
IF2120 Discrete Mathematics Paper – 1st Semester Year 2016/2017

Application of Graph Coloring to Create Efficient

Register Allocation in Program

Erick Wijaya 135150571

Informatics Undergraduate Program

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Ganesha Street 10 Bandung 40132, Indonesia
113515057@std.stei.itb.ac.id

wijaya.erick52@gmail.com

Abstract—Graph coloring is a method to color each

vertex in a graph so that no two adjacent vertices have

same color. The smallest number of color needed to do

graph coloring for any arbitrary graph is called chromatic

number. Graph coloring is a powerful tool for compilers to

optimize the code so that register allocation can be done

effectively. The process consists of creating a control flow

graph, computing alive variables at each point,

constructing interference graph, and coloring graph.

Keywords—chromatic number, interference graph,

graph coloring, register allocation.

I. INTRODUCTION

Register allocation is one of the most important

optimizations a compiler performs and is becoming

increasingly important as the gap between processor

speed and memory access time widens. As the memory

access time is much slower than processor, optimizations

are needed to avoid using too many memory by using

registers in processor. However, the compiler should not

simply declare all existing variables in program to

available registers because some variables may be “dead”

or temporary and not used further after executing specific

code segment. That means the variable can be recycled to

minimalize usage of memory or registers so more

variables can be stored in registers and less variables may

be stored in memory. To recycle the “dead” variable, the

compiler checks every points of program segment to see

which variables are “alive” and will be used further in

the program, and which variables are temporary and will

“die” in the middle of program. In this case graph

coloring rise to be the solution. By using graph coloring

method, the compiler can find whether the variables are

“dead” or “alive” at specific points of program, then

create an interference graph that represents variables and

their relationship. After creating the graph, the graph

will be colored based on the chromatic number of that

particular graph, and the chromatic number represents

registers needed to store variables.

II. BASIC GRAPH THEORY

2.1. Graph Theory

Graphs are discrete structures consisting of vertices

and edges that connect these vertices. There are different

kinds of graphs, depending on whether edges have

directions, whether multiple edges can connect the same

pair of vertices, and whether loops are allowed. Graph

models are used in many application in any discipline.

2.1.1. Definition

A graph G = (V, E) consists of V, a nonempty set of

vertices (or nodes) and E, a set of edges. Each edge has

either one or two vertices associated with it, called its

endpoints. An edge is said to connect its endpoints. With

this definition, we know that a graph can at least

contains one vertex and zero edge.

Figure 1. A graph that consists of 6 vertices and 8 edges

2.1.2 Terminology

In graph theory, we will use several terms to describe

properties of graph, its behavior, or anything related to

graph. Here is a list of important terms that will be used

to describe a graph or its properties.

1. Null Graph

A graph having no edges is called a Null Graph.

2. Trivial Graph

A graph with only one vertex is called a Trivial

Graph.

3. Adjacent

Two vertices in a graph are said to be adjacent if

both vertices are connected by an edge mutually.

IF2120 Discrete Mathematics Paper – 1st Semester Year 2016/2017

4. Incident

Edge e is incident if it connects two vertices.

5. Degree

For a non-directed graph, degree of a vertex is the

sum of edges that are incident with that vertex.

Figure 2. The degree of vertex E is 3

6. Path

Path with length n from initial vertex vo to final

vertex vn in a graph is an array of pair of edge and

vertex that, if the path is exist, will contain vo, e1, v1,

e2, … , vn-1, en, vn so that e1 = (vo,v1), e2 = (v1,v2), …

, en = (vn-1,vn).

7. Subgraph

For a graph G = (V, E), G1 = (V1, E1) is a subgraph

from graph G if V1 ⊆ V and E1 ⊆ E.

8. Weight

A weight is a value that represents attributes of

edges from weighted-graph. The weight may

represent distance, time, cost, or anything.

Weighted-graphs can be useful to describe transport-

ation problems and are usually supported by Dijkstra

or Prim’s Algorithm.

Figure 3. Each edges has a value in weighted-graph

2.1.3. Types of Graph

Graphs are classified to some categories based on their

properties. There are various types of graphs depending

upon the number of vertices, number of edges,

interconnectivity, and their overall structure.

Based on the edge types, we can differ graph into three

types listed below:

1. Simple Graph

A graph with no loops and no parallel edges is called

a simple graph.

2. Multigraph

Graphs that may have multiple edges connecting the

same vertices are called multigraphs.

3. Pseudograph

Pseudograph is a graph which can include loops as

well as multiple edges connecting the same pair of

vertices.

Figure 4. Simple graph (left), multigraph (middle), and

pseudograph (right).

Graphs can also be classified based on their edges

characteristic, specifically whether the edges have

direction or not. We can differ the graph into these types:

1. Non-Directed Graph

A non-directed graph contains edges, however the

edges do not have direction.

2. Directed Graph

On the other hand, each edges in a directed graph

has a direction.

Figure 5. Each edges in directed graph has its direction

(right), unlike non-directed graph which do not have

direction in the edges (left).

Some simple graphs have their own characteristics

which distinguish them from the others. These graphs

are called specific graphs. There are several specific

graphs which are mainly used in computer science:

1. Regular Graph

A graph is said to be regular, if all its vertices have

the same degree. In a graph, if the degree of each

vertex is k, then the graph is called a k-regular

graph.

2. Complete Graph

A simple graph with n mutual vertices is called a

complete graph and it is denoted by Kn. In the graph,

a vertex should have edges with all other vertices,

then it called a complete graph.

Figure 6. A complete graph denoted by K6

IF2120 Discrete Mathematics Paper – 1st Semester Year 2016/2017

3. Cyclic Graph

A graph with at least one cycle is called a cyclic

graph. Figure 6 is also an example of cyclic graph

because it has cycles, path E – F – A – E is the

example of cycle in graph.

2.2. Graph Coloring

Graph coloring is nothing but a simple way of

labelling graph components such as vertices, edges, and

regions under some constraints. In a graph, no two

adjacent vertices, adjacent edges, or adjacent regions are

colored with minimum number of colors. This number is

called the chromatic number and the graph is called a

properly colored graph. In this case we will only talk

about vertex coloring.

2.2.1. Chromatic Number

The chromatic number of a graph G is the smallest

number of colors needed to color the vertices of G so that

no two adjacent vertices share the same color, i.e., the

smallest value of k possible to obtain a k-coloring [5].

The chromatic number of a graph G is most commonly

denoted χ(G).

Figure 7. Some graphs with their chromatic numbers.

Source:http://mathworld.wolfram.com/ChromaticNumbe

r.html

2.2.2. Coloring Method

Until now, there is no known fast algorithm to find an

optimal coloring for an arbitrary graph (NP-hard).

However, in this paper the author only cover coloring

smaller graphs so coloring can be done manually. To do

graph coloring, we can use some lemmas which come in

handy when trying to show that a graph has a certain

chromatic number, these lemmas are:

 Lemma 1. A graph G has chromatic number χ(G) =

2 if and only if it is bipartite.

 Lemma 2. If H is a subgraph of G and G is k-

colorable, then so is H.

 Lemma 3. If H is a subgraph of G then χ(H) ≤ χ(G).

III. ASSEMBLY AND REGISTERS

Assembly language is a low-level programming

language for a computer or other programmable device

specific to a particular computer architecture in contrast

to most high-level programming languages, which are

usually portable across multiple systems. Assembly

language is converted into executable machine code by a

utility program referred to as an assembler like NASM

and MASM.

Figure 8. An example of assembly code

Processor operations mostly involve processing data.

This data can be stored in memory and accessed from

thereon. However, reading data from and storing data

into memory slows down the processor, as it involves

complicated processes of sending the data request across

the control bus and into the memory storage unit and

getting the data through the same channel.

To speed up the processor operations, the processor

includes some internal memory storage locations, called

registers. The registers store data elements for processing

without having to access the memory. A limited number

of registers are built into the processor chip. The general

registers are further divided into the following groups:

 Data registers.

 Pointer registers.

 Index registers.

Figure 9. IA32 integer registers. These registers can be

accessed as either 8 bit (%al or %ah), 16 bit (%ax), and

32 bit (%eax)

Source: Computer Systems - A Programmer’s

Perspective.

plus:

pushl %ebp

movl %esp,%ebp

movl 8(%ebp),%eax

movl 12(%ebp),%ecx

sall $2,%ecx

leal 0(,%eax,8),%edx

subl %eax,%edx

leal (%eax,%eax,4),%eax

movl mat2(%ecx,%eax,4),%eax

addl mat1(%ecx,%edx,4),%eax

movl %ebp,%esp

popl %ebp

ret

IF2120 Discrete Mathematics Paper – 1st Semester Year 2016/2017

General registers are the registers used most of the

time. Most of the instructions perform on these registers.

They all can be broken down into 16 and 8 bit registers.

 32 bits : %eax, %edx, %ecx, %ebx, %esi, %edi,

%esp, %ebp

 16 bits : %ax, %dx, %cx, %bx, %si, %di, %sp, %bp

 8 bits : %ah %al %bh %bl %ch %cl %dh %dl

Data Registers are registers that are used mainly for

arithmetic, logical, and other operations. In 32 bit

operations, the data registers are %eax, %edx, %ecx, and

%ebx.

 %eax is the primary accumulator; it is used in

input/output and most arithmetic instructions. It is

also used mainly to store return value in function

calls.

 %ebx is known as the base register, as it could be

used in indexed addressing.

 %ecx is known as the count register, %ecx registers

store the loop count in iterative operations.

 %edx is known as the data register. It is also used in

input/output operations. It is also used with AX

register along with DX for multiply and divide

operations involving large values.

Pointer Registers are %esp, and %ebp registers and

corresponding 16-bit right portions %sp and %bp. There

are two main categories of pointer registers:

 Stack Pointer (%esp)

The 16-bit SP register provides the offset value

within the program stack. %esp refers to be current

position of data or address within the program stack.

 Base Pointer (%ebp)

Base pointer register mainly helps in referencing the

parameter variables passed to a subroutine. The

address in SS register is combined with the offset in

BP to get the location of the parameter. BP can also

be combined with %edi and %esi as base register for

special addressing.

The 32-bit index registers, %esi and %edi, and their

16-bit rightmost portions. %si and %di, are used for

indexed addressing and sometimes used in subtraction

and addition. There are two sets of index pointers:

 Source Index (%esi)

It is used as source index for string operations.

 Destination Index (%edi)

It is used as destination index for string operations.

Among the most heavily used instructions are those

that copy data from one location to another. The

generality of the operand notation allows a simple data

movement instruction to perform what in many machines

would require a number of instructions [2]. Figure 9 lists

the important data movement instructions. As can be

seen, we group the many different instructions into

instruction classes, where the instructions in a class

perform the same operation, but with different operand

sizes. For example, the mov class consists of four

instructions: movb, movw, movl, and movq. All three of

these instructions perform the same operation; they differ

only in that they operate on data of size 1, 2, 4, and 8

bytes, respectively.

Figure 10. Some important data movement instructions

in assembly language

Source: Computer Systems - A Programmer’s

Perspective.

Figure 11 shows some of the integer and logic

operations. Most of the operations are given as

instruction classes, as they can have different variants

with different operand sizes. (Only leal has no other size

variants.) For example, the instruction class add consists

of several addition instructions: addb, addw, and addl,

adding bytes, words, and double words, respectively.

Indeed, each of the instruction classes shown has

instructions for operating on byte, word, and double-word

data. The operations are divided into four groups: load

effective address, unary, binary, and shifts [2]. Binary

operations have two operands, while unary operations

have one operand.

Figure 11. Integer arithmetic operations

Source: Computer Systems - A Programmer’s

Perspective.

IF2120 Discrete Mathematics Paper – 1st Semester Year 2016/2017

IV. IMPLEMENTATION OF GRAPH COLORING IN

REGISTER ALLOCATION

Register allocation is one of the most important

optimizations a compiler performs and is becoming

increasingly important as the gap between processor

speed and memory access time widens. If there are k

registers, register allocators attempt to solve the NP-

complete problem of finding a k-coloring of a graph. If

not all the variables can be colored with a register

assignment, some variables are spilled to memory and

the process is repeated.

Consider this program segment with six variables:
a ← c + d

e ← a + b

f ← e - 1

with assuming that variable a and e die after use while

variable f, c, d, and b will be need in the other part of the

program. In this code segment, we can analyze two main

points:

 Variable a can be reused after e ← a + b

 It also applies to variable e

That means we can allocate all the variables a, e, and f to

one register (for example, %ecx). We do not need to

allocate three different registers for variables a, e, and f.

The program segment will be somewhat like this:
%ecx ← %ebx + %eax

%ecx ← %ecx + %edx

%ecx ← %ecx - 1

From this example, we notice that arbitrary variables t1

and t2 can share same register if at any point in the

program at most one of t1 or t2 is alive. To allocate

registers effectively, compilers compute alive variables

for each program segment, construct an interference

graph (IG), and color that graph. The register allocation

will be based on graph colors. Below is the process to

optimize code so register allocations can be done

effectively. Consider this pseudocode segment below, we

will create a control flow graph, compute alive variables

for each point, construct an interference graph, and

finally do graph coloring.

Figure 12. A pseudocode segment, assume that variable

b is alive after the pseudocode segment is executed

Source:https://www.cs.clemson.edu/course/cpsc827/mate

rial/Optimization/Register%20Allocation%20Example.p

df (with some modifications)

1. Create a control flow graph

Figure 13. A control flow graph of pseudocode in fig. 12

2. Compute alive variables for each point

The next step in our allocation approach is to

determine which variables are alive at each point in the

program segment. This is call live range analysis.

Initially we will assume that only b is alive on the exit

from the program segment. The graph below shows

which variables are alive at each point in the program

segment.

Figure 14. Alive variables from each points

3. Construct an interference graph

Considering figure 15, the vertices represent the

variable (A for variable a, C for variable c, D for

variable d, and so on). The edges represent that

adjacent vertices cannot be in the same register

b ← f + c

b ← d + e

e ← e - 1

f ← 2 * e

a ← b + c

d ← - a

e ← d + f

b ← f + c

b ← d + e

e ← e - 1

f ← 2 * e

a ← b + c

d ← - a

e ← d + f

repeat

a ← b + c

d ← - a

e ← d + f

if (condition1) then

f ← 2 * e

else

b ← d + e

e ← e - 1

endif

b ← f + c

until (condition2)

{b c f}

{c e}

{c d f}

{e d c f}

{b c f}

{c f}

{e d c f}

{b d c f}

{b c f}

{b c f}

{b c f}

{b}

IF2120 Discrete Mathematics Paper – 1st Semester Year 2016/2017

(variable f and b cannot be in the same register,

however variable a and e can be in the same register).

To sum up the points:

- Vertices : variables

- Edges : cannot be in the same register

Figure 15. Interference graph IG from graph in figure 14.

4. Graph coloring

We then try to color the vertices, and found out that

the interference graph IG has χ(IG) = 4. Vertex A and

B are colored red, C and F colored blue, E colored

green, and D colored yellow.

Figure 16. Colored interference graph IG.

Hence, we see that if we assign a and b to register R1, f

and c to R2, d to R3, and e to R4, we can keep those

registers in the same registers over the lifetime of the

program segment. This assumes that there are sufficient

registers for the intermediate results. When that

assumption is not correct, then we will need to spill

registers. That topic is not covered here.

V. CONCLUSION

In conclusion, compilers optimize register allocation

by graph coloring so that register allocation can be done

effectively. A code that uses many temporary variables

can be optimized so that those variables can be stored in

fewer registers. Graph coloring is a powerful register

allocation scheme, however in the real practice,

optimizing register allocation require more than graph

coloring. Graph coloring with interference graph is NP-

hard and for given k of registers, coloring may not be

exist. There are some advanced solutions, such as

heuristic and linear scan allocation, but these solutions

will not be discussed in this paper.

VI. ACKNOWLEDGMENT

The first and foremost thanks from the author is to the

God for giving the author inspiration and time to be able

to write and finish this paper successfully. Special

acknowledgment belongs to Rinaldi Munir, discrete

mathematic lecturer in Bandung Institute of Technology,

to be tender and nice in teaching, as well as giving the

author task to write this paper so that the author can

practice to write a good paper and to learn about

computer science deeper. Last but not least, other thanks

will the author give to the author’s parents as they

continuously support the author to undergo a college life

in Bandung Institute of Technology.

REFERENCES

[1] Rosen, Kenneth H. Discrete Mathematics and Its Applications. New

York: McGraw-Hill. 2012.

[2] Bryant, Randal. Computer Systems - A Programmer’s Perspective.

Massachusetts: Prentice Hall. 2003.

[3] Munir, Rinaldi. Diktat Kuliah IF2120 Matematika Diskrit. STEI,

ITB. 2006

[4] http://web.cecs.pdx.edu/~mperkows/temp/register-allocation.pdf

(last accessed in December 8th 2016 on 23.36 WIB)

[5] https://www.eecis.udel.edu/~cavazos/cisc672/lectures/Lecture-22.pdf

(last accessed in December 8th 2016 on 22.42 WIB)

[6] http://www.cs.cmu.edu/~dkoes/research/graphraTR.pdf

(last accessed in December 8th 2016 on 23.01 WIB)

[7] http://mathworld.wolfram.com/ChromaticNumber.html

(last accessed in December 6th 2016 on 21.22 WIB)

[8] https://www.tutorialspoint.com/graph_theory/

(last accessed in December 6th 2016 on 18.53 WIB)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Desember 2016

Erick Wijaya - 13515057

	I. Introduction
	II. Basic Graph Theory
	III. Assembly and Registers
	IV. Implementation of Graph Coloring in Register Allocation
	V. Conclusion
	VI. Acknowledgment
	References
	PeRNYATAAN

