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Abstract—Playing a combinatorial game might sometimes 

be extremely difficult for the human mind. For centuries, 

humans have always attempted to develop algorithms in 

order to discover a way to always win every match of a 

particular game, which is not only efficient in time, but also 

has almost 100% chance of winning. One of the examples of 

this combinatorial game is “Go”, a Chinese board game 

similar to chess, but much more complex and mindblowing. 

This paper discusses how the Monte Carlo tree search is used 

in the computer program AlphaGo in order to win almost 

every match of a Go game. 

 

Keywords—AlphaGo, Go, Monte Carlo tree search, Zhuo 

Zhuan. 

 

 

I.   INTRODUCTION 

Go (圍棋 wéiqí) is an abstract strategy board game for 

two players, in which the aim is to surround more territory 

than the opponent. The game was invented in ancient 

China more than 5,500 years ago, and is thus the oldest 

board game continuously played today. The earliest 

written reference to the game is generally recognized as 

the historical Zuo Zhuan. 

The game is simply played by two players taking turns 

to place black or white stones on the board. The player 

must try to capture the opponent’s stones or surround 

empty space to make points of territory. 

The stones are placed on a (traditionally wooden) board 

of size 19x19. There are also smaller sized boards, 9x9 

and 13x13, but the standard board size for tournaments is 

the 19x19 one. Due to this reason, the possible moves that 

the players can make is much more than the moves in a 

chess game, since the size of the board is larger than the 

standard 8x8 sized chessboard, and the players can place 

the stone almost anywhere on the board, except for some 

restricted areas that will be explained further. 

The empty points which are horizontally and vertically 

adjacent to a stone, or a solidly connected string of stones, 

are known as liberties. An isolated stone or solidly 

connected string of stones is captured when all of its 

liberties are occupied by enemy stones. 

A player may not self-capture, that is play a stone into a 

position where it would have no liberties or form part of a 

string which would thereby have no liberties, unless, as a 

result, one or more of the stones surrounding it is 

captured. 

Any string or group of stones which has two or more 

eyes is permanently safe from capture and is referred to as 

a live string or live group. Conversely, a string of stones 

which is unable to make two eyes, and is cut off and 

surrounded by live enemy strings, is called a dead string 

since it is hopeless and unable to avoid eventual capture. 

There is also a major difference between Go and chess. 

In Go, the players start with completely nothing on the 

board, hence they have to really consider where to place 

their first stone in order to gain maximum winning chance, 

while in chess, the pieces are already placed on both sides 

of the board, and the players have to move them around in 

order to win the game.2 

There is also a rule called ko that prohibits repetition of 

any previous position, the ko rule prohibits only 

immediate repetition, that can lead the game into an 

infinite repetition and thus can take forever to finish. 

As simple as the rules are, Go is a game of profound 

complexity. There are more possible positions in Go than 

there are atoms in the universe. That makes Go a googol 

(10100) times more complex than chess.2 

Go is played primarily through intuition and feel, and 

because of its beauty, subtlety and intellectual depth it has 

captured the human imagination for centuries. AlphaGo is 

the first computer program to ever beat a professional, 

human player. 

AlphaGo is a computer program developed by Google 

DeepMind in London to play the board game Go. In 

October 2015, it became the first Computer Go program 

to beat a professional human Go player without handicaps 

on a full-sized 19×19 board. In March 2016, it beat Lee 

Sedol in a five-game match, the first time a computer Go 

program has beaten a 9-dan professional without 

handicaps.6 Although it lost to Lee Sedol in the fourth 

game, Lee resigned the final game, giving a final score of 

4 games to 1 in favour of AlphaGo. In recognition of 

beating Lee Sedol, AlphaGo was awarded an honorary 9-

dan by the Korea Baduk Association.3 

AlphaGo uses very much the application of Monte 

Carlo tree search programs that simulate thousands of 

random games of self-play. Using this search algorithm, 

AlphaGo achieved a 99.8% winning rate against other Go 

programs, and defeated the human European Go 

champion by 5 games to 0. That is the first time that a 

computer program has defeated a human professional 

player in the full-sized game of Go, a feat previously 

thought to be at least a decade away. 7 

https://upload.wikimedia.org/wikipedia/commons/0/0f/Zh-w%C3%A9iq%C3%AD.ogg
https://en.wikipedia.org/wiki/Abstract_strategy_game
https://en.wikipedia.org/wiki/Board_game
https://en.wikipedia.org/wiki/History_of_Science_and_Technology_in_China
https://en.wikipedia.org/wiki/History_of_Science_and_Technology_in_China
https://en.wikipedia.org/wiki/Zuo_Zhuan
https://www.google.com/search?q=googol&oq=googol&aqs=chrome..69i57j69i64j0l4.290j0j1&sourceid=chrome&ie=UTF-8
https://en.wikipedia.org/wiki/Google_DeepMind
https://en.wikipedia.org/wiki/Google_DeepMind
https://en.wikipedia.org/wiki/Go_%28game%29
https://en.wikipedia.org/wiki/Computer_Go
https://en.wikipedia.org/wiki/Go_handicaps
https://en.wikipedia.org/wiki/Lee_Sedol
https://en.wikipedia.org/wiki/Lee_Sedol
https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
https://en.wikipedia.org/wiki/Go_ranks_and_ratings
https://en.wikipedia.org/wiki/Korea_Baduk_Association
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It is very interesting that such a simple concept of 

search tree can be used to create the algorithm that can 

win over even the most skilled human player of Go. It 

took Google a lot of reasearch, time, energy, and funds in 

order to make AlphaGo a real thing that can actually 

match the brain of a human. It uses traditional AI methods 

such as alpha-beta pruning, tree traversal and heuristic 

search. The most dominant part is the Monte-carlo tree 

search, which is going to be explained in this paper. 

The Monte-carlo tree search is a heuristic search 

algorithm for decision processes, that is nowadays used in 

many AI (Artificial Intelligence) in order to win a game, 

such as poker, Go, and many other examples. The focus is 

analysing the most promising moves, expanding the 

search tree based on random sampling of the search space. 

The game is played to the very end by selecting random 

moves, then the final result is used to weigh the nodes in 

the tree so that better nodes will be used more often in the 

next games. This method allows AIs to learn which moves 

produce the best possible outcome. 

There is another algorithm called Minimax to search on 

a tree, by considering several factors into account such as 

picking the maximum and minimum value, matching 

different players’ conflicting goals, and it proceeds down 

the tree. This tree basically finds the best standing that 

will result in the best outcomes possible. It contains all 

possible outcomes. But this algorithm is not the most 

efficient one so that AlphaGo prefers to use Monte-carlo 

tree search instead. The problem with this algorithm is 

that it can take a considerably long time to do a full search 

on the tree, especially for a game with high branching 

factor (a high average number of available moves per 

turn).  

 

II.  THEORIES 

2.1 Game Tree 

To understand how AIs are capable of playing games 

such as chess and Go, we have to understand what a game 

tree is. A game tree represents game states (positions) as 

nodes in the tree, and possible actions as edges. The root 

of the tree represents the state at the beginning of the 

game. The next level represents the possible states after 

the first move, etc. For simple games such as tic-tac-toe, it 

is possible to represent all possible game states (the 

complete game tree) visually: 

 
Figure 2.1 Game tree of a tic-tac-toe 

(Source: https://www.tastehit.com/blog/google-deepmind-alphago-

how-it-works/) 

Knowing the complete game tree is useful for a game 

playing AI, because it allows the program to pick the best 

possible move at a given game state. This can be done 

with the minimax algorithm: At each game turn, the AI 

figures out which move would minimize the worst-case 

scenario. To do that, it finds the node in the tree 

corresponding to the current state of the game. It then 

picks the action that minimizes the worst possible loss it 

might suffer. This requires traversing the whole game tree 

down to nodes representing end-of-game states. The 

minimax algorithm therefore requires the complete game 

tree. Great for tic-tac-toe, but not useful for chess, and 

even less so for Go. 

 

2.2 Monte Carlo Tree Search 

Monte Carlo Tree Search (MCTS) is an alternative and 

a much more efficient approach towards searching the 

game tree. The idea is to run a certain number of game 

simulations. Each simulation starts at the current game 

state and stops when the game is won by one of the two 

players. At first, the actions from both players are chosen 

randomly. At each simulation, the values are stored, such 

as how often each node has been visited, and how often 

this has led to a win. The later simulations are guided by 

these recorded numbers, thus making the next simulations 

less and less random after a certain number of simulations. 

The actions that are taken in the future are more precise. 

The more simulations are executed, the more accurate 

these numbers become at selecting winning moves. It can 

be shown that as the number of simulations grows, MCTS 

indeed converges to optimal play. 

Each round of Monte Carlo tree search consists of four 

steps: 

1) Selection: start from root R and select successive 

child nodes down to a leaf node L. The section below 

says more about a way of choosing child nodes that 

lets the game tree expand towards most promising 

moves, which is the essence of Monte Carlo tree 

search. 

2) Expansion: unless L ends the game with a win/loss 

for either player, either create one or more child 

nodes or choose from them node C. 

3) Simulation: play a random playout from node C. This 

step is also called playout or rollout. 

4) Backpropagation: use the result of the playout to 

update information in the nodes on the path from C to 

R. 

Sample steps from one round are shown in the figure 

below. Each tree node stores the number of won/played 

playouts. 

 
Figure 2.2 Steps of Monte-carlo Tree Search 

(Source: https://upload.wikimedia.org/wikipedia/commons/) 

https://en.wikipedia.org/wiki/Game_tree
https://en.wikipedia.org/wiki/Game_tree
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://en.wikipedia.org/wiki/Minimax
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2.3 AlphaGo 

AlphaGo relies on two different components: A tree 

search procedure, and convolutional networks that guide 

the tree search procedure. The convolutional networks are 

conceptually somewhat similar to the evaluation function 

in Deep Blue, except that they are learned and not 

designed. The tree search procedure can be regarded as a 

brute-force approach, whereas the convolutional networks 

provide a level on intuition to the game-play. 

In total, three convolutional networks are trained, of 

two different kinds: two policy networks and one value 

network. Both types of networks take as input the current 

game state, represented as an image.8 

 
Figure 2.3 Types of Network in AlphaGo 

(Source: https://www.tastehit.com/blog/google-deepmind-alphago-

how-it-works/) 

The value network provides an estimate of the value of 

the current state of the game: what is the probability of the 

black player to ultimately win the game, given the current 

state? The input to the value network is the whole game 

board, and the output is a single number, representing the 

probability of a win.8 

The policy networks provide guidance regarding which 

action to choose, given the current state of the game. The 

output is a probability value for each possible legal move 

(i.e. the output of the network is as large as the board). 

Actions (moves) with higher probability values 

correspond to actions that have a higher chance of leading 

to a win.8 

 

III.   THE APPLICATION OF MONTE CARLO TREE 

SEARCH 

3.1 The Purpose of using Monte-carlo Tree Search 

One might think, how will I ever win by only playing 

random simuation all the time? The basic idea of the 

application of Monte-carlo tree search is that if I stand 

better on the board than my opponent, then although I 

play random moves all the time, the chances of winning is 

still better than when I stand worse than my opponent on 

the board. 

This is not a humanlike way to play the game of Go. 

When I play the game of Go, I do not run simulations on 

my head, counting out the chances I have or figuring out 

the best possible stance I could possibly have then apply 

this to the tree search. That would probably take me 

hours, months, or even years to find the best spot to place 

my stone. But a good analogy to this problem is this: 

centuries ago, humans had not have any imagination that 

in the future, humans will be able to fly, but not with 

flappy wings like birds. We are now able to fly on planes, 

on helicopters, by the use of steel and heavy materials that 

have been very specifically tailored to carry passengers, 

with accurate calculations that are very complex to the 

human brain. 

The Go game is very complicated that it is much more 

profitable that humans create the algorithm in order to do 

the thinking, instead of humans doing all the vigorous 

thinking all by ourselves. This is what machines can do 

better than us humans. 

Another good concept as to why AlphaGo uses the 

Monte-carlo tree is the multi-armed bandit problem. It is a 

problem in which a gabmler at a row of slot machines has 

to decide which machines to play, how many times to play 

each machine, and in which order to play them. When 

played, each machine provides a random reward from a 

probability distribution specific to that machine. The 

objective of the gambler is to maximize the sum of 

rewards earned through a sequence of lever pulls. 

When someone tries to play the machines and fails 

several times, he will start to think that maybe the other 

machines will give him a jackpot. Then he will start 

playing the other slot machines and see which one 

produces a win for him. He wants to exploit and explore 

all the machines. 

 

3.2 Brief Explanation on the working method 

 
Figure 3.1 Example of Monte-carlo Tree Search 

(Source: https://www.youtube.com/watch?v=b9H9AtbxpPM) 

The picture above shows a tiny part of the whole tree. 

The root shows the number of times the node has been 

visited. The child nodes show how much wins per how 

much times the nodes have been visited. For example, 

86/193 shows that the node has been visited 193 times, 

and the path that has passed through that node until the 

leaf has resulted in 86 wins. After the 86/193 node, the ½ 

node is visited. This is chosen randomly. Even though 3/3 

has the higher chance of winning (100%), but this is still 

the simulation part of the tree search, where the path is 

chosen randomly to find whether even the ½ node can 

afterall result in the higher stance. It is possible that after 

hundreds and thousands of simulation, this node will 

https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.youtube.com/watch?v=b9H9AtbxpPM
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result in a higher winning percentage than the 3/3 node, 

the 1 loss was probably just unlucky. 

This step is done over and over again, and the only thing 

that matters in this part is whether or not when the search 

has ended up on the leaf, the game is won or not. If it is 

won, then the information is accumulated and analyzed. 

The program can be stopped anytime, and can be asked 

to show which move is the best one in a particular state of 

the game. This is similar to using GDB (GNU Debugger) 

for debugging programs, where you can run specific line 

of codes and put breakpoints anywhere, look at the 

registers, and do miraculous things in order to find where 

the bugs hide. 

This Monte-carlo tree search is sometimes considered as 

a lazy way. The only thing it cares is about winning the 

game. It does not care about how much points the players 

get, how far the gap between the players’ states is, etc. It 

only cares about winning. 

 
Figure 3.2 Game state that shows AlphaGo’s laziness 

(Source: 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf) 

For example, in the picture above, the program puts the 

black stone straight in the middle of the board, even 

though there are some dangers on the stones around the 

perimeter. Almost no human would put the stone on that 

spot. But the program thinks differently than us. The 

centre was assumed to be safe and sound. The computer 

knows better than us. It was probably thinking that on the 

game state, it was 2.5 points ahead, if it puts the stone in 

the middle, it will become only 1.5 points ahead, but the 

chance of losing is very slim. 

Each and every small move that is decided by a stone 

placed on the board creates a global impact of moves. The 

result of the game can be very much decided even by the 

first move that you made. 

In the large board of 19x19, almost every move is legal. 

What makes the AlphaGo different from chess is that the 

moves in chess are pretty much restricted to a certain 

pattern, meanwhile in Go, the player is almost free to 

place the stone anywhere his heart desires. The average 

branching factor of chess in 35, whereas in AlphaGo it is 

250. This means that for each and every stone placed on 

the board, it creates 250 other possibilities of states that 

can be reached. The state space complexity of AlphaGo is 

10171 compared to chess at the number of 1047. 

 

3.3 The Mechanism of the Tree Search 

As it has been explained on the introduction, the Monte- 

carlo Tree Search takes 4 steps: selection, expansion, 

simulation, backpropagation. 

 
Figure 3.3 Steps through a Monte-carlo Tree Search 

(Source: 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf) 

This shows that on the selection step, it will randomly 

select on which branch the tree will be accessed, then it 

will go to the expansion step and check whether the node 

needed already exists, if the node does not exist 

previously, it will create a new node, thus expanding the 

tree downwards. Then it will go to the simulation step, 

where the tree will be accessed even deeper and further in 

order to check the result of the decisions. Then the result 

is propagated back to the root. If the path results in a win, 

then it will be considered as having a higher chance of 

winning, and will be explored further in the next 

simulations. This process is repeated over and over again 

by AlphaGo until it has almost accurate data over the 

possibilities of a game of Go. 

 

3.4 The Similarity to the Neural Networks 

Neural networks are a computational approach based on 

large collection of neural unites loosely modeling the way 

our biological brain solves problems. Each neural unit is 

connected with many others, and can affect the activation 

state of connected neural units. 

 
Figure 3.4 The Neural Network illustration 

(Source: 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf) 

The neural networks has input, hidden layer, and 

output. The hidden layer is the complex way of processing 

inputs into outputs. It also has weights and 

biases/thresholds. The input is basically the 19x19 board 

that is processed into the output. The bias tells whether it 

is going to activate the next layers. 

How does the neural network learn? It learns from 

training. The training adjusts the parameters, weights and 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
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biases through supervised learning. We have to have a 

clear data set, get input from the dataset, and create the 

expected output, then from backpropagation to adjust 

these parameters. 

  
Figure 3.5 The separation of dataset 

(Source: 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf) 

 

The dataset that has been collected is then divided into 

training data and test data. This is because when we only 

have the training data, then it does not imply a higher 

abstract level of data. This will prevent overfitting. 

The deep neural network is even more abstract than 

neural network, with much larger input data. 

 
Figure 3.6 Convolutional Neural Networks 

(Source: 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf) 

It takes all the input from the layer before it then maps 

it into the other field, then it moves along in a stride. The 

local receptive field will recognize the same or similar 

features by the shared weight and biases. 

In order to shorten the amount of time needed, we have 

to minimize the parameters. AlphaGo trained it for weeks 

nonstop, now it has 2.3 million parameters and 630 

million connections. 

The input features are: 

 Stone colour 

 Liberties 

 Liberties after move played 

 Legal move 

 Turns since 

 Capture Size 

 Ladder Move 

 KGS Rank 

This Deep Neural Network method may probably 

defeat GnuGo, but has only 55% of accuracy. But this is 

defeated by the Monte-carlo tree search. When they 

combine it with Monte-carlo tree search was much better 

than only the deep neural network. 

 

3.5  The AlphaGo System 

This system still has a flaw. It uses the ability of machine 

learning, as if it is a real human that is learning something. 

But if it is only developed in this direction, the program 

will only be able to match the ability of humans, but never 

surpasses it. It only imitates the human brain. 

 
Figure 3.7 The mechanism of AlphaGo 

(Source: 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf) 

 

What makes this special is that they create a self-play 

system where they play against itself all the time, it 

challenges itself all the time. That self-play gets better and 

better over time. AlphaGo never sleeps. It keeps learning 

how it can get better, how it can get even higher accuracy. 

It calculates the possibility of winning and losing. 

 
Figure 3.8 Combining AlphaGo with Monte-carlo Tree Search 

(Source: 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf) 

 

It is then combined with the Monte-carlo tree search as 

the picture shown above. 

The selection part is divided into 3 steps: action value, 

prior probability, and visit count. The action value is 

basically the rollout of the Monte-carlo search tree 

combined with other factors. The prior probability is the 

value they get from the superviced learning policy 

network. The visit count is how many times it has been 

visited. The more visit it has the less impact the prior 

probability has on that node being selected. 

After the selection process, the program consult the 

value network, whether it looks like a winning or losing 

position to us. Then it carries out the backpropagation. 

AlphaGo has 3 key strengths compared to human: 

a) Policy Network x human instinct 

Which tells us where we are likely to play 

b) Search x Reading Capability 

The tree search that can predict the many moves 

ahead 

c) Value Network x Positional Judgement 

The key factor to AlphaGo’s success that tells us 

whether we are winning or losing. 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
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Figure 3.9 Game State of AlphaGo’s 2nd game against Lee Sedol 

(Source: 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf) 

In the game against Lee Sedol, the world chamipon of 

Go, the green square was the last move made by AlphaGo. 

People thought it was a strange move, they thought that 

AlphaGo will surely lose. This is one of the lazy principle 

of AlphaGo. Humans will always think of the most 

profitable position in order to get closer to winning. We 

may regard that move as a mistake, but perhaps it should 

be more accurately be viewed as a declaration of victory. 

But AlphaGo thinks differently, it does not care about 

how much gap there will be, it only cares about winning 

the game. In the end, AlphaGo still wins. 

 
Figure 3.10 Graph of confidence: AlphaGo vs Lee Sedol, 2nd game 

(Source: 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf) 

The green arrow shows the level of AlphaGo’s 

confidence whether it is winning or not, in that particular 

move shown in the previous picture. It already knows that 

it is winning so it placed the stone there anyway. 

 
Figure 3.11 Graph of confidence: AlphaGo vs Lee Sedol, 4th game 

(Source: 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf) 

This is where AlphaGo lost. Sedol made a defying all-

out move in the middle of the game, and AlphaGo thought 

that it can still win with a tight margin. But when the 

graph started to go down, only then did AlphaGo realize 

that it was not a wise move and that it was losing. This 

proves that AlphaGo still needs a lot of improvement for 

its lack of knowledge. 

V.   CONCLUSION 

Solving problems the human way is hugely different 

than solving problems the computer way. Sometimes we 

think that we might have to solve problems the same way 

we think, but then it is not correct because the human 

mind can still be defied by the actual way of winning. 

We should not blindly dismiss the approaches as 

infeasible. Don’t always assume that somebody else out 

there has done our ideas, that others might always do it 

better. If we have a problem and we want so desperately 

to solve it in a way better than the others, than we should 

try it. There may already be preceding solutions to the 

problem, but like the neural network way, it can be 

improved by the Monte-carlo tree search in order to 

increase its accuracy and efficiency, even exponentially 

higher than before. Some ways may even be 

complementing towards the previous ones and thus create 

an invention that the world has never seen before. 

 

VI.   APPENDIX 

Convolution: a coil or twist, especially one of many 

Googol: 1.0 x 10100 

 

VII.   ACKNOWLEDGMENT 

A special note of thanks to Dr. Ir. Rinaldi Munir, MT., 

one of the most inspiring lecturers at Bandung Institute of 

Technology for this interesting assignment that has 

broaden my knowledge on artificial intelligence. 

I would also like to thank my friend Irene Edria that 

helped motivate me in doing this work, and for waking me 

up whenever I fell asleep while researching and writing 

this paper. 

 

REFERENCES 

[1] W. Burton, “The Tso Chuan (reprint ed.),” April 1992. 

[2] https://deepmind.com/research/alphago/ Retrieved 4 December 

2016. 

[3] Artificial intelligence: Google's AlphaGo beats Go master Lee Se-

dol". BBC News. Retrieved 17 March 2016. 

[4] "Research Blog: AlphaGo: Mastering the ancient game of Go 

with Machine Learning". Google Research Blog. 27 January 

2016. 

[5] "Google achieves AI 'breakthrough' by beating Go champion". 

BBC News. 27 January 2016. 

[6] "Match 1 - Google DeepMind Challenge Match: Lee Sedol vs 

AlphaGo". 8 March 2016. 

[7] http://www.nature.com/nature/journal/v529/n7587/full/nature1696

1.html Retrieved 4 December 2016. Retrieved 4 December 2016. 

[8] https://www.tastehit.com/blog/google-deepmind-alphago-how-it-

works/https://www.tastehit.com/blog/google-deepmind-alphago-

how-it-works/ Retrieved 4 December 2016. 

[9] G.M.J.B. Chaslot; M.H.M. Winands; J.W.H.M. Uiterwijk; H.J. 

van den Herik; B. Bouzy (2008). "Progressive Strategies for 

Monte-Carlo Tree Search". IEEE Trans. Antennas Propagat., to be 

published. 

[10] https://pragtob.files.wordpress.com/2016/09/strange_group.pdf 

Retrieved 9 December 2016. 

https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf
https://deepmind.com/research/alphago/
http://www.bbc.com/news/technology-35785875
http://www.bbc.com/news/technology-35785875
http://googleresearch.blogspot.com/2016/01/alphago-mastering-ancient-game-of-go.html
http://googleresearch.blogspot.com/2016/01/alphago-mastering-ancient-game-of-go.html
http://www.bbc.com/news/technology-35420579
https://en.wikipedia.org/wiki/BBC_News
https://www.youtube.com/watch?v=vFr3K2DORc8&t=1h57m
https://www.youtube.com/watch?v=vFr3K2DORc8&t=1h57m
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html%20Retrieved%204%20December%202016
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html%20Retrieved%204%20December%202016
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
https://dke.maastrichtuniversity.nl/m.winands/documents/pMCTS.pdf
https://dke.maastrichtuniversity.nl/m.winands/documents/pMCTS.pdf
https://pragtob.files.wordpress.com/2016/09/strange_group.pdf


Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017 

 

 

PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang saya 

tulis ini adalah tulisan saya sendiri, bukan saduran, atau 

terjemahan dari makalah orang lain, dan bukan plagiasi. 

 

Bandung, 8 Desember 2016    

 

 
 

Wenny Yustalim 13515002 


