, in a DAG 
there could be vertices that are dependent on other 
vertices. Such dependencies are important pieces of 
information especially for DAG’s applications. 

 

Figure 8. Direct Acyclic Graph 
 

There are substantial applications for Directed 
Acyclic Graph, especially in the field of computer science. 
Some applications are in scheduling, data processing 
networks, structure modelling, genealogy and version 
history modelling, data compression, and more usage exist 
in other field of study in many variations of the DAG. 

 
2.3 Task Scheduling 

Task scheduling is the process of mapping the most 
efficient way of processing certain tasks until completion. 
The goal of task scheduling is to minimize the completion 
time for all the tasks, find an efficient execution of the tasks 
at hand, or maximize the throughput of the respective 
process. 

Task scheduling has many implementations in a diverse 
set of fields of studies. Logistical problems, job scheduling 
problems, etc. can be based on task scheduling, with the 
same intention of finding the most efficient task processing. 
In computer science, task scheduling is crucial in compilers, 
mapping the most efficient way of disassembling the 
program and cross-linking registers to memory, to reduce 
compiling time and program execution time. 

The task scheduling problem is modeled as a Direct 
Acyclic Graph (DAG). The vertices represent the tasks and 
their respective weight (the size of task computation), and 
the edges represent the dependency between two tasks. 

Multiprocessing capabilities in most of today’s 

computers make it essential in task scheduling. Thorough 
usage of parallelism could drastically increase time 
efficiency. However, the execution of some tasks may 
require the completion of other tasks (dependency). 
Therefore, the scheduling of dependent tasks needs to be 
considered such that the process will be optimized and the 
correctness of the output will be maintained. 

 
 
III.   IMPLEMENTATION OF DIRECT ACYCLIC GRAPH IN 

MULTIPROCESSOR TASK SCHEDULING 

In task scheduling, direct acyclic graph is almost always 
implemented as a model for the data of the tasks required to 
be processed, complete with their size of computation.  

 
Figure 9. Implementation of DAG in Task Scheduling 

 
Figure 9 shows an example of a task scheduling problem, 

presented in direct acyclic graph, with its vertices representing 
the tasks and their computational size, and its edges indicating 
the tasks’ dependencies on another. In task scheduling, 
indirect dependencies may occur and can be viewed in the 
DAG. Such example in Figure 9 is the indirect dependency of 
T3 and T7. An indirect dependency of a task is when a task v1 
depends on v2, and the task v2 depends on v3, then the task v1 
has indirect dependency on task v3.  

Indirect dependencies are considered redundant in task 
scheduling, because an indirect dependency can only be 
completed when the tasks of direct dependencies representing 
the indirect dependency in the task are processed. 
Accordingly, the DAG of a task scheduling is usually cleaned 
up before proceeding into scheduling the tasks, so that it will 
not confuse the algorithm. 

The output of a task scheduling is the model of assignments 
of the tasks in the processors, or the order of processing the 
tasks, so that the processors will have the instructions needed 
about which tasks should be done first, and whether if such 
tasks can be done in parallel. Note that the output can have 
many possibilities of combination with the same efficiency, 
not always a solution is absolute. Consequently, the goal is to 
acquire at least one possibility of solution to be implemented 
in processing the tasks. 

In order to solve the task scheduling problem, including the 
multiprocessing nature of processing the tasks, some 
algorithms have emerged which can handle the problem 
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effectively and produce outputs that are efficient in task 
scheduling. Logically, direct acyclic graphs are always 
implemented in applying these algorithms to visualize, find 
patterns, and even to implement such algorithms visually by 
hand. 

Below are some algorithms that are commonly used in 
solving the task scheduling problem with the implementation 
of the direct acyclic graphs. 
  

3.1. The Coffman-Graham Algorithm 
The Coffman-Graham algorithm is an algorithm used to 

solve multiprocessing task scheduling by arranging the 
tasks such that a task that is dependent on another task is 
assigned to later level, and each level doesn’t exceed the 
number of processors available. 

The Coffman-Graham algorithm assumes all tasks have 
the same amount of computational size. 

The steps of the Coffman-Graham algorithm are [4]: 
1. Represent the DAG by transitive reduction, that is, 

by cleaning up the graph of indirect dependencies 
so that only direct dependencies are represented. 
Transitive reduction is required to remove 
redundancies in the graph. The resulting direct 
acyclic graph may not be the same as the preceding 
graph. 

2. Order the tasks so that a dependent task is assigned 
after the task it depends on. Furthermore, to 
maximize the parallel capabilities, assignments of 
each of the dependencies should be spaced apart as 
much as possible, as if a task v1 is dependent on a 
task v2, they couldn’t be processed in parallel, as 
processing of v1 requires completion of v2. This 
leads to the idling of a processor, which reduces 
the efficiency of the scheduling. Altogether, 
topological ordering of the dependencies graph is 
required so that the starting tasks which doesn’t 
have any dependencies are processed first, and 
then progressively process the tasks that are 
dependent only on them recursively, until all of the 
tasks are ordered efficiently. 

3. Fill up available CPUs by assigning the tasks that 
have been ordered accordingly one by one until all 
available CPUs are used in the particular time. If 
in a particular time the task assigned has a 
dependency that is also assigned at the same 
round, the CPU has to be idled as the dependency 
has to be completed first before the dependent task 
could be processed. 

Note that the Coffman-Graham algorithm is optimal for 
W=2 number of processors. According to [5], for 2 
processors, the relative performance of Coffman-Graham 
schedules (the product from the Coffman-Graham 
algorithm) is bound to 4/3. However, for W larger or equal 
to 3 processors, a lower bound of the worst-case relative 
performance is 3 - [6/(W + l)], in which the smaller 
number, the more efficient the performance is. 
Consequently, the more the processors, the less efficient 
the Coffman-Graham schedules will be. 

Consider the DAG in Figure 9 to be processed with 2 
processors. Assume the tasks have the same amount of 
computational size. To achieve the optimal result in 
processing the tasks, the Coffman-Graham algorithm is 
used. 

 
Figure 10. Modified DAG with no computational size 

 
In the first step, transitive reduction is applied, 

removing all indirect dependencies of the tasks. Applying 
it to the DAG in Figure 10 results in a subset of the DAG. 

 

Figure 11. Step 1 of the Coffman-Graham algorithm 
 

Secondly, the tasks are ordered with topological 
ordering, and other requisites stated on the second step. 
The output of the second step is a list of ordered tasks to 
be processed. Note that a handful of possible combinations 
may appear. 
 

Table 1. One possible output of step 2 of the Coffman-Graham 
algorithm 

T1 T2 T4 T6 T3 T5 T7 

 
The instruction from the second step is then filled to the 

2 CPUs to be completed. This will be done in step 3 with 
representation known as the C-G schedules. 
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Table 2. C-G schedules of the tasks. Note that 2 processes 
are tasked simultaneously in multiprocessors 

T1 T4 T3 T7 

T2 T6 T5 idle 

 
 

From the C-G schedules above, it can be concluded that 
the tasks above require 4 unit-time for 2 processors. In all 
time, both CPUs are used except at the last processes 
where all the other tasks have been completed. This means 
that the algorithm was efficient for the example above in 2 
processors. 

 
3.2. Wave Front Method (WFM) 

Wave front method are determined according to the 
level of vertices in the DAG, in which the vertices in each 
wave front is independent from each other, and are all 
assigned to different processors.  

 

 
 

Figure 12. Example of WFM implementation in task 
scheduling. Notice that the tasks are processed in parallel for 

each level 
Source: https://parasol.tamu.edu/ 

 
3.3 Critical Path Merge (CPM) 

In critical path merge, a critical path in a DAG, which 
is the path from root to leaf with the most weight, is 
processed in the same processor, then the particular path is 
removed and the process is iterated for the rest of the DAG 
with different processors until all tasks are scheduled. 

 

 

 
Figure 13. Example of CPM implementation in task scheduling 

with 3 processors. 
Source: https://parasol.tamu.edu/ 

 
3.4. Heavy Edge Merge (HEM) 

Some DAG used for task scheduling may have weight 
for representing the communication cost for the 
dependency of the task. HEM can be used to schedule 
task based on these edges’ weights. HEM works 
iteratively by sorting the edges in non-increasing order. 
Every sorted group are assessed by one processor. After 
all are sorted, the makespan is calculated by merging the 
path that includes the endpoints of the graph. 

 

 
Figure 14. Example of HEM with 2 processors. 

Source: https://parasol.tamu.edu/ 
 
 

IV.   CONCLUSION 

Graphs have many applications and implementations 
across all fields of study, including in solving the task 
scheduling problem. For task scheduling, a special type of 
graph is used, which is the directed acyclic graphs (DAG). 
These graphs are useful for task scheduling as it represents the 
tasks required to be completed and the dependencies between 
each task. From the DAG, several types of algorithms can be 
used to find the most efficient procedure of scheduling the 
task, so that multiprocessor capabilities can be used in its full 
extent to minimize the total time consumed in finishing the 
task. All in all, DAG plays an important role in modelling the 
task scheduling problem, and in solving the problem with 
various algorithms available. 
 
 

V.   ACKNOWLEDGMENT 

The writer would like to thank God for without Him 
nothing could ever be achieved. The writer would also like to 
thank Mr. Rinaldi Munir as the coordinator of the Discrete 
Math lectures and initiator of the task, as well as Mrs. Harlili 
as Discrete Math’s lecturer. The writer thanks every author in 
which his or her works are referenced in the writer’s paper. 
Last but not least, the writer thanks his parents for continually 
supporting the writer’s journey in life. 
 
 

P1 

t1 t2 t3 t4 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018 
 

REFERENCES 
[1] Rosen, Kenneth H. Discrete Mathematics and Application to Computer 

Science 7th edition. New York: McGraw-Hill, 2012. 
[2] Bang-Jensen, Jørgen. "Acyclic Digraphs," Digraphs: Theory, Algorithms 

and Applications, Springer Monographs in Mathematics. Berlin: 
Springer-Verlag, 2008. 

[3] Munir, Rinaldi. Diktat Kuliah IF2120 Matematika Diskrit. Bandung: 
ITB, 2006. 

[4] Coffman, E. G., Jr; Graham R. L. “Optimal scheduling for two-processor 
systems,” Acta Informatica 1. Berlin: Springer-Verlag, 1972. 

[5] Hanen, C.; Munier, A. “Performance of Coffman-Graham schedules in the 
presence of unit communication delays,” Discrete Applied Mathematics. 
Paris: Laboratoire LIAFA: 1998.  

[6] Lehman, E.; Leighton, F. Thomson; Meyer, Albert R. Mathematics for 
Computer Science. Massachusetts: MIT OpenCourseWare, 2015. 

[7] Fidel, A.; Amato, N.; Rauchwerger L.; Adams, N. “Task scheduling.” 
Texas A&M University. 
https://parasol.tamu.edu/groups/amatogroup/research/scheduling/ 
accessed on 3 December 2017. 

 

PERNYATAAN 
Dengan ini saya menyatakan bahwa makalah yang saya tulis 

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan 
dari makalah orang lain, dan bukan plagiasi. 

 
Bandung, 3 Desember 2017    

 
Yusuf Rahmat Pratama - 13516062 


