
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

 Dijkstra SSSP Algorithm: Foundation of the Genius

Google Maps

Dicky Novanto 135151341

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113515134@std.stei.itb.ac.id

Abstract—As the information technology in our world has

been improving greatly, people tend to use the technology

provided to them. One of the well-known technology is

Global Positioning System (GPS). GPS has been included in

many mobile applications, and one of them is the most

famous among the civilians, that is Google Maps. This

applications is very beneficial for knowing the rout of a trip

that is not familiar to the user. Google Maps, certainly, uses

graph as a tool that commonly used by computer scientists

and Dijkstra algorithm as a basic algorithm to determine the

shortest path –and probably the fastest path for users-

between a place to another place (Single-Source Shortest

Path or commonly known as SSSP). This paper will discuss

firstly about the basic theorem about graph and Dijkstra

SSSP algorithm, then the application of graph, Dijkstra

algorithm as a basic tool for Google Maps doing its features,

and also the modified Dijkstra algorithm to fasten the

process of pathfinding.

Keywords—Google Maps, Dijkstra SSSP algorithm,

shortest path, graph, source, destination.

I. INTRODUCTION

 Nowadays, many people are using Global Positioning

System (GPS) technology, for knowing the exact location

of their places and also some other places. But using only

GPS is not enough for fulfilling people’s needs as the

needs are continuously growing, for example, people need

to know a path, from a place to a certain destination that is

not familiar for them. The job cannot only be done using

GPS because GPS is only giving a location of a certain

place. Of course, knowing only the position of the users

and the position of the destination the users want to go is

not the answer. Therefore, there are many pathfinding

program that has been published and commonly used by

millions of users, and one of them is Google Maps.

Of course path that is desired is not the random path,

which is very annoyingly far for going to a certain

location, but the shortest path from a location to another

location, which is also hoped as a fastest route. Therefore,

there must be an algorithm for finding a shortest path to a

destination, and one of the famous algorithm is Dijkstra

SSSP (Single-Source Shortest Path) algorithm for

computing the shortest path from a single source to

another destinations. A detailed explanation about this

algorithm will be covered in the third chapter of this

paper.

II. BASIC THEOREM OF GRAPH

 [RIN06]Graph is a pair of sets (V, E) which consist of:

V = a non-empty set of vertices = {v1 , v2 , v3 , … , vn}

and

E = a set of edges connecting a pair of vertices = {e1 ,

e2 , e3 , … , en}

According to the edges’ orientation, graph can be

classified into undirected graph and directed graph. Here

will be defined directed graph as writer will be discussing

more about directed graph. Directed graph is a graph

containing edges that each of the edges has orientation

[RIN06]. As the edges has a direction from a vertex (v1) to

another vertex (v2), it forms an edge (v1, v2). v1 is called an

initial vertex and v2 is called a terminal vertex and it is

different from edge (v2, v1).

Figure 1: G4 is a directed graph without multiple edges,

and G5 is directed graph with multiple edges.

Source: Rinaldi Munir’s Graf (2015) Slide

Graph is also classified based on the existence of the

edges’ weight. Those are unweighted graph and weighted

graph. Unweighted graph is a graph with all identical

edges’ weight, hence, the weight of the edges in

unweighted graph is not written along with the edges. In

contrast, weighted graph is a graph that each edge can

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

have a different value or same value. The weight of each

edge is usually written along with each edges in drawing

the weighted graph.

Figure 2: (From left to right) Unweighted graph and

weighted graph

Source: http://www.slideshare.net/emersonferr/20-intro-

graphs accessed in December 6, 2016 at 11.37 p.m.

III. DIJKSTRA ALGORITHM

A. History and Algorithm explanation

Dijkstra SSSP Algorithm was invented by Edsger

Wybe Dijkstra in 1956 and he published it in 1959.

[RIN06]This algorithm is basically using greedy paradigm

as in each step, it takes a node that has a minimum weight

and has never been visited before.

As we are going to deal with map and its paths, then the

graph we are going to discuss is directed and weighted

graph.

The Dijkstra SSSP Algorithm is as follow:

1. Set a certain initial node and set the tentative

value of distance from an initial node to the other

nodes (including the initial node). Setting the

distance form initial state to itself as 0 and infinity

to the other nodes besides the initial node.

2. Set all of the node as unvisited node and the initial

node as a current node.

3. From current node, add the value of the current

node and the edge’s weight of all of its unvisited

neighbor node. For instance, if the value of the

current node is 4 (total of the shortest distance

from the initial node), and the weight of the edge

connecting the current node to the unvisited

neighbor is 6, then the value of its unvisited

neighbor is 10.

4. The sum of the addition is compared with the

tentative distance of the node and the tentative

distance of the node is replaced with the minimum

of the sum result and the tentative distance.

5. When finished considering all of its neighbor,

mark the current node as visited node. Visited

node will never be checked again.

6. If there are no unvisited node remaining or the

smallest tentative distance of the unvisited node is

infinity, which means that the unvisited node is

unreachable from the initial node, then the

algorithm has finished.

7. If the algorithm has not finished, continue the

algorithm by selecting an unvisited node with

smallest tentative distance then do the step 3 again

until the algorithm finishes.

B. Finding the shortest path of a certain graph

Here will be illustrated how the Dijkstra SSSP algorithm

works. Consider this directed and weighted graph:

Figure 3: Directed and weighted graph

Source: http://quiz.geeksforgeeks.org/algorithms/graph-

shortest-paths/ accessed in December 8, 2016 at 09.56

p.m.

Here node P is set as the initial node of the graph and

the shortest path to any node different from P (as distance

from P to P is automatically 0) will be found. Following

the steps of the Dijkstra SSSP algorithm, the first step is:

From
Node Q R S T U

P INF INF INF INF INF
Table 1: the first step of the Dijkstra SSSP algorithm

Edited using Microsoft Office Excel 2013

From the table, it can be inferred that from node P, the

tentative distance to the other nodes (Q, R, S, T, U) is

infinity.

From
Node Q R S T U

P INF INF INF INF INF

P 1 INF 6 7 INF
Table 2: The second step of the algorithm

The unvisited neighbor node is Q, S, and T, and the

weight of edge from P to Q is 1, from P to S is 6, and

from P to T is 7. The minimum of the 3 edges’ weight is 1

so node Q is chosen and marked as the visited node. Node

P as the initial node is marked as the visited node as well.

From
Node Q R S T U

P INF INF INF INF INF

P 1 INF 6 7 INF

Q 1 2 5 7 INF
Table 3: The third step of Dijkstra SSSP algorithm

relating to the graph

http://www.slideshare.net/emersonferr/20-intro-graphs
http://www.slideshare.net/emersonferr/20-intro-graphs
http://quiz.geeksforgeeks.org/algorithms/graph-shortest-paths/
http://quiz.geeksforgeeks.org/algorithms/graph-shortest-paths/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

From the table 3, we can see that the tentative distance

of R is 2 at the moment because it is the sum of the

current value of Q, that is 1, and the weight of edge from

node Q to node R is 1. Taking a look at the node S, it

shows that the tentative value of node S has reduced from

6 to 5. It is owing to the edge’s weight from node Q to S

is 4, hence the tentative value is 1+4 that is 5. The

minimum value of 5 and 6 (from the previous data) is 5,

therefore the tentative distance to node S is changed to 5.

The tentative value of T and U remains the same since

they are not reachable from node Q.

The minimum tentative distance of 2, 5, 7, and infinity is

surely 2, so node R is chosen as the next node and marked

as the visited node. Note that value 1 of the node Q is not

considered as node Q is a visited node.

After a thorough analysis in each node, we finally get

the shortest path from the initial node P to the other nodes,

as shown:

From
Node Q R S T U

P INF INF INF INF INF

P 1 INF 6 7 INF

Q 1 2 5 7 INF

R 1 2 4 7 3

U 1 2 4 7 3

S 1 2 4 7 3

T 1 2 4 7 3
Table 4: The final computation of the algorithm

The table shows that (especially the final row which is

marked yellow) the numbers represent the shortest path

from node P to others node, that is the shortest path from:

1. P to Q is 1

2. P to R is 2

3. P to S is 4

4. P to T is 7, and

5. P to U is 3

C. Complexity

Here will be explained the worst case time complexity

using big-Oh notation of the Dijkstra SSSP algorithm

applied in directed and weighted graph.

Assuming that the graph has V vertices and E edges. If

the program uses priority queues that is already

implemented in library of a certain programming

languages, e.g. C++, initially, all vertices are pushed into

the priority queue. The time complexity when it comes to

pop a certain vertex from the priority queue is O(log V)

using heap implementation. Then, the total time

complexity to pop all the vertices is O(V.log V).

Inside the algorithm, edges that are connected to a

certain vertex are also used as the computation of shortest

path to each node. When a function that handle the edges

operation called, there might be that a vertex is connected

to the edges is pushed into the priority queue to further be

processed again. Then calling process of the priority

queue again is O(log V) assuming that all the vertices is

pushed to the queue. If all the edges is process too, the

total time complexity of operation with edges is

O(E.logV). Therefore, the total time complexity of the

Dijkstra SSSP algorithm is O(V. log V + E.log V).

Now, time to apply this algorithm to a case, finding a

shortest path for users in Google Maps application, from a

place to another place with total displacement of 42 km.

Along the area from source (initial place) to a destination,

there exist shops, fuel station, cross road, etc as vertices

with total vertices V = 10.000.000 and the number of

streets is the edges and the total edges E = 500.000.

Substitute those numbers to the total time complexity and

we get O(242.000.751). Assume that a computer can

compute 108 operation in a second, hence the operation

requires ≈ 2,5 seconds to complete the operation. If the

displacement between two places is bigger, then the

bigger chance that V is getting bigger as well as E. Then

this algorithm will be considered as slow enough for a

huge-scale tasks.

But the reality is that Google Maps will do this task a lot

faster than the time above. From this fact, we can

conclude that Google Maps does not use a pure Dijkstra

SSSP algorithm, but the programmers of Google Maps

implemented “modified” Dijkstra SSSP algorithm, with a

lot faster time complexity than pure Dijkstra SSSP

algorithm, and the development of this algorithm will

further be discussed in the next chapter of this paper.

 IV. DEVELOPMENT OF DIJKSTRA SSSP ALGORITHM

Dijkstra Algorithm is quite naïve way of searching the

shortest path form an initial node to the other nodes.

Considering all of the vertex in the graph until all of the

vertex is computed is not well implemented in a large-

scale tasks, such as finding a shortest path to a destination

in a map, as it takes a long time to find the final answer

when the total number of vertices and edges is large

enough.

Figure 4: Pure Dijkstra algorithm: total area of

pathfinding.

Source:

http://theory.stanford.edu/~amitp/GameProgramming/ASt

arComparison.html accessed in December 9, 2016 at 9.59

a.m.

From this picture, it is obvious that this “naive”

algorithm searched all of the possible nodes from the

initial node to finally find the destination node (the initial

node is pink-marked grid and the destination is marked as

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

purple). Hence, such a modified Dijkstra SSSP algorithm

is needed to do the task well. Modified Dijkstra SSSP

algorithm uses heuristic function in order to know whether

vertex we are observing is potentially making the way to a

certain destination is farther or not. If the unvisited

neighbor node is potentially making path to the

destination farther, then this node will not be processed.

As a consequence, the process of going to the destination

node is going to be much faster. But this method has a

drawback, it is potentially not going to result the path that

has the minimum path from source to destination. Instead

of finding the shortest path from the initial node, this

modified algorithm focuses on finding the vertex that is

closest to the destination, which is hoped to be the closest

path as well. One of the algorithm that improvised the

Dijkstra Algorithm is A* (A star) algorithm.

Figure 5: A* algorithm: the way of pathfinding.

Source:

http://theory.stanford.edu/~amitp/GameProgramming/ASt

arComparison.html accessed in December 9, 2016 at 9.59

a.m.

From the picture above, we can see that the A*

algorithm uses heuristic functions as a tool and chooses

the path that is closest to the goal. With this algorithm, it

is guaranteed that will result a less time complexity than

the pure Dijkstra SSSP algorithm, but not guaranteed to

output the shortest path.

V. APPLICATION OF ALGORITHMS IN GOOGLE MAPS

Here will be shown how the pure Dijkstra SSSP

algorihm if it is implemented in Google Maps, then will

be compared if the application uses the heuristic

method.works in Google Maps.

Figure 6: Google Maps path result from Tubagus Ismail

V/11 to Bandung Institute of Technology with illustration

of pure Dijkstra Algorithm works on it (edited using Paint

application on Windows 7).

Screenshot was taken in December 9, 2016 at 12.10 a.m.

In the edited screenshot, orange arrow shows the

unvisited neighbor node that is going to be processed

through the algorithm. In the picture is shown only part of

the process that is observed if using the pure Dijkstra

Algorithm, but it shows that there are many nodes that is

observed in order of getting to the destination when the

destination is only apart 2.1 km from the source. It is

surely going to be worse if the distance from the source to

the destination is getting bigger as the number of vertices

and edges will getting large as well.

Figure 7: Google Maps result of pathfinding from the

source and destination as the figure 6, with the illustration

of using heuristic function.

Screenshot was taken in December 9, 2016 at 12.10 a.m.

The picture shows us that using the heuristic function, it

will directly go to the unvisited neighbor vertex that is

shortest to the destination. Firstly, the unvisited neighbor

node is checked, if the node is making the distance to the

destination farther, then it will not be processed further.

Compared to the figure 6, the red arrow in figure 7 is

minimized as heuristic function is implemented in the

pathfinding.

Figure 8: Google Maps path result from Bandung Institute

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

of Technology to McDonald’s Dago.

Screenshot was taken in December 9, 2016 at 10.31 a.m.

The path resulted is shown in the figure 8, when the best

way is passing the Tamansari street, then turn right to the

Siliwangi street, move straight forward, then turn left and

finally reach McDonald’s Dago. In fact, the path is

different compared to figure 7. It is because the weight of

edges (road) that is computed by the app is not only based

on the length of the street, but also the street crowd

intensity and Google Maps will find the fastest possible

route for users. Maybe the street crowd intensity in

Ir.H.Juanda is quite high so that it will be taking more

time to travel from the initial place to the destination than

choosing the path as figured in figure 8 and surely Google

Maps will not choose the path in like in figure 7.

Note that in Google Maps, there are colors in the path

showing the crowd intensity of each path, where blue is

the least crowd intensity, then followed with the higher

intensity shown by orange color, then red is showing that

the street is extremely crowded and there is traffic jam at

the path.

VI. CONCLUSION

Google Maps, as a pathfinding application, uses Dijkstra

SSSP algorithm as a foundation to find a shortest path

from an initial place to a certain destination. But using

pure Dijkstra SSSP algorithm only is not sufficient to find

the path with an extremely short amount of time as it will

be slow enough when the distance between source and

destination is getting bigger and bigger. Using modified

Dijkstra SSSP algorithm, Dijkstra Algorithm using

heuristic function is the answer as it is able to reduce the

time needed to the destination.

VII. ACKNOWLEDGMENT

Firstly, the author would thanks to God for the strength

that He has given to me so that the author has the power to

do the task wholeheartedly and also for the passion the

author has in computer science. Without His blessings,

this paper will not be finished well.

Secondly, the author gives thanks to Luqman Arifin

Siswanto as with his opinion on LINE comment after the

author randomly posted the title of this paper, it opened

the author’s mind and searching for another reference to

find another better algorithm in pathfinding than pure

Dijkstra algorithm.

Lastly, the author gives thanks to all of my friends that

accompany the author in doing this task and giving an

opinion about my analysis.

REFERENCES

[1] Munir, Rinaldi, Diktat Kuliah IF 2120 Matematika Diskrit.

Bandung: 2006, Penerbit Informatika.

[2] Munir, Rinaldi. Slide Perkuliahan IF 2120 Graf (2015).

[3] Pooja Singal, R.S.Chhillar, Dijkstra Shortest Path Algorithm

using Global Positioning System. International Journal of

Computer Application, 2014.

[4] http://techin.oureverydaylife.com/google-maps-work-gps-

18373.html, accessed in December 5, 2016 at 9.40 p.m.

[5]]http://everythingcomputerscience.com/algorithms/Dijkstras_Alg

orithm.html, accessed in December 7, 2016 at 2.02 a.m.

[6] http://theory.stanford.edu/~amitp/GameProgramming/AStarCom

parison.html, accessed in December 9, 2016 at 9.59 a.m.

DECLARATION

I hereby certify that this paper is my own writing,

neither a copy nor from another paper, and not an act of

plagiarism.

Bandung, December 9, 2016

Dicky Novanto 13515134

http://techin.oureverydaylife.com/google-maps-work-gps-18373.html
http://techin.oureverydaylife.com/google-maps-work-gps-18373.html
http://everythingcomputerscience.com/algorithms/Dijkstras_Algorithm.html
http://everythingcomputerscience.com/algorithms/Dijkstras_Algorithm.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

