
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

Application of Monte Carlo Search Tree in AlphaGo

Wenny Yustalim 13515002

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13515002@std.stei.itb.ac.id

Abstract—Playing a combinatorial game might sometimes

be extremely difficult for the human mind. For centuries,

humans have always attempted to develop algorithms in

order to discover a way to always win every match of a

particular game, which is not only efficient in time, but also

has almost 100% chance of winning. One of the examples of

this combinatorial game is “Go”, a Chinese board game

similar to chess, but much more complex and mindblowing.

This paper discusses how the Monte Carlo tree search is used

in the computer program AlphaGo in order to win almost

every match of a Go game.

Keywords—AlphaGo, Go, Monte Carlo tree search, Zhuo

Zhuan.

I. INTRODUCTION

Go (圍棋 wéiqí) is an abstract strategy board game for

two players, in which the aim is to surround more territory

than the opponent. The game was invented in ancient

China more than 5,500 years ago, and is thus the oldest

board game continuously played today. The earliest

written reference to the game is generally recognized as

the historical Zuo Zhuan.

The game is simply played by two players taking turns

to place black or white stones on the board. The player

must try to capture the opponent’s stones or surround

empty space to make points of territory.

The stones are placed on a (traditionally wooden) board

of size 19x19. There are also smaller sized boards, 9x9

and 13x13, but the standard board size for tournaments is

the 19x19 one. Due to this reason, the possible moves that

the players can make is much more than the moves in a

chess game, since the size of the board is larger than the

standard 8x8 sized chessboard, and the players can place

the stone almost anywhere on the board, except for some

restricted areas that will be explained further.

The empty points which are horizontally and vertically

adjacent to a stone, or a solidly connected string of stones,

are known as liberties. An isolated stone or solidly

connected string of stones is captured when all of its

liberties are occupied by enemy stones.

A player may not self-capture, that is play a stone into a

position where it would have no liberties or form part of a

string which would thereby have no liberties, unless, as a

result, one or more of the stones surrounding it is

captured.

Any string or group of stones which has two or more

eyes is permanently safe from capture and is referred to as

a live string or live group. Conversely, a string of stones

which is unable to make two eyes, and is cut off and

surrounded by live enemy strings, is called a dead string

since it is hopeless and unable to avoid eventual capture.

There is also a major difference between Go and chess.

In Go, the players start with completely nothing on the

board, hence they have to really consider where to place

their first stone in order to gain maximum winning chance,

while in chess, the pieces are already placed on both sides

of the board, and the players have to move them around in

order to win the game.2

There is also a rule called ko that prohibits repetition of

any previous position, the ko rule prohibits only

immediate repetition, that can lead the game into an

infinite repetition and thus can take forever to finish.

As simple as the rules are, Go is a game of profound

complexity. There are more possible positions in Go than

there are atoms in the universe. That makes Go a googol

(10100) times more complex than chess.2

Go is played primarily through intuition and feel, and

because of its beauty, subtlety and intellectual depth it has

captured the human imagination for centuries. AlphaGo is

the first computer program to ever beat a professional,

human player.

AlphaGo is a computer program developed by Google

DeepMind in London to play the board game Go. In

October 2015, it became the first Computer Go program

to beat a professional human Go player without handicaps

on a full-sized 19×19 board. In March 2016, it beat Lee

Sedol in a five-game match, the first time a computer Go

program has beaten a 9-dan professional without

handicaps.6 Although it lost to Lee Sedol in the fourth

game, Lee resigned the final game, giving a final score of

4 games to 1 in favour of AlphaGo. In recognition of

beating Lee Sedol, AlphaGo was awarded an honorary 9-

dan by the Korea Baduk Association.3

AlphaGo uses very much the application of Monte

Carlo tree search programs that simulate thousands of

random games of self-play. Using this search algorithm,

AlphaGo achieved a 99.8% winning rate against other Go

programs, and defeated the human European Go

champion by 5 games to 0. That is the first time that a

computer program has defeated a human professional

player in the full-sized game of Go, a feat previously

thought to be at least a decade away. 7

https://upload.wikimedia.org/wikipedia/commons/0/0f/Zh-w%C3%A9iq%C3%AD.ogg
https://en.wikipedia.org/wiki/Abstract_strategy_game
https://en.wikipedia.org/wiki/Board_game
https://en.wikipedia.org/wiki/History_of_Science_and_Technology_in_China
https://en.wikipedia.org/wiki/History_of_Science_and_Technology_in_China
https://en.wikipedia.org/wiki/Zuo_Zhuan
https://www.google.com/search?q=googol&oq=googol&aqs=chrome..69i57j69i64j0l4.290j0j1&sourceid=chrome&ie=UTF-8
https://en.wikipedia.org/wiki/Google_DeepMind
https://en.wikipedia.org/wiki/Google_DeepMind
https://en.wikipedia.org/wiki/Go_%28game%29
https://en.wikipedia.org/wiki/Computer_Go
https://en.wikipedia.org/wiki/Go_handicaps
https://en.wikipedia.org/wiki/Lee_Sedol
https://en.wikipedia.org/wiki/Lee_Sedol
https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
https://en.wikipedia.org/wiki/Go_ranks_and_ratings
https://en.wikipedia.org/wiki/Korea_Baduk_Association

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

It is very interesting that such a simple concept of

search tree can be used to create the algorithm that can

win over even the most skilled human player of Go. It

took Google a lot of reasearch, time, energy, and funds in

order to make AlphaGo a real thing that can actually

match the brain of a human. It uses traditional AI methods

such as alpha-beta pruning, tree traversal and heuristic

search. The most dominant part is the Monte-carlo tree

search, which is going to be explained in this paper.

The Monte-carlo tree search is a heuristic search

algorithm for decision processes, that is nowadays used in

many AI (Artificial Intelligence) in order to win a game,

such as poker, Go, and many other examples. The focus is

analysing the most promising moves, expanding the

search tree based on random sampling of the search space.

The game is played to the very end by selecting random

moves, then the final result is used to weigh the nodes in

the tree so that better nodes will be used more often in the

next games. This method allows AIs to learn which moves

produce the best possible outcome.

There is another algorithm called Minimax to search on

a tree, by considering several factors into account such as

picking the maximum and minimum value, matching

different players’ conflicting goals, and it proceeds down

the tree. This tree basically finds the best standing that

will result in the best outcomes possible. It contains all

possible outcomes. But this algorithm is not the most

efficient one so that AlphaGo prefers to use Monte-carlo

tree search instead. The problem with this algorithm is

that it can take a considerably long time to do a full search

on the tree, especially for a game with high branching

factor (a high average number of available moves per

turn).

II. THEORIES

2.1 Game Tree

To understand how AIs are capable of playing games

such as chess and Go, we have to understand what a game

tree is. A game tree represents game states (positions) as

nodes in the tree, and possible actions as edges. The root

of the tree represents the state at the beginning of the

game. The next level represents the possible states after

the first move, etc. For simple games such as tic-tac-toe, it

is possible to represent all possible game states (the

complete game tree) visually:

Figure 2.1 Game tree of a tic-tac-toe

(Source: https://www.tastehit.com/blog/google-deepmind-alphago-

how-it-works/)

Knowing the complete game tree is useful for a game

playing AI, because it allows the program to pick the best

possible move at a given game state. This can be done

with the minimax algorithm: At each game turn, the AI

figures out which move would minimize the worst-case

scenario. To do that, it finds the node in the tree

corresponding to the current state of the game. It then

picks the action that minimizes the worst possible loss it

might suffer. This requires traversing the whole game tree

down to nodes representing end-of-game states. The

minimax algorithm therefore requires the complete game

tree. Great for tic-tac-toe, but not useful for chess, and

even less so for Go.

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an alternative and

a much more efficient approach towards searching the

game tree. The idea is to run a certain number of game

simulations. Each simulation starts at the current game

state and stops when the game is won by one of the two

players. At first, the actions from both players are chosen

randomly. At each simulation, the values are stored, such

as how often each node has been visited, and how often

this has led to a win. The later simulations are guided by

these recorded numbers, thus making the next simulations

less and less random after a certain number of simulations.

The actions that are taken in the future are more precise.

The more simulations are executed, the more accurate

these numbers become at selecting winning moves. It can

be shown that as the number of simulations grows, MCTS

indeed converges to optimal play.

Each round of Monte Carlo tree search consists of four

steps:

1) Selection: start from root R and select successive

child nodes down to a leaf node L. The section below

says more about a way of choosing child nodes that

lets the game tree expand towards most promising

moves, which is the essence of Monte Carlo tree

search.

2) Expansion: unless L ends the game with a win/loss

for either player, either create one or more child

nodes or choose from them node C.

3) Simulation: play a random playout from node C. This

step is also called playout or rollout.

4) Backpropagation: use the result of the playout to

update information in the nodes on the path from C to

R.

Sample steps from one round are shown in the figure

below. Each tree node stores the number of won/played

playouts.

Figure 2.2 Steps of Monte-carlo Tree Search

(Source: https://upload.wikimedia.org/wikipedia/commons/)

https://en.wikipedia.org/wiki/Game_tree
https://en.wikipedia.org/wiki/Game_tree
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://en.wikipedia.org/wiki/Minimax

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

2.3 AlphaGo

AlphaGo relies on two different components: A tree

search procedure, and convolutional networks that guide

the tree search procedure. The convolutional networks are

conceptually somewhat similar to the evaluation function

in Deep Blue, except that they are learned and not

designed. The tree search procedure can be regarded as a

brute-force approach, whereas the convolutional networks

provide a level on intuition to the game-play.

In total, three convolutional networks are trained, of

two different kinds: two policy networks and one value

network. Both types of networks take as input the current

game state, represented as an image.8

Figure 2.3 Types of Network in AlphaGo

(Source: https://www.tastehit.com/blog/google-deepmind-alphago-

how-it-works/)

The value network provides an estimate of the value of

the current state of the game: what is the probability of the

black player to ultimately win the game, given the current

state? The input to the value network is the whole game

board, and the output is a single number, representing the

probability of a win.8

The policy networks provide guidance regarding which

action to choose, given the current state of the game. The

output is a probability value for each possible legal move

(i.e. the output of the network is as large as the board).

Actions (moves) with higher probability values

correspond to actions that have a higher chance of leading

to a win.8

III. THE APPLICATION OF MONTE CARLO TREE

SEARCH

3.1 The Purpose of using Monte-carlo Tree Search

One might think, how will I ever win by only playing

random simuation all the time? The basic idea of the

application of Monte-carlo tree search is that if I stand

better on the board than my opponent, then although I

play random moves all the time, the chances of winning is

still better than when I stand worse than my opponent on

the board.

This is not a humanlike way to play the game of Go.

When I play the game of Go, I do not run simulations on

my head, counting out the chances I have or figuring out

the best possible stance I could possibly have then apply

this to the tree search. That would probably take me

hours, months, or even years to find the best spot to place

my stone. But a good analogy to this problem is this:

centuries ago, humans had not have any imagination that

in the future, humans will be able to fly, but not with

flappy wings like birds. We are now able to fly on planes,

on helicopters, by the use of steel and heavy materials that

have been very specifically tailored to carry passengers,

with accurate calculations that are very complex to the

human brain.

The Go game is very complicated that it is much more

profitable that humans create the algorithm in order to do

the thinking, instead of humans doing all the vigorous

thinking all by ourselves. This is what machines can do

better than us humans.

Another good concept as to why AlphaGo uses the

Monte-carlo tree is the multi-armed bandit problem. It is a

problem in which a gabmler at a row of slot machines has

to decide which machines to play, how many times to play

each machine, and in which order to play them. When

played, each machine provides a random reward from a

probability distribution specific to that machine. The

objective of the gambler is to maximize the sum of

rewards earned through a sequence of lever pulls.

When someone tries to play the machines and fails

several times, he will start to think that maybe the other

machines will give him a jackpot. Then he will start

playing the other slot machines and see which one

produces a win for him. He wants to exploit and explore

all the machines.

3.2 Brief Explanation on the working method

Figure 3.1 Example of Monte-carlo Tree Search

(Source: https://www.youtube.com/watch?v=b9H9AtbxpPM)

The picture above shows a tiny part of the whole tree.

The root shows the number of times the node has been

visited. The child nodes show how much wins per how

much times the nodes have been visited. For example,

86/193 shows that the node has been visited 193 times,

and the path that has passed through that node until the

leaf has resulted in 86 wins. After the 86/193 node, the ½

node is visited. This is chosen randomly. Even though 3/3

has the higher chance of winning (100%), but this is still

the simulation part of the tree search, where the path is

chosen randomly to find whether even the ½ node can

afterall result in the higher stance. It is possible that after

hundreds and thousands of simulation, this node will

https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.youtube.com/watch?v=b9H9AtbxpPM

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

result in a higher winning percentage than the 3/3 node,

the 1 loss was probably just unlucky.

This step is done over and over again, and the only thing

that matters in this part is whether or not when the search

has ended up on the leaf, the game is won or not. If it is

won, then the information is accumulated and analyzed.

The program can be stopped anytime, and can be asked

to show which move is the best one in a particular state of

the game. This is similar to using GDB (GNU Debugger)

for debugging programs, where you can run specific line

of codes and put breakpoints anywhere, look at the

registers, and do miraculous things in order to find where

the bugs hide.

This Monte-carlo tree search is sometimes considered as

a lazy way. The only thing it cares is about winning the

game. It does not care about how much points the players

get, how far the gap between the players’ states is, etc. It

only cares about winning.

Figure 3.2 Game state that shows AlphaGo’s laziness

(Source:

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf)

For example, in the picture above, the program puts the

black stone straight in the middle of the board, even

though there are some dangers on the stones around the

perimeter. Almost no human would put the stone on that

spot. But the program thinks differently than us. The

centre was assumed to be safe and sound. The computer

knows better than us. It was probably thinking that on the

game state, it was 2.5 points ahead, if it puts the stone in

the middle, it will become only 1.5 points ahead, but the

chance of losing is very slim.

Each and every small move that is decided by a stone

placed on the board creates a global impact of moves. The

result of the game can be very much decided even by the

first move that you made.

In the large board of 19x19, almost every move is legal.

What makes the AlphaGo different from chess is that the

moves in chess are pretty much restricted to a certain

pattern, meanwhile in Go, the player is almost free to

place the stone anywhere his heart desires. The average

branching factor of chess in 35, whereas in AlphaGo it is

250. This means that for each and every stone placed on

the board, it creates 250 other possibilities of states that

can be reached. The state space complexity of AlphaGo is

10171 compared to chess at the number of 1047.

3.3 The Mechanism of the Tree Search

As it has been explained on the introduction, the Monte-

carlo Tree Search takes 4 steps: selection, expansion,

simulation, backpropagation.

Figure 3.3 Steps through a Monte-carlo Tree Search

(Source:

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf)

This shows that on the selection step, it will randomly

select on which branch the tree will be accessed, then it

will go to the expansion step and check whether the node

needed already exists, if the node does not exist

previously, it will create a new node, thus expanding the

tree downwards. Then it will go to the simulation step,

where the tree will be accessed even deeper and further in

order to check the result of the decisions. Then the result

is propagated back to the root. If the path results in a win,

then it will be considered as having a higher chance of

winning, and will be explored further in the next

simulations. This process is repeated over and over again

by AlphaGo until it has almost accurate data over the

possibilities of a game of Go.

3.4 The Similarity to the Neural Networks

Neural networks are a computational approach based on

large collection of neural unites loosely modeling the way

our biological brain solves problems. Each neural unit is

connected with many others, and can affect the activation

state of connected neural units.

Figure 3.4 The Neural Network illustration

(Source:

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf)

The neural networks has input, hidden layer, and

output. The hidden layer is the complex way of processing

inputs into outputs. It also has weights and

biases/thresholds. The input is basically the 19x19 board

that is processed into the output. The bias tells whether it

is going to activate the next layers.

How does the neural network learn? It learns from

training. The training adjusts the parameters, weights and

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

biases through supervised learning. We have to have a

clear data set, get input from the dataset, and create the

expected output, then from backpropagation to adjust

these parameters.

Figure 3.5 The separation of dataset

(Source:

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf)

The dataset that has been collected is then divided into

training data and test data. This is because when we only

have the training data, then it does not imply a higher

abstract level of data. This will prevent overfitting.

The deep neural network is even more abstract than

neural network, with much larger input data.

Figure 3.6 Convolutional Neural Networks

(Source:

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf)

It takes all the input from the layer before it then maps

it into the other field, then it moves along in a stride. The

local receptive field will recognize the same or similar

features by the shared weight and biases.

In order to shorten the amount of time needed, we have

to minimize the parameters. AlphaGo trained it for weeks

nonstop, now it has 2.3 million parameters and 630

million connections.

The input features are:

 Stone colour

 Liberties

 Liberties after move played

 Legal move

 Turns since

 Capture Size

 Ladder Move

 KGS Rank

This Deep Neural Network method may probably

defeat GnuGo, but has only 55% of accuracy. But this is

defeated by the Monte-carlo tree search. When they

combine it with Monte-carlo tree search was much better

than only the deep neural network.

3.5 The AlphaGo System

This system still has a flaw. It uses the ability of machine

learning, as if it is a real human that is learning something.

But if it is only developed in this direction, the program

will only be able to match the ability of humans, but never

surpasses it. It only imitates the human brain.

Figure 3.7 The mechanism of AlphaGo

(Source:

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf)

What makes this special is that they create a self-play

system where they play against itself all the time, it

challenges itself all the time. That self-play gets better and

better over time. AlphaGo never sleeps. It keeps learning

how it can get better, how it can get even higher accuracy.

It calculates the possibility of winning and losing.

Figure 3.8 Combining AlphaGo with Monte-carlo Tree Search

(Source:

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf)

It is then combined with the Monte-carlo tree search as

the picture shown above.

The selection part is divided into 3 steps: action value,

prior probability, and visit count. The action value is

basically the rollout of the Monte-carlo search tree

combined with other factors. The prior probability is the

value they get from the superviced learning policy

network. The visit count is how many times it has been

visited. The more visit it has the less impact the prior

probability has on that node being selected.

After the selection process, the program consult the

value network, whether it looks like a winning or losing

position to us. Then it carries out the backpropagation.

AlphaGo has 3 key strengths compared to human:

a) Policy Network x human instinct

Which tells us where we are likely to play

b) Search x Reading Capability

The tree search that can predict the many moves

ahead

c) Value Network x Positional Judgement

The key factor to AlphaGo’s success that tells us

whether we are winning or losing.

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

Figure 3.9 Game State of AlphaGo’s 2nd game against Lee Sedol

(Source:

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf)

In the game against Lee Sedol, the world chamipon of

Go, the green square was the last move made by AlphaGo.

People thought it was a strange move, they thought that

AlphaGo will surely lose. This is one of the lazy principle

of AlphaGo. Humans will always think of the most

profitable position in order to get closer to winning. We

may regard that move as a mistake, but perhaps it should

be more accurately be viewed as a declaration of victory.

But AlphaGo thinks differently, it does not care about

how much gap there will be, it only cares about winning

the game. In the end, AlphaGo still wins.

Figure 3.10 Graph of confidence: AlphaGo vs Lee Sedol, 2nd game

(Source:

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf)

The green arrow shows the level of AlphaGo’s

confidence whether it is winning or not, in that particular

move shown in the previous picture. It already knows that

it is winning so it placed the stone there anyway.

Figure 3.11 Graph of confidence: AlphaGo vs Lee Sedol, 4th game

(Source:

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf)

This is where AlphaGo lost. Sedol made a defying all-

out move in the middle of the game, and AlphaGo thought

that it can still win with a tight margin. But when the

graph started to go down, only then did AlphaGo realize

that it was not a wise move and that it was losing. This

proves that AlphaGo still needs a lot of improvement for

its lack of knowledge.

V. CONCLUSION

Solving problems the human way is hugely different

than solving problems the computer way. Sometimes we

think that we might have to solve problems the same way

we think, but then it is not correct because the human

mind can still be defied by the actual way of winning.

We should not blindly dismiss the approaches as

infeasible. Don’t always assume that somebody else out

there has done our ideas, that others might always do it

better. If we have a problem and we want so desperately

to solve it in a way better than the others, than we should

try it. There may already be preceding solutions to the

problem, but like the neural network way, it can be

improved by the Monte-carlo tree search in order to

increase its accuracy and efficiency, even exponentially

higher than before. Some ways may even be

complementing towards the previous ones and thus create

an invention that the world has never seen before.

VI. APPENDIX

Convolution: a coil or twist, especially one of many

Googol: 1.0 x 10100

VII. ACKNOWLEDGMENT

A special note of thanks to Dr. Ir. Rinaldi Munir, MT.,

one of the most inspiring lecturers at Bandung Institute of

Technology for this interesting assignment that has

broaden my knowledge on artificial intelligence.

I would also like to thank my friend Irene Edria that

helped motivate me in doing this work, and for waking me

up whenever I fell asleep while researching and writing

this paper.

REFERENCES

[1] W. Burton, “The Tso Chuan (reprint ed.),” April 1992.

[2] https://deepmind.com/research/alphago/ Retrieved 4 December

2016.

[3] Artificial intelligence: Google's AlphaGo beats Go master Lee Se-

dol". BBC News. Retrieved 17 March 2016.

[4] "Research Blog: AlphaGo: Mastering the ancient game of Go

with Machine Learning". Google Research Blog. 27 January

2016.

[5] "Google achieves AI 'breakthrough' by beating Go champion".

BBC News. 27 January 2016.

[6] "Match 1 - Google DeepMind Challenge Match: Lee Sedol vs

AlphaGo". 8 March 2016.

[7] http://www.nature.com/nature/journal/v529/n7587/full/nature1696

1.html Retrieved 4 December 2016. Retrieved 4 December 2016.

[8] https://www.tastehit.com/blog/google-deepmind-alphago-how-it-

works/https://www.tastehit.com/blog/google-deepmind-alphago-

how-it-works/ Retrieved 4 December 2016.

[9] G.M.J.B. Chaslot; M.H.M. Winands; J.W.H.M. Uiterwijk; H.J.

van den Herik; B. Bouzy (2008). "Progressive Strategies for

Monte-Carlo Tree Search". IEEE Trans. Antennas Propagat., to be

published.

[10] https://pragtob.files.wordpress.com/2016/09/strange_group.pdf

Retrieved 9 December 2016.

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://deepmind.com/research/alphago/
http://www.bbc.com/news/technology-35785875
http://www.bbc.com/news/technology-35785875
http://googleresearch.blogspot.com/2016/01/alphago-mastering-ancient-game-of-go.html
http://googleresearch.blogspot.com/2016/01/alphago-mastering-ancient-game-of-go.html
http://www.bbc.com/news/technology-35420579
https://en.wikipedia.org/wiki/BBC_News
https://www.youtube.com/watch?v=vFr3K2DORc8&t=1h57m
https://www.youtube.com/watch?v=vFr3K2DORc8&t=1h57m
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html%20Retrieved%204%20December%202016
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html%20Retrieved%204%20December%202016
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://dke.maastrichtuniversity.nl/m.winands/documents/pMCTS.pdf
https://dke.maastrichtuniversity.nl/m.winands/documents/pMCTS.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Desember 2016

Wenny Yustalim 13515002

