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Abstract— Generally, in algebraic topology, Euler’s 

Formula states that for any shape or structure, there is 

an invariant called Euler characteristic x such that, no 

matter how the structure is bent, the equation 

xFEV   is always true. More specifically, it is 

known that Euler characteristic for connected planar 

graph is 2. There had been many proofs published to 

prove this formula. In this paper, inductive proof is going 

to be used to prove Euler’s formula. 
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I.   INTRODUCTION 

According to Oxford Dictionary, mathematics is 

the abstract science of number, quantity, and space 

either as abstract concepts (pure mathematics), or as 

applied to other disciplines such as physics and 

engineering (applied mathematics). Moreover, we 

can also found applications of mathematics in daily 

life. There are many branch of mathematics, but two 

of our concern in this paper are about mathematical 

induction and graph theory, also how inductive 

proof can be used to prove a theorem in graph 

theory. 

Matematical induction is one of a proof technique 

in discrete mathematics, typically used to establish a 

given statement that some properties are hold for all 

natural numbers. But not only natural numbers, 

mathematical induction can also be used to prove 

any statements in any well-ordered set, like integers, 

or any subset of natural numbers that is well-

ordered. 

Historically, many ancient mathematicians have 

used mathematical induction technique implicitly in 

their proofs. Application of inductive proof can be 

found in Euclid’s proof of infinite primes. This is 

one of the example that showed that mathematical 

induction not only can be used for natural numbers. 

In this case, it is used to prove a statement that works 

on prime numbers. 

Graph theory is a branch of mathematics which 

concern is about how networks can be translated into 

mathematical structure called graph and how to 

measure their properties. Graph theoty first 

originated from the paper “Seven Bridges of 

Konigsberg” by Leonhard Euler. In that paper, Euler 

model the bridges of Konigsberg into a graph and try 

to solve a problem where someone had to cross all 

the bridges exactly once and in a continuous 

sequence. The problem is later known as 

determining wether some graph is a Eulerian graph. 

 
Fig. 2 Graph representation of the Seven Bridges 

of Konigsberg problem 

bigthink.com 

 

Euler had published so many papers and theorems. 

One of the theorems called Euler’s formula concerns 

about the topological invariant called Euler 

characteristic possessed by any geometric structures 

regardless of how it is bent. In a field of graph 

theory, Euler’s formula states that the Euler 

characteristic for connected planar graph is 2. 

 

 



II.  MATHEMATICAL INDUCTION 

Mathematical induction is a method first known 

to prove propotitions related to natural numbers. 

Although it is already developed to work not only in 

natural numbers, but also in  any well-ordered set. 

With induction, we can prove that some propotition 

holds for all elements in the set with only small 

numbers of steps. There are many variants of 

inductive proof. The main principle of this method 

is that it works like a domino effect. 

 

 
Fig. 2 Illustration of mathematical induction 

using dominoes 

http://www.chuckgallagher.com/small-choices-

matter-the-domino-effect-in-choices/ 

 

There are two main steps in mathematical 

induction. They are base case and inductive case. 

Below are the base case and inductive case for 

simple mathematical induction. 

1. Base case 

As the first step to do inductive proof, we must 

solve for one base case. That is, we must prove 

that the propotitions we are about to prove holds 

for one basis. In a simplest form and most 

common case, the basis is 1, although the basis 

is not limited to 1. Formally said, prove that 𝑝(1) 

is true. 

2. Inductive case 

If the propotition doesn’t hold in the base case, 

we can jump straight to conclusion that the 

propotition is false. Otherwise, we may continue 

to the inductive case. First, assume that for some 

natural number 𝑘, then 𝑝(𝑘) is true. After that, 

prove that the propotition also holds for 𝑘 + 1. 

That is, prove that if 𝑝(𝑘) is true, then 𝑝(𝑘 + 1) 

is also true. 

  

With domino effect, two steps above are enough 

to prove that 𝑝(𝑛) is true for any natural number 𝑛. 

𝑝(𝑘 + 1) is true if 𝑝(𝑘) is true. Because 𝑝(1) is true, 

then 𝑝(2) is true. Then, because 𝑝(2) is true, then 

𝑝(3) is true, and so on. Now, we have proved that it 

is holds for any natural numbers. 

One of the most important variants of the 

mathematical induction is strong induction. There is 

only slight difference in assumption for inductive 

case in strong induction. If we only assume that 𝑝(𝑘) 

is true in simple induction, in strong induction we 

assume that the propotition is true for all 𝑖 ∈
{1, 2, … , 𝑘}. That is, 𝑝(1), 𝑝(2), … , 𝑝(𝑘) is true for 

some natural number 𝑘.  

As stated before, the basis for the base case is not 

limited to 1. We can use any basis 𝑛0 to start the 

mathematical induction. 

 

 

III.   GRAPH THEORY 

Graph is a simplified abstraction and 

representation of a network and its connectivity. 

Graph is a geometrical structure illustrated as a set 

of discrete objects denoted by points and lines. A 

point in a graph is called vertice or node, whereas 

any connection of any two points is called edge. 

There is a formal definition of graph, that is, graph 

is  an ordered pair of two sets, one is a set of vertex 

and the other is a set of edges. A graph 𝐺 = (𝑉, 𝐸) 

where 𝑉 is a non-empty set of vertex and 𝐸 is a set 

of edges (can be empty). 

There are already so many applications of graph 

in daily life, usually involves model of connections, 

or optimization. Graph is divided into many types, 

according to its properties. For example, there are 

simple and unsimple graph, directed and undirected 

graph, weighted graph and unweighted graph, etc. 

Our concern in this paper is about connected planar 

graph. 

Connected graph, is a graph that connected, a 

graph that have no isolated vertex. Isolated vertex is 

a vertice that have no edge incident with it. But not 

only isolated vertex, a graph is not a connected graph 

if it can be divided into two or more subgraphs that 

are disjoint. So, in a connected graph, we can go 

from any vertice 𝑣𝑖 to any vertice 𝑣𝑗. 

 
Fig. 3 Example of a planar graph 

www.ams.org/samplings  

 



A graph is planar if it can be embedded in the 

plane, or it can be drawn in a plane in some way such 

that no two edges are crossing each other. Note that 

if some graph in its geometric representation still 

have two crossing edges, it can’t be straightly 

concluded that the graph is not planar, because there 

are possibilities that if we draw the same graph in 

different geometric representation, we may get no 

two crossing edges. A planar graph that is drawn 

such that there are no two crossing edges is called 

plane graph. 

There is a theorem to check wether any given 

graph is a planar graph. The theorem called 

Kuratowski, due to its inventor Kazimierz 

Kuratowski. The theorem states that any given graph 

is a planar graph if and only if that graph had no 

subgraph isomorphic or homeomorphic to 𝐾5 and 

𝐾3,3. 

Two graphs is isomorphic if they are two identic 

graphs with different geometrical representation. 

Identic means that they have same number of vertex 

and edges and there exist a bijection each between 

the set of edges from the first graph and the set of 

edges from the second graph, also between the set of 

vertex from the first graph and the set of vertex from 

the second graph. 

There is a special form of graph called tree, that 

is, a graph that has no cycle. Tree is a connected 

graph, with special properties that for any two vertex 

𝑣𝑖 and 𝑣𝑗, there only exist one unique path from 𝑣𝑖 

to 𝑣𝑗 . 

 

 

IV.   EULER’S FORMULA 

In mathematics, specifically in algebraic 

topology, Euler’s formula is a formula that relates 

the number of vertex, the number of edges, and the 

number of faces of any convex polyhedra. Euler 

characteristic 𝑥 is defined as a topological invariants  

FEVx   

 
Fig. 4 Table of Euler characteristic for convex 

polyhedra 

storyofmathematics.com 

Where 𝑉, 𝐸, and 𝐹 respectively denotes the number 

of vertex, the number of edges, and the number or 

faces. The value of Euler characteristic is 2 for any 

convex polyhedra, but varies over any non convex 

polyhedra or other geometrical structure. Euler 

characteristic for Klein bottle and torus is 0, for 

tetrahemihexadron is 1, for cubohemioctahedron is  

-2, etc. 

It is known that every polyhedral has its 

equivalent planar graph representation. Thus, we can 

make some more specific formula for any planar 

graph. Euler’s formula for connected planar graph 

states that any connected planar graph has Euler 

characteristic 2. There are many proofs had 

published about this formula. One of the example is 

Cauchy’s proof, using stereographic projection to 

map a plane into two-dimentional sphere. This proof 

uses theorems from advanced mathematics. In this 

paper, we are going to prove Euler’s formula in 

connected planar graph using simpler method, by 

mathematical induction. 

 

 

V.   PROOF OF EULER’S FORMULA 

As stated before, there had been many approach 

trying to prove Euler’s formula. The results of 

Euler’s formula for connected planar graph are used 

to prove other result in algebraic topology. But this 

time, we are just going to prove the theorem for 

connected planar graph. 

Let 𝐺 = (𝑉, 𝐸) is a finite, connected planar graph 

drawn without any crossing edge. Let V, E, and F 

respectively denotes the number of vertex, the 

number of edges, and the number of faces (including 

the external face). Prove that the Euler 

characteristic for G is 2, that is 

 

2 FEV  

 

A. Induction on edges 
First, let the number of vertices of the graph 𝑉 

be some constant 𝑘, where 𝑘 is any natural 

number, 𝑘 ≥   1.  

 

1,,  kNkkV  

 

Because 𝑘 is finite and 𝐺 is a simple graph, 

then the finite property of 𝐺 is already fulfilled. 

Now, because the graph 𝐺 must be a connected 

graph, then the minimum number of edges 

needed is 𝑘 − 1. 

  

1 kE  

 

Now, as the first step of mathematical 

induction, we must first solve for the base case. 



Because we use induction on edges and the 

minimum number of edges is 𝑘 − 1, then the 

base case is 𝐸 = 𝑘 − 1. That is, 𝐺 is a tree. 

 

1. Base case 

If 𝐸 = 𝑘 − 1 and 𝑉 = 𝑘, then 𝐺 is a tree, that 

is, 𝐺 has no cycle. 

 
Fig. 5 Graph representation of tree 

quora.com 

 

As seen from the picture above, because tree 

has no cycle, thus the only face exists is the 

plane itself. Stated in other way 

 

1F  

Thus, 

 

21)1(  kkFEV  

 

That is, we already proved the formula for 

base case. 

 

2. Inductive case 

We are going to use simple mathematical 

induction in this proof. Because of that, we are 

only going to assume that for some 𝑛 ≥ 𝑘 − 1, 

𝑛 ∈ ℕ, then 𝐺 = (𝑉, 𝐸) where 𝑉 = 𝑘 and 𝐸 =
𝑛 is a finite, connected planar graph. Now, we 

are going to check the formula when 𝐸 = 𝑛 +
1. 

Because 𝑛 is finite, then it is clear that 𝑛 + 1 

is also finite. Because with 𝑛 edges, 𝐺 is a 

connected graph, then we only need to add 1 

edge anywhere and the graph is still connected. 

Last, if 𝑛 is a maximum number of edges 𝐺 can 

have to form a planar graph, then we must not 

check the graph of 𝑛 + 1 edges, so we can 

asumme directly that we can add 1 edge 

somewhere in a graph with 𝑛 edges to still form 

a planar graph. 

Because the new edge doesn’t intersecting 

any other edge, then the edge must be dividing 

some face into two spaces. The corollary of this 

is that the number of faces also adding up by 1. 

Concludedly, adding one edge to a graph make 

the number of faces also added up by 1, which 

leaves the value of 𝑉 − 𝐸 + 𝐹 invariant, as 

long as the condition is satisfied. 

As an addition, we already have some result 

in planar graph, also according to Leonhard 

Euler that for any planar graph there exists an 

inequality 

 

63  VE  

 

So that the number of edges can not march to 

infinity. And because the value of 𝑉 − 𝐸 + 𝐹 

is unchanged, we already proved that for all 

finite, connected planar graph 

 

2 FEV  

 

B. Induction on vertex 
Using induction on vertex, we don’t have to set 

neither the number of edges nor the number of 

faces constant. As usual, we have to solve the 

base case. In this case, because the induction is 

on the vertex, then the base case is when the 

number of vertex is 1, because 𝑉 can not be an 

empty set due to the definition of graph itself. 

 

1. Base case 

If 𝑉 = 1, then it is clear that 𝐺 is a null graph, 

that is, a graph with no edge. 

 

0E  

 

The graph 𝐺 is just consists of one vertice, so 

the faces is just the plane itself. Thus, 

 

1F  

 

If we put these numbers into the Euler’s 

formula, then 
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That is, we already proved the formula for 

base case. 

 

2. Inductive case 

Let 𝑉, 𝐸, and 𝐹 is such that the graph 𝐺 is a 

finite, connected planar graph. Assume that 

with 𝑉 = 𝑘 vertex, 𝑘 ∈ ℕ, 𝑘 ≥ 1, the Euler’s 

formula is satisfied. Similar to the previous 

proof by induction on edges, we are going to 

use simple mathematical induction.  

For the inductive case, consider a graph 

𝐺′ with 𝑉′ = 𝑘 + 1 vertex. Let the graph 𝐺′ is 

constructed by adding one vertice to a graph 𝐺 

with 𝑉 = 𝑘 vertex. By assumption, 𝐺 satisfies 

the Euler’s formula. 

Adding one vertice without adding any edge 



to a graph would make the new graph not a 

connected graph. Because 𝐺′ must be a 

connected grap, then after adding a vertice,we 

must also adding some edges to make the new 

graph connected. Because the number of vertex 

of 𝐺 is 𝑘, the number of new edges added to 

the graph can not exceed 𝑘. Stated in other 

words, if 𝑒 ∈ ℕ denotes the number of edges 

added to 𝐺 and incident to the new vertice. 

Then 

 

ke 1  

 

Adding one edge would not change the 

number of faces. Adding two edges would 

make a new cycle in the graph, thus make one 

new face out of the plane. Continuously, 

adding 𝑒 edges would make 𝑒 − 1 new faces. 

Thus, 

 

𝐸′ = 𝐸 + 𝑒 

𝐹′ = 𝐹 + 𝑒 − 1 

 
Inserting these numbers into the Euler’s 

formula, we would get 

 

𝑉′ − 𝐸′ + 𝐹′ 

= 𝑉 + 1 − (𝐸 + 𝑒) + 𝐹 + 𝑒 − 1 = 2 

 

Using previous assumption that 𝑉 − 𝐸 +
𝐹 = 2. Once again, we already proved that for 

all finite, connected planar graph 

 

2 FEV  

 
 

VI.   CONCLUSION 

Mathematical induction is a powerful tool in 

proofing technique. It also already being showed 

that induction can also be applied in graph, not only 

natural numbers. By looking for the simplest 

technique, we had already proved the famous 

Euler’s formula for connected planar graph. 
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