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Abstract—There are three commonly-used algorithms to 

calculate the determinant of a matrix: Laplace expansion, LU 

decomposition, and the Bareiss algorithm. In this paper, we 

first discuss the underlying mathematical principles behind 

the algorithms. We then realize the algorithms in pseudocode 

Finally, we analyze the complexity and nature of the 

algorithms and compare them after one another. 
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I.   INTRODUCTION 

In this paper, we describe three algorithms to find the 

determinant of a square matrix: Laplace expansion (also 

known as determinant expansion by minors), LU 

decomposition, and the Bareiss algorithm. 

The paper is organized as follows. Section II reviews the 

basic mathematical concepts for this paper, which includes 

determinants, elementary matrix operations, algorithm 

complexities, time complexities, and asymptotic time 

complexities. In Section III, the three methods are 

discussed in-depth mathematically, whereas in Section IV, 

the three methods, as well as subroutines necessary to 

implement them, are implemented in a language-agnostic 

pseudocode. In Section V, the methods implemented in 

Section V are analyzed regarding its asymptotic time 

complexity and other features before being compared to 

one another. Finally, Section VI concludes the paper while 

suggesting further improvements.  

 

Terminology and Notation 

Unless noted otherwise, all mentions of matrices in this 

paper are assumed to be square matrices. 

To describe iterations mathematically, the notation 𝑖 ∈
[𝑎. . 𝑏] is introduced. The notation is taken from the 

mathematical concept of number intervals, but instead of 

describing whether i is between a and b or not, it denotes 

that the iterator i starts from a and ends in b, incrementing 

i by 1 after each iteration. It is equivalent to the for syntax 

in programming languages, in which 𝑖 ∈ [𝑎. . 𝑏] is 

equivalent to for i = a to b. 

The pseudocode described in section III follows the 

syntax detailed in reference [5]. 

For convenience, two data types are defined here: 

infotype is either real or integer, depending on 

implementation, while matrix is an arbitrarily-sized 

array of array of infotype. 

 

 

II.  BASIC MATHEMATICAL CONCEPTS 

A. Determinant 

The determinant is a real number associated with every 

square matrix. The determinant of a square matrix A is 

commonly denoted as det A, det(A), or |A|. 

Singular matrices are matrices which determinant is 0. 

Unimodular matrices are matrices which determinant is 1. 

The determinant of a 1×1 matrix is the element itself. 

𝐴 = [𝑎]  ⇒  det(𝐴) = 𝑎 

The determinant of a 2×2 matrix is defined as the product 

of the elements on the main diagonal minus the product of 

the elements off the main diagonal. 

|
𝑎 𝑏
𝑐 𝑑

| = 𝑎𝑑 − 𝑏𝑐 

Finding the determinant of larger matrices will be 

discussed in later sections. 

Some basic properties of determinants are 

1. det(𝐼) = 1 

2. det(𝐴𝑇) = det (𝐴) 

3. det(𝐴−1) =  
1

det (𝐴)
 

4. For square matrices A and B of equal size, 

det(𝐴𝐵) = det(𝐴) × det(𝐵) 

5. The determinant of a triangular matrix is the product 

of the diagonal entries (pivots) d1, d2, …, dn. 

det(𝐴) = 𝑎1,1𝑎2,2 … 𝑎𝑛,𝑛 = ∏ 𝑎𝑖,𝑖

𝑛

𝑖=1

 

Determinants are useful for other mathematical subjects. 

For example, following Cramer’s rule, a matrix can be used 

to represent the coefficients of a system of linear equations, 

and the determinant can be used to solve the system of 

linear equations if and only if the matrix is nonsingular. 

Determinants are also used in determining the inverse of a 

matrix, where any matrix has a unique inverse if and only 

if the matrix is nonsingular. 

 

B. Elementary Matrix Operations 

Elementary matrix operations play important roles in 
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various matrix algebra applications, such as solving a 

system of linear equations using and finding the inverse of 

a matrix. 

There are three kinds of elementary matrix operations: 

1. Switch two rows (or columns). 

2. Multiply each element in a row (or column) by a 

non-zero number. 

3. Add or subtract a row (or column) by multiples of 

another row (or column). 

When these operations are performed on rows, they are 

called elementary row operations and, likewise, when they 

are performed on columns, they are called elementary 

column operations. 

Elementary matrix operations have the following effect 

on determinants. 

1. Exchanging two rows or columns from a matrix 

reverse the sign of its determinant from positive to 

negative and vice-versa. 

|
𝑎 𝑏
𝑐 𝑑

| = − |
𝑐 𝑑
𝑎 𝑏

| 

2. Multiplying one row or column of a matrix by t 

multiplies the determinant by t. 

|
𝑡𝑎 𝑡𝑏
𝑐 𝑑

| = |
𝑡𝑎 𝑏
𝑡𝑐 𝑑

| = 𝑡 |
𝑎 𝑏
𝑐 𝑑

| 

3. If two rows or two columns of a matrix are equal, or 

a row or column is the multiply of another row or 

column, its determinant is zero. 

|
𝑎 𝑏
𝑡𝑎 𝑡𝑏

| = 0 

4. If 𝑖 ≠ 𝑗, adding or subtracting t times row i from 

row j or vice-versa does not change the determinant. 

|
𝑎 𝑏

𝑐 − 𝑡𝑎 𝑑 − 𝑡𝑏
| = |

𝑎 𝑏
𝑐 𝑑

| 

5. If A has a row that is all zeros, then det(𝐴) = 0. 

|
𝑎 𝑏
0 0

| = 0 

 

C. Algorithm Complexity 

Algorithms are defined as the series of steps necessary 

to solve a problem systematically. An algorithm, first and 

foremost, is not only required to be effective and actually 

solve the problem, but also expected to be efficient. An 

algorithm might be able to effectively solve a problem, but 

if the algorithm demands an unreasonable amount of 

processing time or takes up disproportionately large 

amount of memory, the algorithm is next to useless. 

In application, every algorithm uses up two resources 

which can be used as measurement: the number of steps 

taken (time) and the amount of memory reserved to execute 

those steps (space). The number of steps taken is defined 

as the time complexity, denoted as T(n), whereas the 

amount of memory reserved is defined as the space 

complexity, denoted as S(n). 

Matrices are a type of data structure which takes up a 

relatively large amount of memory, compared to more 

compact data structures such as linked lists. Therefore, the 

space complexity of the algorithms discussed later will not 

be examined in favor of focusing on their time complexity. 

 

D. Time Complexity 

The time complexity of an algorithm is measured from 

the number of instructions executed. The time complexity 

of an algorithm is not measured from the running time of 

said algorithm because of the differences between every 

computer’s architecture, every programming language and 

its compiler, and so on. Because of that, the same algorithm 

implemented in different languages or the same executable 

run in different machines would yield different running 

times. 

In calculating the time complexity of an algorithm, 

ideally, all operations are accounted for. For decently 

complex algorithms, this is all but impossible, so 

practically, only basic operations are accounted for. For 

example, the basic operation of a searching algorithm 

would be the comparison of the searched element with 

elements in the array. By counting how many comparisons 

are made, we can obtain the relative efficiency of the 

algorithm. 

The time complexity of an algorithm can be divided into 

three cases: 

 Tmin(𝑛): Best case 

 Tmax(𝑛): Worst case 

 Tavg(𝑛): Average case 

 

Example 1. Find the best case, worst case, and average 

case time complexity of the following sequential search 

algorithm. 

 
function SeqSearch (a: array of infotype, 

n: integer, x: infotype) → integer 

DICTIONARY 

  i: integer 

  found: boolean 

ALGORITHM 

  i ← 1 

  found ← false 

  while ((i ≤ n) and not(found)) do 

    found ← (a[i] = x) 

    if not(found) then 

      i ← i + 1 

  if (found) then 

    → i 

  else 

    → 0 

 

 Best case: 𝑎1 = 𝑥 ⇒ Tmin(𝑛) = 1 

 Worst case: 𝑎𝑛 = 𝑛 or 𝑛 not found ⇒ Tmax(𝑛) = 𝑛 

 Average case: Tavg(𝑛) =
1+2+⋯+𝑛

𝑛
=

𝑛+1

2
 

 

E. Asymptotic Time Complexity 

Usually, the exact time complexity of an algorithm is 

unnecessary. Instead, what is needed is a rough estimate of 

the time required by the algorithm and how fast that time 

requirement grow with the size of the input. This is because 

the efficiency of an algorithm would only be apparent at a 

large number of inputs. Running the determinant-

calculating algorithms on a 3×3 matrix would not yield 

any notable differences between the algorithm running 
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times. However, if the algorithms are run on a large matrix 

(say, 5000×5000), differences between running times 

would be much more apparent. 

The asymptotic time complexity is a rough estimate of 

the time complexity as the number of inputs approaches 

infinite. The asymptotic time complexity is commonly 

denoted with the Big-O notation, though other notations 

exist. Generally, the asymptotic time complexity of an 

algorithm can be taken from the most significant term in 

the time complexity function. For example, 

T(𝑛) = 192𝑛5 + 2𝑛 + log 𝑛! = O(2𝑛) 

because for non-negative integer values of 𝑛, 2𝑛 

contributes the most to the function T(𝑛). 

Table I shows categories of algorithm based on its Big-

O notation. 

Table I. Algorithm categories based on asymptotic time 

complexity, ordered from smallest to largest 

Complexity Category 

O(1) constant 

O(log 𝑛) logarithmic 

O(𝑛) linear 

O(𝑛 log 𝑛) 𝑛 log 𝑛 

O(𝑛2) quadratic 

O(𝑛3) cubic 

O(2𝑛) exponential 

O(𝑛!) factorial 

 

The top six (O(1) to O(𝑛3)) are called polynomial 

algorithms, while O(2𝑛) and O(𝑛!) are called exponential 

algorithms. Exponential algorithms grow much faster than 

polynomial algorithms. For example, if 𝑛 = 100, then 

𝑛3 = 106, whereas  2𝑛 = 1.268×1030 and 𝑛! =  9.333×

10157. 

 

 

III. MATHEMATICAL CONCEPTS OF DETERMINANT 

FINDING ALGORITHMS 

A. Determinant Expansion by Minors 

Also known as the Laplace Expansion, expansion by 

minors is a technique to find the determinant of a given 

square matrix. Although sufficiently efficient for small 

matrices, other techniques detailed later are much more 

efficient for very large matrices. 

Formally, expansion by minors is defined by 

det(𝐴) =  ∑(−1)𝑖+𝑗

𝑛

𝑖=1

𝑎𝑖𝑗𝑀𝑖𝑗 

where 𝑀𝑖𝑗 is the i, j minor matrix of A: the determinant of 

the (𝑛 − 1)×(𝑛 − 1) matrix obtained by deleting the i-th 

row and the j-th column of A. 

 
Figure 1. Obtaining minor matrices from a larger main matrix 

More informally, expansion by minors can be written as 

|

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋮
𝑎𝑛3

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋱
⋯

⋮
𝑎𝑛𝑛

|

= 𝑎11 |

𝑎22 𝑎23

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋯ 𝑎2𝑛

⋱ ⋮
⋯ 𝑎𝑛𝑛

|

− 𝑎12 |

𝑎21 𝑎23

⋮ ⋮
𝑎𝑛2 𝑎𝑛2

⋯ 𝑎2𝑛

⋱ ⋮
⋯ 𝑎𝑛𝑛

| + ⋯

± 𝑎1𝑛 |

𝑎21 𝑎22

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋯ 𝑎2(𝑛−1)

⋱ ⋮
⋯ 𝑎𝑛(𝑛−1)

| 

 

Finding the determinant of a 3×3 matrix using 

expansion by minors can be illustrated with the following 

example. 

 

Example 2. Find det(A) using expansion by minors, where 

𝐴 = [
1 3 5
0 5 1
6 5 0

]. 

 

Following the above definition, the matrix A can be 

expanded to minor matrices: 

det (𝐴) = 1 |
5 1
5 0

| − 3 |
0 1
6 0

| + 5 |
0 5
6 5

|

= 1×(−5) − 3×(−6) + 5×(−30)

= −137 

Determinant expansion by minors is the simplest method 

among the three and is commonly taught in class. A 

derivation of determinant expansion by minors exclusive 

to 3×3 matrices, called the Sarrus method, is available, 

although the method cannot be used for larger matrices. 

 

B. LU Decomposition 

LU decomposition is a procedure for decomposing a 

𝑛×𝑛 matrix into a product of a lower triangular matrix L 

and an upper triangular matrix U. 

𝐿𝑈 = 𝐴 

For a 3×3 matrix, the LU decomposition is as the 

following. 

[

𝑙11 0 0
𝑙21 𝑙32 0
𝑙31 𝑙32 𝑙33

] [

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

Intuitively, LU decomposition can be performed by 

applying Gauss elimination, where matrix U is the 

reduction of matrix A to an upper triangular matrix and 

matrix L is the multipliers used in each elementary row 

operation. 

More rigidly, let A be a 𝑛×𝑛 matrix. First, copy matrix 

A to matrix U. Iterations denoted by i and j process every 

element of the matrix, where 𝑖 = [1. . 𝑛] and 𝑗 = [(𝑖 +
1). . 𝑛], 

𝑙𝑖𝑗 =
𝑢𝑗𝑖

𝑢𝑖𝑖

 

and 

𝑢𝑗𝑘 = 𝑢𝑗𝑘 − 𝑙𝑖𝑗×𝑢𝑖𝑘 
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where 𝑘 ∈ [1. . 𝑛]. 
For calculating determinants, properties 4 and 5 

discussed in Section II-1 are used, where det(𝐴) =
det(𝐿) × det(𝑈) and the determinants of L and U are the 

product of their diagonals. 

 

Example 3. Find det(A) using LU decomposition, where 

𝐴 = [
1 3 5
0 5 1
6 5 0

]. 

 

Using Gauss elimination, matrices L and U can be found 

to be 𝐿 = [

1 0 0
0 1 0

6 −
13

5
1

] and 𝑈 = [

1 3 5
0 5 1

0 0 −
137

5

]. 

To check if L and U are correct, simply multiply L with U 

and check if the product matrix is equal to A. 

After obtaining L and U, find their determinants by 

multiplying their diagonals: 

det(𝐿) = 1×1×1 = 1 

det(𝑈) = 1×5× (−
137

5
) = −137 

Then, calculate the determinant of A by multiplying the 

determinants of L and U: 

det(𝐴) = det(𝐿) × det(𝑈) = 1×(−137) = −137 

 

Without a proper ordering, the decomposition may fail 

as a division by 0 occurs somewhere in the decomposition 

process and mistakenly imply that matrix A is singular. To 

rectify this, if pivot 𝑎𝑖𝑖 = 0 for 𝑖 ∈ [1. . 𝑛], simply swap 

row i with another row j where 𝑎𝑗𝑖 ≠ 0, then multiply the 

entire row by -1 to preserve the determinant value. If this 

is impossible (a column is composed entirely of 0s), then 

the matrix is singular and det(𝐴) = 0. 

In practice, because the determinant of L is always 1, 

det(𝐴) = det (𝑈). Because of this, in algorithms to 

calculate determinants using LU decomposition (including 

the one in this paper), the matrix L is often not computed 

alongside matrix U and the multipliers used in each 

elementary row operation is discarded after every iteration. 

 

C. Bareiss Algorithm 

The Bareiss algorithm, named after Erwin Bareiss, is an 

algorithm to calculate the determinant or the echelon form 

of an integer matrix using only integer arithmetic; that is, 

any divisions performed are exact (there is no remainder). 

The method is also used to compute the determinant of a 

real number matrix and avoids the introduction of rounding 

errors not present in the input matrix. 

Let A be a 𝑛×𝑛 matrix. For every iteration denoted by 

𝑘 ∈ [1. . (𝑛 − 1)], every element in the matrix is processed 

with the following formula: 

𝑎𝑖𝑗
(𝑘+1)

=
1

𝑎(𝑘−1)(𝑘−1)

|
𝑎𝑘𝑘

(𝑘−1)
𝑎𝑘𝑗

(𝑘−1)

𝑎𝑖𝑘
(𝑘−1)

𝑎𝑖𝑗
(𝑘−1)

| 

where 𝑎00 = 1, 𝑖 ∈ [(𝑘 + 1). . 𝑛], and 𝑗 ∈ [(𝑘 + 1). . 𝑛]. 

The determinant is element 𝑎𝑛𝑛
(𝑛)

; that is, the element in the 

lower right corner after the last iteration is completed. 

 

Example 4. Find det(A) using the Bareiss algorithm, where 

𝐴 = [
1 3 5
0 5 1
6 5 0

]. 

 

Following the algorithm denoted above, we begin by 

defining 𝑎00 = 1. For the 1st iteration (𝑘 = 1), we alter 

𝑎22, 𝑎23, 𝑎32, and  𝑎33. For 𝑖 = 2 and 𝑗 = 2, we have 

𝑎22
(2}

=
1×5 − 3×0

1
= 5. 

Continuing the process for the remaining elements gives 

us 

𝐴(2) = [
1 3 5
0 5 1
0 −13 −30

]. 

For 𝑘 = 2, only 𝑎33 is changed: 

𝑎33
(3}

=
5×(−30) − 1×(−13)

1
= −137, 

giving  

𝐴(3) = [
1 3 5
0 5 1
0 −13 −137

]. 

Thus, det(𝐴) = 𝑎33
(3)

= −137. 

 

As with LU decomposition, division by zero is possible 

without a proper ordering. Before inputting the matrix into 

the Bareiss algorithm, swap rows whose pivots are 0, then 

multiply it by -1. 

 

 

 IV.   IMPLEMENTING DETERMINANT FINDING 

ALGORITHMS IN PROGRAMS 

Note that the snippets in this section assumes that the 

indices of the matrix start from 1. If the snippets are 

implemented in languages whose indices start from 0 (such 

as C), simply decrease iterators by 1. 

 

A. Forming Minor Matrices 

The following pseudocode snippet is used to form the 

minor matrix of a given larger matrix. The function 

receives the main matrix and integers i and j, which are the 

respectively, the rows and columns to cross out, and returns 

the minor matrix formed. 
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function MinorMatrix (M: matrix, input i, 

j: integer) → matrix 

DICTIONARY 

  minor: matrix 

  n, a, b, c, d: integer   

ALGORITHM 

  n ← NRow(M) 

  c ← 1 

  i traversal [1..n] { Traverse rows } 

    if (a ≠ i) then { Skip row i } 
      d ← 1 

      j traversal [1..n]  { Traverse columns } 

        if (b ≠ j) then { Skip column j } 
          minor[c][d] ← M[a][b] 

          d ← d + 1 

      c ← c + 1 

  → minor 

 

The code snippet above traverses the main matrix and 

copies its values, but skips row i and column j. It first sets 

the minor row iterator to 1, then traverses the row of the 

main matrix. If the loop is not on row i, it resets the minor 

column iterator to 1, then traverses the column of the main 

matrix. If the loop is not on column j, it copies the value 

from the main matrix to the minor matrix, then increment 

the minor column iterator. After traversing the column, the 

minor row iterator is incremented. The resultant minor 

matrix is then returned. 

 

B. Swapping Rows Whose Pivots are 0 

Before implementing LU decomposition and/or Bareiss 

algorithm in programs, rows whose pivots are 0 must first 

be swapped in order to avoid a divide by 0 problem. 

The following pseudocode snippet describes the 

algorithm to achieve this. The procedure receives matrix M 

as input, and returns the changed matrix as well as well as 

a Boolean value denoting whether the matrix is singular or 

not. 

 
procedure SwapRowsWith0Pivot (input/output 

M: matrix, output singular: boolean) 

DICTIONARY 

  n, i, j, k: integer 

  temp: infotype 

ALGORITHM 

  n ← NRow(M) 

  singular ← false 

  i ← 1   

  { Search for 0 pivots } 
  while ((i ≤ n) and not(singular)) do 

    if (M[i][i] = 0) then 

      j ← 1 

      { Search for swappable rows } 
      while ((j < n) and (M[j][i] = 0)) do 

        j ← j + 1 

      if (M[j][i] ≠ 0) then { Swap rows } 
        k traversal [1..n] 

          temp ← M[i][k] 

          M[i][k] ← M[j][k] 

          M[j][k] ← -temp 

      else 

        singular ← true 

 

The code snippet above traverses the main diagonal to 

check if any of the matrix’ pivots are 0. If there are, it then 

searches the column where the offending pivot is for a non-

zero value. If found, the code then swaps the row where the 

non-zero value is found with the offending row. Otherwise, 

if all values of a given column is zero, the matrix is singular 

and the code terminates. 

 

C. Laplace Expansion 

The following pseudocode snippet is used to calculate 

the determinant of the inputted matrix through Laplace 

expansion recursively. The function receives the matrix 

whose determinant shall be calculated and an integer n, 

which represents the number of rows or columns in the 

matrix, and then returns the determinant of the matrix. 
 

function DetLaplace (M: matrix, n: integer) 

→ infotype 

DICTIONARY 

  det: infotype 

  minor: matrix 

  i, cofactor: integer 

ALGORITHM 

  if (n = 1) then { Basis, single element matrix } 
    det ← M[1][1] 

  else { Recurrence } 

    det ← 0 { Initialize determinant value } 

    cofactor ← -1 { Initialize cofactor } 

    i traversal [1..n] { Traverse rows } 

      cofactor ← -cofactor { Alternate cofactor } 
      minor ← MinorMatrix(M,1,i) 

      { Add determinant of current submatrix } 
      det ← det + cofactor * M[1,i] *  

            DetLaplace(minor,n-1) 

  → det 

 

The basis of the recursive function is that if the matrix 

only has a single element, that element is returned as the 

determinant. 

In the recurrence of the function, the determinant is first 

initialized as 0 and the cofactor as -1. It then traverses the 

column of the matrix by first negating the cofactor, forming 

the minor matrix, and finally adding the current value of 

the determinant with the product of cofactor, the iterated 

element, and the value returned by the Laplace expansion 

of the minor matrix. The resultant determinant of the main 

matrix is then returned. 

 

D. LU Decomposition 

The following pseudocode snippet is used to calculate 

the determinant of the inputted matrix through LU 

decomposition iteratively. The function receives the matrix 

whose determinant shall be calculated and then returns the 

determinant of the matrix. 

The code snippet below differs from the mathematical 

concept previously described in section II. In the concept, 

the ratios are stored in the matrix L, whereas in the code 

below, the ratio is single-use; it is only used for that 

particular iteration. This is because, in practice, the 

determinant of the matrix L formed through the LU 

decomposition method described in the concept is almost 
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always 1, which makes det(𝐴) = det (𝑈) and renders 

calculating L unnecessary. 

 
function DetLU (M: matrix) → real 

DICTIONARY 

  det, ratio: real 

  n, i, j, k: integer 

  singular: boolean 

ALGORITHM 

  SwapRowsWith0Pivot(M,singular) 

  if (singular) then { Singular matrix } 
    det ← 0 

  else { Nonsingular matrix } 
    n ← NRow(M)     

    i traversal [1..n] { Traverse columns } 

      j traversal [(i+1)..n] { Traverse rows } 
        ratio ← M[j][i]/M[i][i] 

        k traversal [1..n] { Subtract elements } 
          M[j][k] ← M[j][k] - ratio *  

                    M[i][k] 

    det ← 1 

    i traversal [1..n] { Multiply pivots } 
      det ← det * M[i][i] 

  → det 

 

The code snippet above can be divided to two parts: 

transforming the matrix to an upper triangular form and 

calculating the determinant itself. 

Before going to the actual part of LU decomposition, the 

code first calls SwapRowsWith0Pivot to transform the 

matrix so that there are no zeros in the pivot. If the function 

fails, the matrix is singular and its determinant is zero. 

Otherwise, the code continues. 

The code then traverses the elements below the main 

diagonal. It first calculates the ratio needed to gradually 

zero out elements in the bottom, then traverses the column 

while subtracting the traversed elements. At the end of the 

iterations, the matrix would be in an upper triangular form. 

In a triangular form, the determinant is easily calculated 

as the product of the matrix’ pivot. 

 

E. Bareiss Algorithm 

The following pseudocode snippet is used to calculate 

the determinant of the inputted matrix through the Bareiss 

algorithm iteratively. The function receives the matrix 

whose determinant shall be calculated and then returns the 

determinant of the matrix. 

The code snippet below differs from the mathematical 

concept previously described in section II. In the concept, 

the elements are divided with the diagonal element of the 

previous iteration, whereas in the code below, the variable 

pivot is introduced and used as the divisor. The value of 

pivot starts at 1 and is continually updated in each 

iteration as the diagonal element of the previous iteration. 

This is done because in most programming languages, 

adding M[0][0] is unfeasible. If indices start with 1, 

defining M[0][0] would take a considerable amount of 

space since, in effect, an entire row and column must be 

added. On the other hand, if indices start with 0, the value 

of M[0][0] is occupied already. 

 
function DetBareiss (M: matrix) → infotype 

DICTIONARY 

  pivot: infotype 

  n, i, j, k: integer 

  singular: boolean 

ALGORITHM 

  SwapRowsWith0Pivot(M,singular) 

  if (singular) then { Singular matrix } 
    det ← 0 

  else { Nonsingular matrix } 
    n ← NRow(M)     

    pivot ← 1 

    k traversal [1..(n-1)] { Traverse pivots } 

      i traversal [(k+1)..n] { Traverse rows } 
        j traversal [(k+1)..n] {Traverse columns} 

          { Apply formula } 
          M[i][j] ← M[k][k] * M[i][j] –  

M[i][k] * M[k][j] 

          M[i][j] ← M[i][j]/pivot       

      pivot ← M[k][k] { Set next pivot } 

    det ← M[n][n] { Assign determinant } 
  → det 

 

Before going to the actual part of LU decomposition, the 

code first calls SwapRowsWith0Pivot to transform the 

matrix so that there are no zeros in the pivot. If the function 

fails, the matrix is singular and its determinant is zero. 

Otherwise, the code continues. 

First, pivot is initialized to 1. In accordance to the 

Bareiss algorithm described in the concept, the code 

traverses the main diagonal of the matrix, then transforms 

every element to the bottom right of the traversed element 

through the formula previously described. pivot is then 

updated to the traversed diagonal element. The determinant 

is the lower-rightmost element of the matrix after the 

algorithm. 

 

 

V.  ANALYSIS AND COMPARISON 

A. Asymptotic Time Complexity Analysis 

The following analyses assume that all basic arithmetic 

operations, assignment, calls, etc. all run in O(1). All time 

complexities calculated are worst-case scenarios. 

 

For the minor-matrices-forming algorithm, the 

asymptotic time complexity is as follows. 

 Outer loop (row traversal): O(𝑛) 

 Inner loop (column traversal): O(𝑛) 

Therefore, the asymptotic time complexity of the algorithm 

is O(𝑛×𝑛) = O(𝑛2). 

 

For the row-swapping algorithm, the asymptotic time 

complexity is as follows. 

 Outer loop (search for 0 pivots): O(𝑛) 

 1st inner loop (search for swappable row): O(𝑛) 

 2nd inner loop (swap rows): O(𝑛) 

Therefore, the asymptotic time complexity of the algorithm 

is O(𝑛×max (𝑛, 𝑛)) = O(𝑛2). 
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For the Laplace expansion algorithm, the asymptotic 

time complexity is as follows. 

 Loop (row traversal): O(𝑛) 

 Minor matrix forming: O(𝑛2) 

 Recursion: O((𝑛 − 1)!) 

Therefore, the asymptotic time complexity of the algorithm 

is O(𝑛×max (𝑛2, (𝑛 − 1)!)) = O(𝑛!). 

 

For LU decomposition, the asymptotic time complexity 

is as follows. 

 Row swapping: O(𝑛2) 

 1st loop i (column traversal): O(𝑛) 

 Loop j (row traversal): O(𝑛) 

 Loop k (subtracting elements): O(𝑛) 

 2nd loop i (multiplying pivots): O(𝑛) 

Therefore, the asymptotic time complexity of the algorithm 

is O(max(𝑛2, 𝑛×𝑛×𝑛, 𝑛) =  O(𝑛3). 

 

For the Bareiss algorithm, the asymptotic time 

complexity is as follows. 

 Row swapping: O(𝑛2) 

 Loop i (pivot traversal): O(𝑛) 

 Loop j (row traversal): O(𝑛) 

 Loop k (column): O(𝑛) 

Therefore, the asymptotic time complexity of the algorithm 

is O(max(𝑛2, 𝑛×𝑛×𝑛) =  O(𝑛3). 

 

B. Comparison 

Because the Laplace expansion runs in O(𝑛!), Laplace 

expansion is only faster than the other two algorithms if the 

matrix is at most 5×5—at which the difference is too 

minute to have any significant impact to running time 

unless the algorithm is performed consecutively on 

multiple matrices. For even moderately sized matrices, it is 

significantly outperformed by both the LU decomposition 

and the Bareiss algorithm.  

At a glance, LU decomposition and the Bareiss 

algorithm performs the same—their asymptotic time 

complexities are both O(𝑛3). Performance-wise, they are 

the same, but LU decomposition has a weakness that makes 

the Bareiss algorithm better than LU decomposition. 

LU decomposition has a weakness in that the ratio 

needed to transform the matrix to an upper triangular form 

is not necessarily an integer. Meaning, if the determinant 

of an integer matrix is to be found using LU 

decomposition, the resultant upper triangular matrix will 

most likely be converted to a real number matrix. 

Furthermore, finding the determinant of a real number 

matrix is subject to rounding errors due to limitations of 

information representation, making the resulting 

determinant slightly less accurate. 

Neither the Laplace expansion nor the Bareiss algorithm 

have the weakness mentioned above; they both preserve 

the identity of the info type. The Laplace expansion does 

not use division in its process. The Bareiss algorithm does 

have division, but it is guaranteed to be exact; that is, in an 

integer matrix, the division will have no remainder, while 

in a real number matrix, the division will not significantly 

change the length of the mantissa. 

In conclusion, for arbitrarily large matrices, the Bareiss 

expansion is slightly superior to the LU decomposition and 

both the Bareiss algorithm and LU decomposition are 

vastly superior to Laplace expansion. 

 

 

VI.   CONCLUSION 

For arbitrarily large matrices, the Bareiss expansion is 

slightly superior to the LU decomposition and both the 

Bareiss algorithm and LU decomposition are vastly 

superior to Laplace expansion. The Laplace expansion is 

superior if and only if the size of the matrix does not exceed 

5×5—even then, the difference is only notable if the 

algorithm is applied on multiple matrices. 

Besides the algorithms elaborated in this paper, there are 

also algorithms to find determinants using fast matrix 

multiplication (Strassen algorithm with O(𝑛2.807) and 

Coppersmith–Winograd algorithm with O(𝑛2.376)), which 

are theoretically better but use heavy mathematical 

calculations, thus rendering it impractical in most cases. 

LU decomposition and the Bareiss algorithm, although 

theoretically worse with O(𝑛3) complexity, does not use 

any mathematical calculations more complex than 

division, making it more practical for all but the most 

sophisticated machines to use. 

Besides real and integer matrices, the aforementioned 

algorithms can also be expanded to cover complex number 

or even quaternion matrices, with the resulting determinant 

being a complex number or quaternion itself. 
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