
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

Efficiently Calculating the Determinant of a Matrix

Felix Limanta 13515065

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13515065@std.stei.itb.ac.id

felixlimanta@gmail.com

Abstract—There are three commonly-used algorithms to

calculate the determinant of a matrix: Laplace expansion, LU

decomposition, and the Bareiss algorithm. In this paper, we

first discuss the underlying mathematical principles behind

the algorithms. We then realize the algorithms in pseudocode

Finally, we analyze the complexity and nature of the

algorithms and compare them after one another.

Keywords—asymptotic time complexity, Bareiss algorithm,

determinant, Laplace expansion, LU decomposition.

I. INTRODUCTION

In this paper, we describe three algorithms to find the

determinant of a square matrix: Laplace expansion (also

known as determinant expansion by minors), LU

decomposition, and the Bareiss algorithm.

The paper is organized as follows. Section II reviews the

basic mathematical concepts for this paper, which includes

determinants, elementary matrix operations, algorithm

complexities, time complexities, and asymptotic time

complexities. In Section III, the three methods are

discussed in-depth mathematically, whereas in Section IV,

the three methods, as well as subroutines necessary to

implement them, are implemented in a language-agnostic

pseudocode. In Section V, the methods implemented in

Section V are analyzed regarding its asymptotic time

complexity and other features before being compared to

one another. Finally, Section VI concludes the paper while

suggesting further improvements.

Terminology and Notation

Unless noted otherwise, all mentions of matrices in this

paper are assumed to be square matrices.

To describe iterations mathematically, the notation 𝑖 ∈
[𝑎. . 𝑏] is introduced. The notation is taken from the

mathematical concept of number intervals, but instead of

describing whether i is between a and b or not, it denotes

that the iterator i starts from a and ends in b, incrementing

i by 1 after each iteration. It is equivalent to the for syntax

in programming languages, in which 𝑖 ∈ [𝑎. . 𝑏] is

equivalent to for i = a to b.

The pseudocode described in section III follows the

syntax detailed in reference [5].

For convenience, two data types are defined here:

infotype is either real or integer, depending on

implementation, while matrix is an arbitrarily-sized

array of array of infotype.

II. BASIC MATHEMATICAL CONCEPTS

A. Determinant

The determinant is a real number associated with every

square matrix. The determinant of a square matrix A is

commonly denoted as det A, det(A), or |A|.

Singular matrices are matrices which determinant is 0.

Unimodular matrices are matrices which determinant is 1.

The determinant of a 1×1 matrix is the element itself.

𝐴 = [𝑎] ⇒ det(𝐴) = 𝑎

The determinant of a 2×2 matrix is defined as the product

of the elements on the main diagonal minus the product of

the elements off the main diagonal.

|
𝑎 𝑏
𝑐 𝑑

| = 𝑎𝑑 − 𝑏𝑐

Finding the determinant of larger matrices will be

discussed in later sections.

Some basic properties of determinants are

1. det(𝐼) = 1

2. det(𝐴𝑇) = det (𝐴)

3. det(𝐴−1) =
1

det (𝐴)

4. For square matrices A and B of equal size,

det(𝐴𝐵) = det(𝐴) × det(𝐵)

5. The determinant of a triangular matrix is the product

of the diagonal entries (pivots) d1, d2, …, dn.

det(𝐴) = 𝑎1,1𝑎2,2 … 𝑎𝑛,𝑛 = ∏ 𝑎𝑖,𝑖

𝑛

𝑖=1

Determinants are useful for other mathematical subjects.

For example, following Cramer’s rule, a matrix can be used

to represent the coefficients of a system of linear equations,

and the determinant can be used to solve the system of

linear equations if and only if the matrix is nonsingular.

Determinants are also used in determining the inverse of a

matrix, where any matrix has a unique inverse if and only

if the matrix is nonsingular.

B. Elementary Matrix Operations

Elementary matrix operations play important roles in

mailto:13515065@std.stei.itb.ac.id
mailto:felixlimanta@gmail.com

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

various matrix algebra applications, such as solving a

system of linear equations using and finding the inverse of

a matrix.

There are three kinds of elementary matrix operations:

1. Switch two rows (or columns).

2. Multiply each element in a row (or column) by a

non-zero number.

3. Add or subtract a row (or column) by multiples of

another row (or column).

When these operations are performed on rows, they are

called elementary row operations and, likewise, when they

are performed on columns, they are called elementary

column operations.

Elementary matrix operations have the following effect

on determinants.

1. Exchanging two rows or columns from a matrix

reverse the sign of its determinant from positive to

negative and vice-versa.

|
𝑎 𝑏
𝑐 𝑑

| = − |
𝑐 𝑑
𝑎 𝑏

|

2. Multiplying one row or column of a matrix by t

multiplies the determinant by t.

|
𝑡𝑎 𝑡𝑏
𝑐 𝑑

| = |
𝑡𝑎 𝑏
𝑡𝑐 𝑑

| = 𝑡 |
𝑎 𝑏
𝑐 𝑑

|

3. If two rows or two columns of a matrix are equal, or

a row or column is the multiply of another row or

column, its determinant is zero.

|
𝑎 𝑏
𝑡𝑎 𝑡𝑏

| = 0

4. If 𝑖 ≠ 𝑗, adding or subtracting t times row i from

row j or vice-versa does not change the determinant.

|
𝑎 𝑏

𝑐 − 𝑡𝑎 𝑑 − 𝑡𝑏
| = |

𝑎 𝑏
𝑐 𝑑

|

5. If A has a row that is all zeros, then det(𝐴) = 0.

|
𝑎 𝑏
0 0

| = 0

C. Algorithm Complexity

Algorithms are defined as the series of steps necessary

to solve a problem systematically. An algorithm, first and

foremost, is not only required to be effective and actually

solve the problem, but also expected to be efficient. An

algorithm might be able to effectively solve a problem, but

if the algorithm demands an unreasonable amount of

processing time or takes up disproportionately large

amount of memory, the algorithm is next to useless.

In application, every algorithm uses up two resources

which can be used as measurement: the number of steps

taken (time) and the amount of memory reserved to execute

those steps (space). The number of steps taken is defined

as the time complexity, denoted as T(n), whereas the

amount of memory reserved is defined as the space

complexity, denoted as S(n).

Matrices are a type of data structure which takes up a

relatively large amount of memory, compared to more

compact data structures such as linked lists. Therefore, the

space complexity of the algorithms discussed later will not

be examined in favor of focusing on their time complexity.

D. Time Complexity

The time complexity of an algorithm is measured from

the number of instructions executed. The time complexity

of an algorithm is not measured from the running time of

said algorithm because of the differences between every

computer’s architecture, every programming language and

its compiler, and so on. Because of that, the same algorithm

implemented in different languages or the same executable

run in different machines would yield different running

times.

In calculating the time complexity of an algorithm,

ideally, all operations are accounted for. For decently

complex algorithms, this is all but impossible, so

practically, only basic operations are accounted for. For

example, the basic operation of a searching algorithm

would be the comparison of the searched element with

elements in the array. By counting how many comparisons

are made, we can obtain the relative efficiency of the

algorithm.

The time complexity of an algorithm can be divided into

three cases:

 Tmin(𝑛): Best case

 Tmax(𝑛): Worst case

 Tavg(𝑛): Average case

Example 1. Find the best case, worst case, and average

case time complexity of the following sequential search

algorithm.

function SeqSearch (a: array of infotype,

n: integer, x: infotype) → integer

DICTIONARY

 i: integer

 found: boolean

ALGORITHM

 i ← 1

 found ← false

 while ((i ≤ n) and not(found)) do

 found ← (a[i] = x)

 if not(found) then

 i ← i + 1

 if (found) then

 → i

 else

 → 0

 Best case: 𝑎1 = 𝑥 ⇒ Tmin(𝑛) = 1

 Worst case: 𝑎𝑛 = 𝑛 or 𝑛 not found ⇒ Tmax(𝑛) = 𝑛

 Average case: Tavg(𝑛) =
1+2+⋯+𝑛

𝑛
=

𝑛+1

2

E. Asymptotic Time Complexity

Usually, the exact time complexity of an algorithm is

unnecessary. Instead, what is needed is a rough estimate of

the time required by the algorithm and how fast that time

requirement grow with the size of the input. This is because

the efficiency of an algorithm would only be apparent at a

large number of inputs. Running the determinant-

calculating algorithms on a 3×3 matrix would not yield

any notable differences between the algorithm running

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

times. However, if the algorithms are run on a large matrix

(say, 5000×5000), differences between running times

would be much more apparent.

The asymptotic time complexity is a rough estimate of

the time complexity as the number of inputs approaches

infinite. The asymptotic time complexity is commonly

denoted with the Big-O notation, though other notations

exist. Generally, the asymptotic time complexity of an

algorithm can be taken from the most significant term in

the time complexity function. For example,

T(𝑛) = 192𝑛5 + 2𝑛 + log 𝑛! = O(2𝑛)

because for non-negative integer values of 𝑛, 2𝑛

contributes the most to the function T(𝑛).

Table I shows categories of algorithm based on its Big-

O notation.

Table I. Algorithm categories based on asymptotic time

complexity, ordered from smallest to largest

Complexity Category

O(1) constant

O(log 𝑛) logarithmic

O(𝑛) linear

O(𝑛 log 𝑛) 𝑛 log 𝑛

O(𝑛2) quadratic

O(𝑛3) cubic

O(2𝑛) exponential

O(𝑛!) factorial

The top six (O(1) to O(𝑛3)) are called polynomial

algorithms, while O(2𝑛) and O(𝑛!) are called exponential

algorithms. Exponential algorithms grow much faster than

polynomial algorithms. For example, if 𝑛 = 100, then

𝑛3 = 106, whereas 2𝑛 = 1.268×1030 and 𝑛! = 9.333×

10157.

III. MATHEMATICAL CONCEPTS OF DETERMINANT

FINDING ALGORITHMS

A. Determinant Expansion by Minors

Also known as the Laplace Expansion, expansion by

minors is a technique to find the determinant of a given

square matrix. Although sufficiently efficient for small

matrices, other techniques detailed later are much more

efficient for very large matrices.

Formally, expansion by minors is defined by

det(𝐴) = ∑(−1)𝑖+𝑗

𝑛

𝑖=1

𝑎𝑖𝑗𝑀𝑖𝑗

where 𝑀𝑖𝑗 is the i, j minor matrix of A: the determinant of

the (𝑛 − 1)×(𝑛 − 1) matrix obtained by deleting the i-th

row and the j-th column of A.

Figure 1. Obtaining minor matrices from a larger main matrix

More informally, expansion by minors can be written as

|

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋮
𝑎𝑛3

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋱
⋯

⋮
𝑎𝑛𝑛

|

= 𝑎11 |

𝑎22 𝑎23

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋯ 𝑎2𝑛

⋱ ⋮
⋯ 𝑎𝑛𝑛

|

− 𝑎12 |

𝑎21 𝑎23

⋮ ⋮
𝑎𝑛2 𝑎𝑛2

⋯ 𝑎2𝑛

⋱ ⋮
⋯ 𝑎𝑛𝑛

| + ⋯

± 𝑎1𝑛 |

𝑎21 𝑎22

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋯ 𝑎2(𝑛−1)

⋱ ⋮
⋯ 𝑎𝑛(𝑛−1)

|

Finding the determinant of a 3×3 matrix using

expansion by minors can be illustrated with the following

example.

Example 2. Find det(A) using expansion by minors, where

𝐴 = [
1 3 5
0 5 1
6 5 0

].

Following the above definition, the matrix A can be

expanded to minor matrices:

det (𝐴) = 1 |
5 1
5 0

| − 3 |
0 1
6 0

| + 5 |
0 5
6 5

|

= 1×(−5) − 3×(−6) + 5×(−30)

= −137

Determinant expansion by minors is the simplest method

among the three and is commonly taught in class. A

derivation of determinant expansion by minors exclusive

to 3×3 matrices, called the Sarrus method, is available,

although the method cannot be used for larger matrices.

B. LU Decomposition

LU decomposition is a procedure for decomposing a

𝑛×𝑛 matrix into a product of a lower triangular matrix L

and an upper triangular matrix U.

𝐿𝑈 = 𝐴

For a 3×3 matrix, the LU decomposition is as the

following.

[

𝑙11 0 0
𝑙21 𝑙32 0
𝑙31 𝑙32 𝑙33

] [

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]

Intuitively, LU decomposition can be performed by

applying Gauss elimination, where matrix U is the

reduction of matrix A to an upper triangular matrix and

matrix L is the multipliers used in each elementary row

operation.

More rigidly, let A be a 𝑛×𝑛 matrix. First, copy matrix

A to matrix U. Iterations denoted by i and j process every

element of the matrix, where 𝑖 = [1. . 𝑛] and 𝑗 = [(𝑖 +
1). . 𝑛],

𝑙𝑖𝑗 =
𝑢𝑗𝑖

𝑢𝑖𝑖

and

𝑢𝑗𝑘 = 𝑢𝑗𝑘 − 𝑙𝑖𝑗×𝑢𝑖𝑘

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

where 𝑘 ∈ [1. . 𝑛].
For calculating determinants, properties 4 and 5

discussed in Section II-1 are used, where det(𝐴) =
det(𝐿) × det(𝑈) and the determinants of L and U are the

product of their diagonals.

Example 3. Find det(A) using LU decomposition, where

𝐴 = [
1 3 5
0 5 1
6 5 0

].

Using Gauss elimination, matrices L and U can be found

to be 𝐿 = [

1 0 0
0 1 0

6 −
13

5
1

] and 𝑈 = [

1 3 5
0 5 1

0 0 −
137

5

].

To check if L and U are correct, simply multiply L with U

and check if the product matrix is equal to A.

After obtaining L and U, find their determinants by

multiplying their diagonals:

det(𝐿) = 1×1×1 = 1

det(𝑈) = 1×5× (−
137

5
) = −137

Then, calculate the determinant of A by multiplying the

determinants of L and U:

det(𝐴) = det(𝐿) × det(𝑈) = 1×(−137) = −137

Without a proper ordering, the decomposition may fail

as a division by 0 occurs somewhere in the decomposition

process and mistakenly imply that matrix A is singular. To

rectify this, if pivot 𝑎𝑖𝑖 = 0 for 𝑖 ∈ [1. . 𝑛], simply swap

row i with another row j where 𝑎𝑗𝑖 ≠ 0, then multiply the

entire row by -1 to preserve the determinant value. If this

is impossible (a column is composed entirely of 0s), then

the matrix is singular and det(𝐴) = 0.

In practice, because the determinant of L is always 1,

det(𝐴) = det (𝑈). Because of this, in algorithms to

calculate determinants using LU decomposition (including

the one in this paper), the matrix L is often not computed

alongside matrix U and the multipliers used in each

elementary row operation is discarded after every iteration.

C. Bareiss Algorithm

The Bareiss algorithm, named after Erwin Bareiss, is an

algorithm to calculate the determinant or the echelon form

of an integer matrix using only integer arithmetic; that is,

any divisions performed are exact (there is no remainder).

The method is also used to compute the determinant of a

real number matrix and avoids the introduction of rounding

errors not present in the input matrix.

Let A be a 𝑛×𝑛 matrix. For every iteration denoted by

𝑘 ∈ [1. . (𝑛 − 1)], every element in the matrix is processed

with the following formula:

𝑎𝑖𝑗
(𝑘+1)

=
1

𝑎(𝑘−1)(𝑘−1)

|
𝑎𝑘𝑘

(𝑘−1)
𝑎𝑘𝑗

(𝑘−1)

𝑎𝑖𝑘
(𝑘−1)

𝑎𝑖𝑗
(𝑘−1)

|

where 𝑎00 = 1, 𝑖 ∈ [(𝑘 + 1). . 𝑛], and 𝑗 ∈ [(𝑘 + 1). . 𝑛].

The determinant is element 𝑎𝑛𝑛
(𝑛)

; that is, the element in the

lower right corner after the last iteration is completed.

Example 4. Find det(A) using the Bareiss algorithm, where

𝐴 = [
1 3 5
0 5 1
6 5 0

].

Following the algorithm denoted above, we begin by

defining 𝑎00 = 1. For the 1st iteration (𝑘 = 1), we alter

𝑎22, 𝑎23, 𝑎32, and 𝑎33. For 𝑖 = 2 and 𝑗 = 2, we have

𝑎22
(2}

=
1×5 − 3×0

1
= 5.

Continuing the process for the remaining elements gives

us

𝐴(2) = [
1 3 5
0 5 1
0 −13 −30

].

For 𝑘 = 2, only 𝑎33 is changed:

𝑎33
(3}

=
5×(−30) − 1×(−13)

1
= −137,

giving

𝐴(3) = [
1 3 5
0 5 1
0 −13 −137

].

Thus, det(𝐴) = 𝑎33
(3)

= −137.

As with LU decomposition, division by zero is possible

without a proper ordering. Before inputting the matrix into

the Bareiss algorithm, swap rows whose pivots are 0, then

multiply it by -1.

 IV. IMPLEMENTING DETERMINANT FINDING

ALGORITHMS IN PROGRAMS

Note that the snippets in this section assumes that the

indices of the matrix start from 1. If the snippets are

implemented in languages whose indices start from 0 (such

as C), simply decrease iterators by 1.

A. Forming Minor Matrices

The following pseudocode snippet is used to form the

minor matrix of a given larger matrix. The function

receives the main matrix and integers i and j, which are the

respectively, the rows and columns to cross out, and returns

the minor matrix formed.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

function MinorMatrix (M: matrix, input i,

j: integer) → matrix

DICTIONARY

 minor: matrix

 n, a, b, c, d: integer

ALGORITHM

 n ← NRow(M)

 c ← 1

 i traversal [1..n] { Traverse rows }

 if (a ≠ i) then { Skip row i }
 d ← 1

 j traversal [1..n] { Traverse columns }

 if (b ≠ j) then { Skip column j }
 minor[c][d] ← M[a][b]

 d ← d + 1

 c ← c + 1

 → minor

The code snippet above traverses the main matrix and

copies its values, but skips row i and column j. It first sets

the minor row iterator to 1, then traverses the row of the

main matrix. If the loop is not on row i, it resets the minor

column iterator to 1, then traverses the column of the main

matrix. If the loop is not on column j, it copies the value

from the main matrix to the minor matrix, then increment

the minor column iterator. After traversing the column, the

minor row iterator is incremented. The resultant minor

matrix is then returned.

B. Swapping Rows Whose Pivots are 0

Before implementing LU decomposition and/or Bareiss

algorithm in programs, rows whose pivots are 0 must first

be swapped in order to avoid a divide by 0 problem.

The following pseudocode snippet describes the

algorithm to achieve this. The procedure receives matrix M

as input, and returns the changed matrix as well as well as

a Boolean value denoting whether the matrix is singular or

not.

procedure SwapRowsWith0Pivot (input/output

M: matrix, output singular: boolean)

DICTIONARY

 n, i, j, k: integer

 temp: infotype

ALGORITHM

 n ← NRow(M)

 singular ← false

 i ← 1

 { Search for 0 pivots }
 while ((i ≤ n) and not(singular)) do

 if (M[i][i] = 0) then

 j ← 1

 { Search for swappable rows }
 while ((j < n) and (M[j][i] = 0)) do

 j ← j + 1

 if (M[j][i] ≠ 0) then { Swap rows }
 k traversal [1..n]

 temp ← M[i][k]

 M[i][k] ← M[j][k]

 M[j][k] ← -temp

 else

 singular ← true

The code snippet above traverses the main diagonal to

check if any of the matrix’ pivots are 0. If there are, it then

searches the column where the offending pivot is for a non-

zero value. If found, the code then swaps the row where the

non-zero value is found with the offending row. Otherwise,

if all values of a given column is zero, the matrix is singular

and the code terminates.

C. Laplace Expansion

The following pseudocode snippet is used to calculate

the determinant of the inputted matrix through Laplace

expansion recursively. The function receives the matrix

whose determinant shall be calculated and an integer n,

which represents the number of rows or columns in the

matrix, and then returns the determinant of the matrix.

function DetLaplace (M: matrix, n: integer)

→ infotype

DICTIONARY

 det: infotype

 minor: matrix

 i, cofactor: integer

ALGORITHM

 if (n = 1) then { Basis, single element matrix }
 det ← M[1][1]

 else { Recurrence }

 det ← 0 { Initialize determinant value }

 cofactor ← -1 { Initialize cofactor }

 i traversal [1..n] { Traverse rows }

 cofactor ← -cofactor { Alternate cofactor }
 minor ← MinorMatrix(M,1,i)

 { Add determinant of current submatrix }
 det ← det + cofactor * M[1,i] *

 DetLaplace(minor,n-1)

 → det

The basis of the recursive function is that if the matrix

only has a single element, that element is returned as the

determinant.

In the recurrence of the function, the determinant is first

initialized as 0 and the cofactor as -1. It then traverses the

column of the matrix by first negating the cofactor, forming

the minor matrix, and finally adding the current value of

the determinant with the product of cofactor, the iterated

element, and the value returned by the Laplace expansion

of the minor matrix. The resultant determinant of the main

matrix is then returned.

D. LU Decomposition

The following pseudocode snippet is used to calculate

the determinant of the inputted matrix through LU

decomposition iteratively. The function receives the matrix

whose determinant shall be calculated and then returns the

determinant of the matrix.

The code snippet below differs from the mathematical

concept previously described in section II. In the concept,

the ratios are stored in the matrix L, whereas in the code

below, the ratio is single-use; it is only used for that

particular iteration. This is because, in practice, the

determinant of the matrix L formed through the LU

decomposition method described in the concept is almost

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

always 1, which makes det(𝐴) = det (𝑈) and renders

calculating L unnecessary.

function DetLU (M: matrix) → real

DICTIONARY

 det, ratio: real

 n, i, j, k: integer

 singular: boolean

ALGORITHM

 SwapRowsWith0Pivot(M,singular)

 if (singular) then { Singular matrix }
 det ← 0

 else { Nonsingular matrix }
 n ← NRow(M)

 i traversal [1..n] { Traverse columns }

 j traversal [(i+1)..n] { Traverse rows }
 ratio ← M[j][i]/M[i][i]

 k traversal [1..n] { Subtract elements }
 M[j][k] ← M[j][k] - ratio *

 M[i][k]

 det ← 1

 i traversal [1..n] { Multiply pivots }
 det ← det * M[i][i]

 → det

The code snippet above can be divided to two parts:

transforming the matrix to an upper triangular form and

calculating the determinant itself.

Before going to the actual part of LU decomposition, the

code first calls SwapRowsWith0Pivot to transform the

matrix so that there are no zeros in the pivot. If the function

fails, the matrix is singular and its determinant is zero.

Otherwise, the code continues.

The code then traverses the elements below the main

diagonal. It first calculates the ratio needed to gradually

zero out elements in the bottom, then traverses the column

while subtracting the traversed elements. At the end of the

iterations, the matrix would be in an upper triangular form.

In a triangular form, the determinant is easily calculated

as the product of the matrix’ pivot.

E. Bareiss Algorithm

The following pseudocode snippet is used to calculate

the determinant of the inputted matrix through the Bareiss

algorithm iteratively. The function receives the matrix

whose determinant shall be calculated and then returns the

determinant of the matrix.

The code snippet below differs from the mathematical

concept previously described in section II. In the concept,

the elements are divided with the diagonal element of the

previous iteration, whereas in the code below, the variable

pivot is introduced and used as the divisor. The value of

pivot starts at 1 and is continually updated in each

iteration as the diagonal element of the previous iteration.

This is done because in most programming languages,

adding M[0][0] is unfeasible. If indices start with 1,

defining M[0][0] would take a considerable amount of

space since, in effect, an entire row and column must be

added. On the other hand, if indices start with 0, the value

of M[0][0] is occupied already.

function DetBareiss (M: matrix) → infotype

DICTIONARY

 pivot: infotype

 n, i, j, k: integer

 singular: boolean

ALGORITHM

 SwapRowsWith0Pivot(M,singular)

 if (singular) then { Singular matrix }
 det ← 0

 else { Nonsingular matrix }
 n ← NRow(M)

 pivot ← 1

 k traversal [1..(n-1)] { Traverse pivots }

 i traversal [(k+1)..n] { Traverse rows }
 j traversal [(k+1)..n] {Traverse columns}

 { Apply formula }
 M[i][j] ← M[k][k] * M[i][j] –

M[i][k] * M[k][j]

 M[i][j] ← M[i][j]/pivot

 pivot ← M[k][k] { Set next pivot }

 det ← M[n][n] { Assign determinant }
 → det

Before going to the actual part of LU decomposition, the

code first calls SwapRowsWith0Pivot to transform the

matrix so that there are no zeros in the pivot. If the function

fails, the matrix is singular and its determinant is zero.

Otherwise, the code continues.

First, pivot is initialized to 1. In accordance to the

Bareiss algorithm described in the concept, the code

traverses the main diagonal of the matrix, then transforms

every element to the bottom right of the traversed element

through the formula previously described. pivot is then

updated to the traversed diagonal element. The determinant

is the lower-rightmost element of the matrix after the

algorithm.

V. ANALYSIS AND COMPARISON

A. Asymptotic Time Complexity Analysis

The following analyses assume that all basic arithmetic

operations, assignment, calls, etc. all run in O(1). All time

complexities calculated are worst-case scenarios.

For the minor-matrices-forming algorithm, the

asymptotic time complexity is as follows.

 Outer loop (row traversal): O(𝑛)

 Inner loop (column traversal): O(𝑛)

Therefore, the asymptotic time complexity of the algorithm

is O(𝑛×𝑛) = O(𝑛2).

For the row-swapping algorithm, the asymptotic time

complexity is as follows.

 Outer loop (search for 0 pivots): O(𝑛)

 1st inner loop (search for swappable row): O(𝑛)

 2nd inner loop (swap rows): O(𝑛)

Therefore, the asymptotic time complexity of the algorithm

is O(𝑛×max (𝑛, 𝑛)) = O(𝑛2).

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

For the Laplace expansion algorithm, the asymptotic

time complexity is as follows.

 Loop (row traversal): O(𝑛)

 Minor matrix forming: O(𝑛2)

 Recursion: O((𝑛 − 1)!)

Therefore, the asymptotic time complexity of the algorithm

is O(𝑛×max (𝑛2, (𝑛 − 1)!)) = O(𝑛!).

For LU decomposition, the asymptotic time complexity

is as follows.

 Row swapping: O(𝑛2)

 1st loop i (column traversal): O(𝑛)

 Loop j (row traversal): O(𝑛)

 Loop k (subtracting elements): O(𝑛)

 2nd loop i (multiplying pivots): O(𝑛)

Therefore, the asymptotic time complexity of the algorithm

is O(max(𝑛2, 𝑛×𝑛×𝑛, 𝑛) = O(𝑛3).

For the Bareiss algorithm, the asymptotic time

complexity is as follows.

 Row swapping: O(𝑛2)

 Loop i (pivot traversal): O(𝑛)

 Loop j (row traversal): O(𝑛)

 Loop k (column): O(𝑛)

Therefore, the asymptotic time complexity of the algorithm

is O(max(𝑛2, 𝑛×𝑛×𝑛) = O(𝑛3).

B. Comparison

Because the Laplace expansion runs in O(𝑛!), Laplace

expansion is only faster than the other two algorithms if the

matrix is at most 5×5—at which the difference is too

minute to have any significant impact to running time

unless the algorithm is performed consecutively on

multiple matrices. For even moderately sized matrices, it is

significantly outperformed by both the LU decomposition

and the Bareiss algorithm.

At a glance, LU decomposition and the Bareiss

algorithm performs the same—their asymptotic time

complexities are both O(𝑛3). Performance-wise, they are

the same, but LU decomposition has a weakness that makes

the Bareiss algorithm better than LU decomposition.

LU decomposition has a weakness in that the ratio

needed to transform the matrix to an upper triangular form

is not necessarily an integer. Meaning, if the determinant

of an integer matrix is to be found using LU

decomposition, the resultant upper triangular matrix will

most likely be converted to a real number matrix.

Furthermore, finding the determinant of a real number

matrix is subject to rounding errors due to limitations of

information representation, making the resulting

determinant slightly less accurate.

Neither the Laplace expansion nor the Bareiss algorithm

have the weakness mentioned above; they both preserve

the identity of the info type. The Laplace expansion does

not use division in its process. The Bareiss algorithm does

have division, but it is guaranteed to be exact; that is, in an

integer matrix, the division will have no remainder, while

in a real number matrix, the division will not significantly

change the length of the mantissa.

In conclusion, for arbitrarily large matrices, the Bareiss

expansion is slightly superior to the LU decomposition and

both the Bareiss algorithm and LU decomposition are

vastly superior to Laplace expansion.

VI. CONCLUSION

For arbitrarily large matrices, the Bareiss expansion is

slightly superior to the LU decomposition and both the

Bareiss algorithm and LU decomposition are vastly

superior to Laplace expansion. The Laplace expansion is

superior if and only if the size of the matrix does not exceed

5×5—even then, the difference is only notable if the

algorithm is applied on multiple matrices.

Besides the algorithms elaborated in this paper, there are

also algorithms to find determinants using fast matrix

multiplication (Strassen algorithm with O(𝑛2.807) and

Coppersmith–Winograd algorithm with O(𝑛2.376)), which

are theoretically better but use heavy mathematical

calculations, thus rendering it impractical in most cases.

LU decomposition and the Bareiss algorithm, although

theoretically worse with O(𝑛3) complexity, does not use

any mathematical calculations more complex than

division, making it more practical for all but the most

sophisticated machines to use.

Besides real and integer matrices, the aforementioned

algorithms can also be expanded to cover complex number

or even quaternion matrices, with the resulting determinant

being a complex number or quaternion itself.

VII. ACKNOWLEDGMENT

We thank God for His Blessing that enables this paper

to be completed on schedule. We also thank Dr. Ir. Rinaldi

Munir, M.T. and Dra. Harlili, M.Sc. as the lecturer of

IF2121 Discrete Mathematics. We then thank our parent

for granting us both material and moral support and

guidance in the making of this paper. Finally, we thank our

classmates for helping us in class, giving us ideas for this

paper, and giving us moral support.

REFERENCES

[1] Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The Design and Analysis
of Computer Algorithms. Boston, MA: Addison-Wesley Longman,

1974, ch. 6.

[2] Bareiss, E.H., “Sylvester’s identity and multistep integer-preserving
Gaussian elimination,” Math. Comp. 22, 1968.

[3] Jones, J.. (accessed 2016, Dec 3). The Determinant of a Square

Matrix [Online]. Available:
https://people.richland.edu/james/lecture/m116/matrices/determina

nt.html.

[4] Leggett, D.R, “Fraction-Free Methods for Determinants,” M.Sc.
thesis, Dept. Math., Univ. Southern Mississippi, Hattiesburg, MS,

2011.

[5] Liem, I., Draft Diktat Kuliah Dasar Pemrograman (Bagian
Pemrograman Prosedural). unpublished.

https://people.richland.edu/james/lecture/m116/matrices/determinant.html
https://people.richland.edu/james/lecture/m116/matrices/determinant.html

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

[6] Munir, R., Matematika Diskrit, Ed. 3. Bandung: Teknik Informatika

ITB, 2006, ch. 10.

[7] Strang, G., Introduction to Linear Algebra, 5th ed. Wellesey:

Wellesey-Cambridge Press, 2016, ch. 1.

[8] Weisstein, E.W.. (accessed 2016, Dec 3). Determinant [Online].

Available: http://mathworld.wolfram.com/Determinant.html.
[9] Weisstein, E.W.. (accessed 2016, Dec 3). Determinant Expansion

by Minors [Online]. Available:

http://mathworld.wolfram.com/DeterminantExpansionbyMinors.ht
ml.

[10] Weisstein, E.W.. (accessed 2016, Dec 3). LU Decomposition

[Online]. Available:
http://mathworld.wolfram.com/LUDecomposition.html.

[11] anonymous. (accessed 2016, Dec 3). Elementary Matrix Operations

[Online]. Available: http://stattrek.com/matrix-algebra/elementary-
operations.aspx.

[12] anonymous. (accessed 2016, Dec 4). Fastest algorithm for

computing the determinant of a matrix? [Online]. Available:
https://stackoverflow.com/questions/27003062/fastest-algorithm-

for-computing-the-determinant-of-a-matrix.

[13] anonymous. (accessed 2016, Dec 3). Lecture 12 – LU
Decomposition [Online]. Available:

http://www.math.ohiou.edu/courses/math3600/lecture12.pdf.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Desember 2016

Felix Limanta 13515065

http://mathworld.wolfram.com/Determinant.html
http://mathworld.wolfram.com/DeterminantExpansionbyMinors.html
http://mathworld.wolfram.com/DeterminantExpansionbyMinors.html
http://mathworld.wolfram.com/LUDecomposition.html
http://stattrek.com/matrix-algebra/elementary-operations.aspx
http://stattrek.com/matrix-algebra/elementary-operations.aspx
https://stackoverflow.com/questions/27003062/fastest-algorithm-for-computing-the-determinant-of-a-matrix
https://stackoverflow.com/questions/27003062/fastest-algorithm-for-computing-the-determinant-of-a-matrix
http://www.math.ohiou.edu/courses/math3600/lecture12.pdf

