
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

A. I. : Behavior Tree vs. Decision Tree

Kukuh Basuki Rahmat 13515025

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13515025@std.itb.ac.id

Abstract—One of the characteristic of human is ability to

reason and make decision. With decision making, a human

may decide which action to do and which path to take in any

situation. In designing artificial intelligence, it is the topmost

goal that we create a replication of human behavior with the

absolute likeness of a real human being. For that cause,

algorithm designers has adapted Decision Tree (one

application of discrete mathematics specifically ‘tree’

module) to create Behavior Tree. It is a sophisticated tree

algorithm dan can make decision and react based on various

condition and therefore able to execute complex behavior.

Keywords—Artificial Intelligence, Behavior Tree, Decision

Tree, Tree

I. INTRODUCTION

One application of Tree in discrete mathematics is

construction of Decision Tree. With decision tree, our

decision for provided condition may be efficient and

always involves thorough thinking. It is as if using an “if-

then” statement in program but with complex branching

so that the decision we take may always give out

consistent result given the same “input”.

While it is handy, it can only represent very simple AI.

A Decision Tree is evaluated from top to bottom, from the

root to the leaf once. Then, the tree execution is restarted

and it evaluates and reads new condition. The problem

arises when in one of the branches, both conditions are

true therefore creating conflicts.

With these problem arising, a new algorithm using the

tree structure is discovered and given the name Behavior

Tree. We can see that by the name it is very closely

related to artificial intelligence. Many game developers

have tried and succeeded in making complex AI with

these Behavior Tree using many kind of game engine such

as Unity Engine, Unreal Engine, and many more.

However, before delving deep into how these behavior

tree works, how is it better suited for AI than decision

tree, it is compulsory to talk about what is a ‘tree’

beforehand. Which we will talk in the next chapter

II. DISCRETE MATHEMATICS : TREE

Tree is a form of graph that doesn’t consist of any

direction. A Tree connect two vertices of a graph by

exactly one path. It needs to be connected, so that no

vertices gets left out without a path connecting to them. If

any graph structure contains a circuit or we can get back

to one vertice by following the path that it is connected to,

then it is not a tree. Or we can say that a tree is a graph

that is acyclic connected. A group of tree which is in

disjoint union may be called a forest.

Here, we will talk about the terms that is common in a

tree structure, but first see that figure 1 gives example of

tree.

Figure 1 - Examples of Trees

jeremykun.files.wordpress.com

As we can see it consists of vertexes and paths, all

connected and no cylic connected vertexes.

To understand more of the tree structure we need to

know the common terms that may be found in a tree that is

used or agreed by people that discovered the tree

structure.

Root

The node of origin of a tree. Usually the root is depicted

as a single node at the topmost of the tree. But it may be

depicted in the bottom of the tree too, as we can see in the

second picture in figure 1, the root is at the bottom of the

tree. Though whatever the case, there must only be one

root which is the “origin” of the tree.

Parent & Child

We cannot define a parent node without a child node. In

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

short, when a two node is connected, the node that is

closer to the root node is called the parent node and the

other node is called a child node. A parent may have more

than one child while a child can only have one parent. If

each parent node only have n child then the tree is called

an n-ary tree or a tree with n arity.

Branch

A branch is a part of the tree that connects a node with the

nodes directly below it (assuming the root is at the top)

nodes that have branch are called branch node. A n-ary

tree or a tree with arity of n may have n branch for each

node or not at all (leaf node).

Siblings

Siblings is a group of node that is connected by the same

parent node. It must not be connected for if it is connected

then a cycle is found in the tree and it is not a tree

anymore. It should be in the same level. More about levels

will be discussed below.

Descendant

A node can be called the descendant of other node only if

we can track the other node by recursively tracking the

parent of the parent. If the other node is found in the track,

we can say that the child node is the descendant of the

other node.

Ancestor

Similar like de descendant node, if we can track two node

recursively by referring to the child of the child and found

the specific node, we can say that the parent node is the

ancestor to the node.

Leaf

A leaf is a node that has no child at all. Usually at the

greatest level. In tree traversing algorithm, this node is

usually modified or evaluated the first. It is also called

external node or the outermost node.

Height

The height if the tree is the number of branch from the

root or origin node to the furthest leaf. It also represent

how many levels a tree may have.

Path

A path is the sequence of nodes along the branches of a

tree. For example a path from node A to B is the sequence

of branch that may connect node A to node B.

Subtree

A subtree represent the descendant of a node. We can cut

a subtree form a tree and produce a new tree that still

follows the rule of tree.

Visiting

Visiting means checking the value of a node when we

gains control of the node. In AI this could mean checking

values whether if enemy is present and other factors

depending on the relevant game. Further action is then

taken based on the values we check on visiting.

Traversing

Traversing means evaluating each and every node by

specific order. It is usually evaluated from the left most to

the rightmost and done recursively. To traverse means that

every node is visited in order.

Levels

In a tree a node is grouped horizontally and labelled levels

to the group. The root node is labelled level 0 and the

child of the root node is labelled as level one and onward.

Keys

A keys is the value represented in each node, sometimes

identical, a keys is based on which search operation is

carried out for a node.

Forest

A Forest is a group of tree that is not connected or

disjoint.

Below is figure 2 which explains some of the tree terms

we discussed in this chapters.

Figure 2 – Terms in a Tree

https://www.tutorialspoint.com

III. DECISION TREE VS. BEHAVIOR TREE

The most striking difference of behavior tree and

decision tree is how each of them is evaluated. These

evaluation may affect very big to how AI reacts to

situation.

AI Using Decision tree when not carefully created can

create confusion in program and therefore making the AI

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

somewhat sloppy. This confusion may be created if a

situation is conflicting each other.

A Decision Tree is evaluated from the root to leaf,

every frame or every n frame, the tree is refreshed and the

AI do the corresponding action. It is composed in nodes

that propose a question that can be answered by no, yes,

or maybe. The question then answered by the

corresponding branch that each answer for “yes”

condition, “maybe” condition, and “no” condition.

Therefore, 3 node must be branched from the question

node.

Figure 3 - Decision Tree Evaluation

gamedev.stackexchange.com

In figure 3 we can see that the node 0 is the question

node that must be answered by yes, no, and maybe. The

node 1, 2, and 3 is the nde that can only be answered with

yes/no or comparing value (i.e. greather than, less than).

While the node A, B, and C is the execution node. If the

condition in the above nodes all apply, we do the

instruction stored in the node A, B, or C.

A Decision Tree is evaluated from the root to leaf,

every frame or every n frame, the tree is refreshed and the

AI do the corresponding action. It is composed in nodes

that propose a question that can be answered by no, yes,

or maybe. The question then answered by the

corresponding branch that each answer for “yes”

condition, “maybe” condition, and “no” condition.

Therefore, 3 node must be branched from the question

node.

Evaluation in behavior tree is evaluated differently.

Behavior Tree does not reset every time an evaluation is

made like decision tree does. If the leaf node has been

evaluated, a behavior tree then traverse to the next sibling

nodes and do so until all child node is evaluated. If all

condition is met, then the behavior tree calls the

corresponding behavior best suited to interact with the

environment.

After a node has called a behavior to be executed, the

node is set to “running” and in the next reset the “running”

value is retained and the tree will know what state the

character was in.

Figure 4 - Behavior Tree Evaluation

gamedev.stackexchange.com

In order for sophisticated AI to be accomplished, the

child note in behavior tree must be ordered based in their

priority. In AI the priority is usually set to the

requirements of condition that state the AI to be “alive”

such as Health Point and find cover from enemy followed

by attack enemy or load gun.

Other than “alive” condition it can also be the big goal

of the game (AI for one character and AI for many

character chasing a goal or strategy AI is different) such

as destroying the home base of enemy. One example is

enemy home base is at low HP level simultaneously with

the character HP. The character would sacrifice to destroy

the enemy home base. The orderings of priority is crucial

to make the best AI possible.

One case of when behavior tree is more desirable then

decision tree is when a creature A is in low HP so it needs

to recover and return to home base. In the middle of the

way, creature A meets creature B which is the enemy and

creature B is at lower HP than creature A.

With decision tree, since usually vital value such as

health point is at the priority evaluation, creature A will

still be in low HP and in every tree refresh, creature A will

still be heading to home base.

With behavior tree however, the “low HP” behavior

will retain in the next tree refresh and after checking the

priority node it will still be true. After evaluating the

siblings or the less priority node, the tree will detect that

enemy is nearby and may be able to make other

2

B

A

1

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

evaluations such as if enemy HP is lower, attack enemy

using ranged attacks while running, else hide and take

another path to home base. With the conditions provided

creature A will attack creature B and scoring points while

still able to heal in home base. A more player-like

approach to creature behavior is able to be written.

More detailed discussion about behavior tree and how

to apply them will follow in the next chapter.

Figure 5 - Ball Control Behavior Tree

https://www.prezi.com, Remi Dubois

IV. BEHAVIOR TREE IN AI

A. Basics

By definition, a Behavior Tree is a tree of hierarchical

nodes that control flow of decision making of an AI entity.

The leaves are the actual commands that control actions

that may be executed by an AI entity. The branches are

utility nodes that control the AI walk down the tree to

reach the sequence of command best suited to the

situation

The tree can get complex with nodes calling other sub-

tree to perform particular behavior. We can start creating

the tree from the simplest behavior and growing to a very

complex and life-like behavior.

B. Traversal

As have been stated before, an efficient behavior tree

retains previous evaluation result to the next evaluation,

so that the command picked to execute may represent the

best possible action. This is also done to prepare if the

tree may get very deep which is evaluated every frame

may get the processor working heavy load.

C. Flow

A behavior tree is composed of many types of nodes

which all have the common core functionality which is to

return statuses. The common status return is success,

failure, and running. Success and Failure informs the

parent that the action in the node is successfully done or

not. While the running means that the operation is not yet

determined. After the next tree refresh, the value can be

changed depending on the situation.

D. Node Type

Node types in behavior tree consist of three types which

is Composite, Decorator, and Leaf.

A Composite node is a node that can have one or more

children. They process their children node by certain

traversing rules and the returns success or fail or running

to the parent. The most commonly used composite is the

sequence which evaluates each child in sequence,

returning failure if any children evaluation returns fail and

returning success if all children returns success.

A Decorator node can only have one child and

transform the return status of its child whether to

terminate child, repeat child, or many other uses

depending on the node in respect. A common used

example is the inverter which negates the return status of

the child node.

The leaf node is the most powerful node since it

contains the actions to be executed. This is also the node

at the highest level of the tree. The common example is

the walk leaf node. The walk node would make the

character walk to a specific location. The leaf node can be

very expressive when combined with composite and

decorator node. A leaf node may also call another

behavior tree passing the current tree data as a parameter

for the called behavior tree.

E. Composite Nodes

Sequence: A sequence node evaluate every child from

the determined order and inform the child return status to

the parent. Fail if any child fails, Success if all success,

and Running if not all child are finished evaluating

Selector: Selector is the “OR” version if sequence

“AND”. A selector node returns success if any child

success and returns fails if all child fails. A selector

provide us options that the character should try before

deciding that it is unable to be done.

Random: The random composite is just a sequence

composite or selector composite but evaluated in random

order to create more randomness in AI and

unpredictability, just like a living being would be.

F. Decorator Nodes

Inverter: Inverter nodes negates the leaf node

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

evaluation much like a “NOT” gate in logic gate. They are

used mostly in conditional test.

Succeeder: A suceeder node automatically return

success to the parent node. This node is useful in case

when processing a branch where failure is expected or

anticipated but the processing of a sequence of its siblings

is still desired. A Succeeder combined with an inverter

may create the decorator nodes Failer.

Repeater: A repeater decorator repeat its child node and

often used at the base of a tree. It is done so to make a

child run continuously. Another application is to execute

actions in its children a set number before returning result

to its parents.

Repeat Until Fail: The repeat until success decorator

repeat its child until the child encounters a failure status

return. The repeat until fail decorator then will return

success to its parent.

Not just the discussed decorator, we may create our

own definition of decorator to suit our needs of AI

creation.

Figure 6 - Simple Open Door Behavior Tree

www.gamasutra.com, Chris Simpson

V. CONCLUSION

Behavior Tree is a powerful and complex tool to

represent more human-like and life-like behavior.

However a complex algorithm may need thorough

thinking to create. Decision Tree on the other side is

simple and easy to think of, like the usual if-then. So

which tree is better used to create an AI depends on the

problem to solve. If we want to make complex Player

verses Player-like experience it is more suitable to use

complex behavior tree. If we just want to make simple AI

and more conservative on memory and processing

resource, a Decision Tree based AI would suffice just

fine.

REFERENCES

[1] Byte56 [Michael House]. “Decision Tree vs Behavior Tree” Stack

Exchange,gamedev.stackexchange.com/questions/51693/decision-

tree-vs-behavior-tree. Accessed 3 Dec. 2016. 23.37.

[2] Chris Simpson. “Behavior Trees for AI: How they

work” GAMASUTRA, 17 Sept. 2009,

gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_

trees_for_AI_How_they_work.php. Accessed 4 Dec. 2016. 24.03.

[3] “Data Structure and Algorithms - Tree” Tutorials Point,

https://www.tutorialspoint.com/data_structures_algorithms/tree_d

ata_structure.htm. Accessed 5 Dec. 2016. 18.51.

[4] Rémi Dubois. “AI – Decision Tree & Behavior Tree” Prezi,

https://prezi.com/ez06l7qeja6s/copy-of-ai-decision-tree-behaviour-

tree/. Accessed 5 Dec. 2016. 19.27.

[5] Jeremy. Kun. “Trees – A Primer”. Jeremy Kun.

https://jeremykun.com/2012/09/16/trees-a-primer/. Accessed 7

Dec 22.09.

[6] Maxim Likhachev. “Intelligence I: Basic Decision-Making

Mechanisms” Carnegie Mellon University,

http://www.cs.cmu.edu/~maxim/classes/CIS15466_Fall11/lectures

/intelligenceI_cis15466.pdf. Accessed 9 Dec. 12.21.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Desember 2016

Kukuh Basuki Rahmat 13515025

