
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Graph Application in Multiprocessor Task
Scheduling

Yusuf Rahmat Pratama, 13516062
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13516062@std.stei.itb.ac.id

Abstract—Task scheduling is commonplace for today’s

problems especially in the computer science field, including the
optimization of computer’s processing power to complete a certain
task. In the search for optimal task scheduling, graph is often
applied in many algorithms for such problem, and also to visualize
the process of the task completion. This paper will explore the
application of graph in task scheduling.

Keywords—graph, task scheduling, application

I. INTRODUCTION

Graph is a mathematical model which consists of vertices and
edges that displays the connections between vertices by its
edges. It is one of the most important and influential subject in
Discrete Mathematics. As such, it has substantial usage and
deviations in almost every field of study worldwide, especially
in computer science and information technology.

One of the application of graph in computer science is in task
scheduling. Task scheduling is the means to create a model that
maps certain task that should be completed with minimal time,
that is, with the smallest steps possible. The objective is done by
optimizing the CPU to use its multiprocessing capability such
that no task is conflicting with each other when discrete tasks
are processed parallel to each other.

DAG (Directed Acyclic Graph) is a certain type of graph used
for representing the task in task scheduling. The DAG is used to
model the task needed to be completed in a certain order, with a
possibility of dependencies among some tasks to another. Such
dependencies require special care as a certain task needs to be
completed before a dependent task could be processed. This is
mainly the purpose of task scheduling.

II. BASIC THEORY

2.1. Graph
2.1.1. Graph Definiton

Acording to [1], a graph G = (V, E) consists of V, a
nonempty set of vertices (or nodes) and E, a set of
edges. Each edge has either one or two vertices
associated with it, called its endpoints. An edge is said
to connect its endpoints.

As defined, a graph couldn’t contain a nonempty set
of vertices, but could have an empty set of edges, which
is called a nulled graph.

Figure 1. A graph of 5 vertices and 6 edges

2.1.2. Graph Terminology

Some terminologies regarding to graph are used to
describe the properties, types, overall structure of a
graph, as well as its characteristics.
1. Adjacent

Two vertices of a graph are adjacent if and only if
they are connected directly by an edge.

2. Incident
An edge is incident to a vertex if the vertex is
connected by the edge.

3. Isolated Vertex
A vertex is isolated if and only if it doesn’t have
any incident edges.

4. Null graph
A graph is a null graph if it contains an empty set
of edges.

5. Degree
Degree of a vertex is the quantity of edges incident
to the particular vertex.

Figure 2. Vertex B has a degree of 2

A
A

B
A

E
A

D
A

C
A

A
A

B
A

C
A

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

6. Path

A path with length n from a vertex v0 to a vertex
vn in a graph G is a sequence v0, e1, v1, e2, …,vn-1,
en, vn such that e1 = (v0, v1), e2 = (v1, v2), …, en =
(vn-1, vn).

7. Circuit/Cycle
A circuit/cycle is a path in a graph G which starts
and ends in the same vertex v0.

8. Connected Graph
A graph is connected if there is a path from every
vertex to every vertex excluding itself.

9. Subgraph
A graph G = (V, E) has a subgraph G1 = (V1, E1) if
and only if V1 ⊆ V and E1 ⊆ E. A subgraph G1 is
called spanning subgraph if V = V1.

Figure 3. A subgraph of the graph in Figure 1

10. Weighted Graph
A weighted graph is a graph in which every edge
has a respective weight.

Figure 4. Weighted graph

2.1.3. Types of Graph
Graphs can be classified into many types based on

their distinct properties, various numbers of its
elements, or overall structures.

Based on the edge’s characteristics, specifically the
edge’s direction, graphs can be distinguished into two
types:
1. Non-Directed Graph

A non-directed graph consists of edges that don’t
have specified direction. The graphs in Figure 1,
Figure 2, and Figure 3 are all non-directed graph.

2. Directed Graph
A directed graph has edges in which each edge has
a specific direction.

Figure 5. A directed graph

Based on the edge’s types, graphs can also be grouped

into three types:
1. Simple Graph

A simple graph is a graph without any loops or
parallel edges. Figure 1 is an example of a simple
graph.

2. Multigraph
A graph that has multiple edges connecting the
same vertices is called a multigraph.

3. Pseudograph
Pseudograph is a graph which has loops or multiple
edges connecting the same vertices.

Figure 6. A multigraph (left) and a pseudograph with
multiple edges in A-B, and a loop in vertex C (right)

Some simple graphs can also be classified based on its

unique characteristics. Such graphs are called specific
graph. Some of the specific graphs are:

1. Complete Graph
Graphs in which each vertex is adjacent to every other
vertex in the graph is called a complete graph. Such
graphs are denoted by Kn, n representing the number of
vertices.

Figure 7. A complete graph K5

A
A

E
A

D
A

B
A

C
A

A
A

A
A

B
A

C
A

A
A

B
A

C
A

A
A

B
A

C
A

7

A
A

B
A

C
A

D
A

E
A

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

2. Regular Graph

A regular graph is a graph in which every vertex has
the same degree. A regular graph with n-degree for
each vertex is called an n-regular graph.

3. Cyclic Graph
A cyclic graph is a graph that contains at least one
cycle.

2.2. Directed Acyclic Graph

Directed Acyclic Graph (DAG) is a special type of
graph in which every edge in the graph has a specific
direction, and no cycles exist in the graph, hence acyclic.
Every DAG has a topological sort form, in which for all
vertices, each vertex v always appears earlier before every
other vertex reachable from v. Consequently, in a DAG
there could be vertices that are dependent on other
vertices. Such dependencies are important pieces of
information especially for DAG’s applications.

Figure 8. Direct Acyclic Graph

There are substantial applications for Directed
Acyclic Graph, especially in the field of computer science.
Some applications are in scheduling, data processing
networks, structure modelling, genealogy and version
history modelling, data compression, and more usage exist
in other field of study in many variations of the DAG.

2.3 Task Scheduling

Task scheduling is the process of mapping the most
efficient way of processing certain tasks until completion.
The goal of task scheduling is to minimize the completion
time for all the tasks, find an efficient execution of the tasks
at hand, or maximize the throughput of the respective
process.

Task scheduling has many implementations in a diverse
set of fields of studies. Logistical problems, job scheduling
problems, etc. can be based on task scheduling, with the
same intention of finding the most efficient task processing.
In computer science, task scheduling is crucial in compilers,
mapping the most efficient way of disassembling the
program and cross-linking registers to memory, to reduce
compiling time and program execution time.

The task scheduling problem is modeled as a Direct
Acyclic Graph (DAG). The vertices represent the tasks and
their respective weight (the size of task computation), and
the edges represent the dependency between two tasks.

Multiprocessing capabilities in most of today’s

computers make it essential in task scheduling. Thorough
usage of parallelism could drastically increase time
efficiency. However, the execution of some tasks may
require the completion of other tasks (dependency).
Therefore, the scheduling of dependent tasks needs to be
considered such that the process will be optimized and the
correctness of the output will be maintained.

III. IMPLEMENTATION OF DIRECT ACYCLIC GRAPH IN

MULTIPROCESSOR TASK SCHEDULING

In task scheduling, direct acyclic graph is almost always
implemented as a model for the data of the tasks required to
be processed, complete with their size of computation.

Figure 9. Implementation of DAG in Task Scheduling

Figure 9 shows an example of a task scheduling problem,

presented in direct acyclic graph, with its vertices representing
the tasks and their computational size, and its edges indicating
the tasks’ dependencies on another. In task scheduling,
indirect dependencies may occur and can be viewed in the
DAG. Such example in Figure 9 is the indirect dependency of
T3 and T7. An indirect dependency of a task is when a task v1
depends on v2, and the task v2 depends on v3, then the task v1
has indirect dependency on task v3.

Indirect dependencies are considered redundant in task
scheduling, because an indirect dependency can only be
completed when the tasks of direct dependencies representing
the indirect dependency in the task are processed.
Accordingly, the DAG of a task scheduling is usually cleaned
up before proceeding into scheduling the tasks, so that it will
not confuse the algorithm.

The output of a task scheduling is the model of assignments
of the tasks in the processors, or the order of processing the
tasks, so that the processors will have the instructions needed
about which tasks should be done first, and whether if such
tasks can be done in parallel. Note that the output can have
many possibilities of combination with the same efficiency,
not always a solution is absolute. Consequently, the goal is to
acquire at least one possibility of solution to be implemented
in processing the tasks.

In order to solve the task scheduling problem, including the
multiprocessing nature of processing the tasks, some
algorithms have emerged which can handle the problem

A

B

C

D

E

T2 /5 T1 /3

T3 /2
T4 /1

T5 /2

T6 /3

T7 / 6

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

effectively and produce outputs that are efficient in task
scheduling. Logically, direct acyclic graphs are always
implemented in applying these algorithms to visualize, find
patterns, and even to implement such algorithms visually by
hand.

Below are some algorithms that are commonly used in
solving the task scheduling problem with the implementation
of the direct acyclic graphs.

3.1. The Coffman-Graham Algorithm
The Coffman-Graham algorithm is an algorithm used to

solve multiprocessing task scheduling by arranging the
tasks such that a task that is dependent on another task is
assigned to later level, and each level doesn’t exceed the
number of processors available.

The Coffman-Graham algorithm assumes all tasks have
the same amount of computational size.

The steps of the Coffman-Graham algorithm are [4]:
1. Represent the DAG by transitive reduction, that is,

by cleaning up the graph of indirect dependencies
so that only direct dependencies are represented.
Transitive reduction is required to remove
redundancies in the graph. The resulting direct
acyclic graph may not be the same as the preceding
graph.

2. Order the tasks so that a dependent task is assigned
after the task it depends on. Furthermore, to
maximize the parallel capabilities, assignments of
each of the dependencies should be spaced apart as
much as possible, as if a task v1 is dependent on a
task v2, they couldn’t be processed in parallel, as
processing of v1 requires completion of v2. This
leads to the idling of a processor, which reduces
the efficiency of the scheduling. Altogether,
topological ordering of the dependencies graph is
required so that the starting tasks which doesn’t
have any dependencies are processed first, and
then progressively process the tasks that are
dependent only on them recursively, until all of the
tasks are ordered efficiently.

3. Fill up available CPUs by assigning the tasks that
have been ordered accordingly one by one until all
available CPUs are used in the particular time. If
in a particular time the task assigned has a
dependency that is also assigned at the same
round, the CPU has to be idled as the dependency
has to be completed first before the dependent task
could be processed.

Note that the Coffman-Graham algorithm is optimal for
W=2 number of processors. According to [5], for 2
processors, the relative performance of Coffman-Graham
schedules (the product from the Coffman-Graham
algorithm) is bound to 4/3. However, for W larger or equal
to 3 processors, a lower bound of the worst-case relative
performance is 3 - [6/(W + l)], in which the smaller
number, the more efficient the performance is.
Consequently, the more the processors, the less efficient
the Coffman-Graham schedules will be.

Consider the DAG in Figure 9 to be processed with 2
processors. Assume the tasks have the same amount of
computational size. To achieve the optimal result in
processing the tasks, the Coffman-Graham algorithm is
used.

Figure 10. Modified DAG with no computational size

In the first step, transitive reduction is applied,

removing all indirect dependencies of the tasks. Applying
it to the DAG in Figure 10 results in a subset of the DAG.

Figure 11. Step 1 of the Coffman-Graham algorithm

Secondly, the tasks are ordered with topological
ordering, and other requisites stated on the second step.
The output of the second step is a list of ordered tasks to
be processed. Note that a handful of possible combinations
may appear.

Table 1. One possible output of step 2 of the Coffman-Graham
algorithm

T1 T2 T4 T6 T3 T5 T7

The instruction from the second step is then filled to the

2 CPUs to be completed. This will be done in step 3 with
representation known as the C-G schedules.

T2

T3
T4

T5

T6

T7

T1

T2

T3
T4

T5

T6

T1

T7

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

Table 2. C-G schedules of the tasks. Note that 2 processes
are tasked simultaneously in multiprocessors

T1 T4 T3 T7

T2 T6 T5 idle

From the C-G schedules above, it can be concluded that
the tasks above require 4 unit-time for 2 processors. In all
time, both CPUs are used except at the last processes
where all the other tasks have been completed. This means
that the algorithm was efficient for the example above in 2
processors.

3.2. Wave Front Method (WFM)

Wave front method are determined according to the
level of vertices in the DAG, in which the vertices in each
wave front is independent from each other, and are all
assigned to different processors.

Figure 12. Example of WFM implementation in task
scheduling. Notice that the tasks are processed in parallel for

each level
Source: https://parasol.tamu.edu/

3.3 Critical Path Merge (CPM)

In critical path merge, a critical path in a DAG, which
is the path from root to leaf with the most weight, is
processed in the same processor, then the particular path is
removed and the process is iterated for the rest of the DAG
with different processors until all tasks are scheduled.

Figure 13. Example of CPM implementation in task scheduling

with 3 processors.
Source: https://parasol.tamu.edu/

3.4. Heavy Edge Merge (HEM)

Some DAG used for task scheduling may have weight
for representing the communication cost for the
dependency of the task. HEM can be used to schedule
task based on these edges’ weights. HEM works
iteratively by sorting the edges in non-increasing order.
Every sorted group are assessed by one processor. After
all are sorted, the makespan is calculated by merging the
path that includes the endpoints of the graph.

Figure 14. Example of HEM with 2 processors.

Source: https://parasol.tamu.edu/

IV. CONCLUSION

Graphs have many applications and implementations
across all fields of study, including in solving the task
scheduling problem. For task scheduling, a special type of
graph is used, which is the directed acyclic graphs (DAG).
These graphs are useful for task scheduling as it represents the
tasks required to be completed and the dependencies between
each task. From the DAG, several types of algorithms can be
used to find the most efficient procedure of scheduling the
task, so that multiprocessor capabilities can be used in its full
extent to minimize the total time consumed in finishing the
task. All in all, DAG plays an important role in modelling the
task scheduling problem, and in solving the problem with
various algorithms available.

V. ACKNOWLEDGMENT

The writer would like to thank God for without Him
nothing could ever be achieved. The writer would also like to
thank Mr. Rinaldi Munir as the coordinator of the Discrete
Math lectures and initiator of the task, as well as Mrs. Harlili
as Discrete Math’s lecturer. The writer thanks every author in
which his or her works are referenced in the writer’s paper.
Last but not least, the writer thanks his parents for continually
supporting the writer’s journey in life.

P1

t1 t2 t3 t4

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2017/2018

REFERENCES
[1] Rosen, Kenneth H. Discrete Mathematics and Application to Computer

Science 7th edition. New York: McGraw-Hill, 2012.
[2] Bang-Jensen, Jørgen. "Acyclic Digraphs," Digraphs: Theory, Algorithms

and Applications, Springer Monographs in Mathematics. Berlin:
Springer-Verlag, 2008.

[3] Munir, Rinaldi. Diktat Kuliah IF2120 Matematika Diskrit. Bandung:
ITB, 2006.

[4] Coffman, E. G., Jr; Graham R. L. “Optimal scheduling for two-processor
systems,” Acta Informatica 1. Berlin: Springer-Verlag, 1972.

[5] Hanen, C.; Munier, A. “Performance of Coffman-Graham schedules in the
presence of unit communication delays,” Discrete Applied Mathematics.
Paris: Laboratoire LIAFA: 1998.

[6] Lehman, E.; Leighton, F. Thomson; Meyer, Albert R. Mathematics for
Computer Science. Massachusetts: MIT OpenCourseWare, 2015.

[7] Fidel, A.; Amato, N.; Rauchwerger L.; Adams, N. “Task scheduling.”
Texas A&M University.
https://parasol.tamu.edu/groups/amatogroup/research/scheduling/
accessed on 3 December 2017.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

Yusuf Rahmat Pratama - 13516062

