
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2015/2016 

 

Minimum Spanning Tree-based Image Segmentation 

and Its Application for Background Separation 
 

Jonathan Christopher - 13515001 

Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  

jonathan.christopher@students.itb.ac.id 
 

 

 

Abstract—It is often needed to separate the background of 

images from foreground objects, which might not always be 

uniformly colored. This paper presents a minimum spanning 

tree-based algorithm which treats the image as a graph and 

generates a minimum spanning forest in which each 

minimum spanning tree is a region of the image, using a 

modified version of Kruskal’s algorithm. The colors in each 

region is then averaged, and a region is selected as the 

background. This algorithm generally runs in linearithmic 

(O(n log n)) time. This paper also considers the application of 

this algorithm for smoothing scanned document images. 

 

Keywords—minimum spanning tree, Kruskal’s algorithm, 

image segmentation, background separation. 

 

 

I.   INTRODUCTION 

Advances in fields such as image processing and digital 

publishing has made it possible to use digital images in new 

ways. A digital image can now be cropped and shaped 

according to needs, using various image editing tools. 

Although most available tools for image editing do help 

significantly in editing only specific regions of an image, 

they still require manual human operation. It is because the 

human mind is still superior to machines in recognizing 

and separating objects in a flat image, due to the ability of 

the mind to learn and reason about the objects presented in 

the image themselves. 

However, sometimes it is needed to separate and remove 

backgrounds autonomously, for example to for batch 

processing a large number of images, or for real-time uses 

such as the preprocessing step of a video object tracking 

system. This requires an adaptive algorithm that is able to 

efficiently process the image, using only the limited color 

data found in a typical digital image file. 

This paper explores the properties and possible 

applications of a minimum spanning tree-based image 

segmentation algorithm for background separation. An 

algorithm utilizing a modified version of Kruskal’s 

minimum spanning tree algorithm is implemented in 

Python and tested with several sample images. 

The algorithm discussed in this paper is a graph-based 

algorithm for image segmentation outlined in [1], with 

several modifications meant to simplify its implementation 

and improve its effectiveness in handling various types of 

images. It is also inspired by the minimum spanning tree-

based hierarchical clustering algorithm in [2], as the 

problem of separating regions in an image can be 

reformulated as the problem of clustering pixels based on 

their color and positions. 

 

II.  GRAPHS, TREES AND MINIMUM SPANNING TREES 

A. Graphs 

A graph 𝐺 = (𝑉, 𝐸) consists of a nonempty set of 

vertices/nodes V, and a set of edges E, each of which 

connects two endpoint vertices together [3]. A graph may 

have no edges (empty/null graph), or have each of its 

vertices connected by an edge directly to each other 

(complete graph). The edges in a graph may be weighted, 

which means they are assigned a cost/weight value. Graphs 

are frequently used to mathematically model relations 

between objects, such as roads and cities in maps, states 

and transitions in a finite state automaton, or computers in 

a network. 

Two vertices on a graph are adjacent if there is an edge 

connecting them. The edge is then incident to each of the 

vertices it is connected to. The degree of a vertex deg⁡(𝑣) 
is the number of edges incident to it, except for loops 

(edges which two ends are connected to the same vertex), 

which are counted twice. The neighbors of a vertex is the 

set of vertices which are adjacent to it [3]. 

There are several types of graphs, grouped by the 

directedness of their edges, the existence of loops and 

whether they have multiple edges. A simple graph has 

undirected edges, single edges only and no loops. A 

multigraph has undirected, possibly multiple edges and no 

loops. A pseudograph is like a multigraph, but with loops. 

A simple directed graph has single, but directed edges, and 

no loops. A directed multigraph has directed, possibly 

multiple edges, with no loops. A mixed graph may have 

single or multiple edges, which might be directed or 

undirected, and includes loops [3]. 

A subgraph⁡𝐺′ = (𝑉′, 𝐸′) of a graph 𝐺 = (𝑉, 𝐸) is a 

graph which set of vertices V’ is a subset of V, and which 

set of edges E’ is a subset of E and consists only of edges 

where both incident vertices are members of V`. A 

subgraph can be constructed from a graph by removing 

edges, or by removing vertices and their incident edges [3]. 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2015/2016 

 

A path is a sequence of edges beginning at a vertex, 

connecting vertices along. Formally, it is a sequence of 

edges in a graph such that there is a sequence of vertices 

where the ith edge in the sequence connects the (i-1)th and 

ith vertex. A circuit/cycle is a path that starts and ends at the 

same vertex. A simple path does not contain the same edge 

more than once. In a simple graph, the sequence of vertices 

passed through by a path is enough to uniquely denote the 

path, as there are only zero or one possible edge between 

each vertex [3]. 

 

B. Trees 

A tree is defined to be a connected, undirected graph 

which contains no simple circuits. As a tree does not 

contain simple circuits, it must not have a loop or multiple 

edges. Thus, a tree is a simple graph. Each vertex in a tree 

has a simple path connecting it with all other vertices. A 

forest is a collection of trees [3]. Trees are commonly used 

to model hierarchical relations, for example in family trees 

and organizational trees. Trees can also be used to structure 

data into forms more suitable for efficient processing, such 

as a binary search trees or a disjoint set union/find data 

structure, the latter which will be utilized in this paper. 

A tree has several properties. There are exactly n-1 

edges in a tree of n edges. A tree may be rooted, in which 

a vertex is designated as the root and every other vertex is 

directed away from it. Sometimes, the directedness is not 

explicitly shown. Vertices which are adjacent to a vertex, 

in the direction of the edges, are the children of the vertex. 

A vertex that has no children is a leaf; a vertex that has one 

or more children are an internal node. An m-ary tree is a 

rooted tree which internal vertices has at most m children. 

The height of an m-ary tree is the length of the longest path 

from the root to a leaf. In an m-ary tree of height h, there 

are at most mh leaves [3]. As in a graph, the edges of a tree 

may be weighted or unweighted. 

A spanning tree of a simple, connected graph is its 

subgraph, which is also a tree and contains all its vertices 

[3]. Any simple graph which is not yet a spanning tree can 

be made into one by removing edges that make a cycle. 

Only connected simple graphs have spanning trees, and 

vice versa. Removing an edge from a spanning tree will 

split it into two spanning trees. Traversing the vertices of a 

connected graph can be done according to one of its 

spanning trees, either through depth-first search or breadth-

first search. 

 

C. Minimum Spanning Trees 

A minimum spanning tree of a connected weighted 

graph is a spanning tree with the smallest possible sum of 

edge weights [3]. There can be multiple minimum 

spanning trees if the weights of a graph’s edges are not 

unique. Minimum spanning trees, or MSTs, are useful in 

modelling problems where adding edges increases costs, 

such as finding the least expensive way to connect 

computers in a network. Several algorithms to determine 

the minimum spanning tree of a graph exists; two of the 

most efficient and easiest to implement are Prim’s 

algorithm and Kruskal’s algorithm. 

In Prim’s algorithm, we begin by taking a starting 

vertex. For another n-1 iterations or until we run out of 

vertices to visit, we then take a vertex which is adjacent to 

a vertex already taken, which edge connecting it to the 

taken vertex is minimum among all currently available 

edges, but will not form a cycle if taken. While doing this, 

we keep track of which edges are used and the sum of their 

weights. This will result in a minimum spanning tree of the 

graph which contains those edges, if the original graph is 

connected. If the original graph is not connected, the 

algorithm will only find a minimum spanning tree for the 

connected component which contains the starting vertex in 

most implementations. 

An efficient way to implement Prim’s algorithm 

involves a priority queue to keep track of currently 

available unvisited incident vertices, which are vertices 

which has an edge adjacent to one of the currently taken 

vertices. The lower the weight of the connecting edge, the 

higher the priority. The complexity of an efficient priority 

queue implementation can be as low as log(n), for instance 

if using a self-balancing binary search tree-based priority 

queue implementation. To prevent creating a cycle, we 

keep track of which vertices are already taken after each 

iteration. This is commonly done using an array of Boolean 

values, which could be read/written in O(1) time. As the 

process is iterated n times, the overall time complexity is 

O(n log n) [4]. 

In Kruskal’s algorithm, the edges of the original graph 

are first sorted according to edge weight. The new 

minimum spanning tree is first an empty graph consisting 

of the vertices of the original graph. We then try to add n-

1 edges which does not form a cycle, starting from the edge 

with the least weight in the sorted edge list. When n-1 non-

cycle-forming edges has been added, the minimum 

spanning tree is constructed. 

To efficiently implement Kruskal’s algorithm, we need 

to use a highly efficient, tree-based data structure called 

disjoint set union/find to check whether an edge will form 

a cycle if added. The time complexity of an merge/query 

operation of this data structure approaches O(1). The 

sorting of the edges itself is bound by the complexity of the 

sorting algorithm uses. In most general cases, this will be 

O(n log n), but in more specific cases where a faster sort 

algorithm can be used (for example counting sort), it might 

be improved to O(n). Overall, the total time complexity of 

a general-purpose implementation is O(n log n), similar to 

Prim’s algorithm [4]. 

The union/find disjoint set data structure is a tree-based 

data structure used to check whether two elements belong 

to the same set. Elements are represented as vertices, which 

parent vertex is also stored. Elements which are in the same 

set are part of the same tree. Initially, all vertices are 

disconnected (the parent of each vertex is itself). A query 

can be made to determine the root of a vertex, by 

recursively checking its parent vertex. While performing 

the recursive query on a vertex, the corresponding vertex 

is also moved upwards towards the root. This ensures that 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2015/2016 

 

the height of each tree is at most two, which means that a 

query can be executed in near O(1) time.  When a merge 

operation is performed on two vertices, one of the vertices 

will be designated as the child of the other’s root. Checking 

whether two vertices are in the same set is then simply a 

matter of checking whether both vertices have the same 

root [4]. It is used in the implementation of Kruskal’s 

algorithm to check whether both vertices of a new edge are 

already connected; if yes, then the edge should not be 

added as adding it will create a cycle. 

 

III.   IMAGE BACKGROUND SEPARATION 

The basic idea for recognizing and separating an image’s 

background is to first split it into regions. A region or 

segment of an image must fulfill several characteristics. 

Pixels in the same segment must be near in position, but 

also of similar colors. These characteristics alone are far 

from optimal, as the segmentation of images also depends 

on the objects in the image; however, the recognition of 

objects is beyond the scope of this paper, and thus we must 

work with these characteristics only. 

To separate pixels according to the criteria above, we 

must first transform the image into a graph representation. 

Each pixel in the image is regarded as a vertex. Each pixel 

is mapped to a five-dimensional space, composed by their 

vertical and horizontal positions, and three color 

components. Pixels are connected to their neighbors by 

edges, weighted by a distance function which takes both 

pixels’ relative position and difference in intensity or color. 

The graph will then be processed and split into multiple 

minimum spanning trees, according to the criteria above. 

The splitting process utilizes a modified version of 

Kruskal’s algorithm. Each tree represents a part of the 

image; vertices which are part of a tree are the vertices 

which make up a segment. Only edges with the least weight 

are kept, which means that only pixels that are similar will 

be connected in the same segment. 

 

 
 

Figure 1. Pseudocode for the background separation 

algorithm 

 

A problem that arises when processing images is the 

comparatively large amount of data that must be processed. 

A typical medium-resolution image has a size ranging 

between 200x200 pixels to 1000x1000 pixels; high 

resolution images that are common nowadays has even 

greater pixel counts. This meant that an image processing 

algorithm must be able to efficiently process millions of 

pixels. The time complexity required to finish executing 

the algorithm in reasonable time with the typical computer 

specifications of today is approximately O(n), with O(n log 

n) barely able to cope. 

Ideally, the algorithm would start by generating a 

complete graph of all pixels. However, this requires O(n2) 

time to generate the edges, as a complete graph has 
𝑛(𝑛+1)

2
 

edges. It would then require too much time to process even 

medium-resolution images. Instead, an edge are created 

only if its two pixels are located closer than or equal to an 

outer radius parameter. When a small value for outer radius 

is used, this reduced the complexity of edge generation to 

near O(n), as every pixel would only have a constant 

amount of edges associated to it. 

An example of a distance/difference function used to 

weight the edges of the image graph is a function that 

returns the Euclidean difference between two pixels’ 

colors: 

𝑑 = 𝑐𝑅
2 + 𝑐𝐺

2 +⁡𝑐𝐵
2     (1) 

 

A better distance function would also need to take into 

account both pixels’ relative positions. However, as we 

only connect pixels in a radius, the relative position 

differences are already implicitly considered. 

Next, we run a modified version of Kruskal’s algorithm 

on the generated image graph. The list of edges between 

pixels is sorted in ascending order, based on the edges’ 

assigned weights. Edges are then added from the list to the 

graph, such that only edges that does not create a cycle are 

allowed to be added. Specifically, the only edges that may 

be added are edges which does not connect two vertices 

that are already connected, whether directly or indirectly. 

Connected vertices represent a segment in the image; 

initially all pixels are individual segments, but over time, 

similar pixels are joined together. The connectivity check 

is performed using a query on a union/find disjoint set data 

structure. However, the iteration condition is modified: 

edges will be added only until the weight of the currently 

processed edge exceeds a specified threshold. The time 

complexity of this step is bounded primarily by the sorting 

algorithm used; general sorting algorithms typically uses 

O(n log n) time. If the edge weights are discrete and its 

range is small, a more efficient sorting algorithm such as 

counting sort or radix sort may be used, improving the time 

complexity to O(n). 

The minimum spanning trees formed by the modified 

Kruskal’s algorithm represent the segments of the input 

image. The total difference between each pixel in each 

segment is minimum, and is at most equal to the threshold 

parameter value. Edges with weights larger than the 

threshold are not joined. This ensures that regions of the 

image which has contrasting colors are not joined together. 

As the possible edges generated can only connect pixels 

not greater than the outer radius parameter in distance, 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2015/2016 

 

regions will also be close together in position, even mostly 

contiguous. 

 
Figure 2. The image is first transformed into a graph, with 

edges connecting neighboring pixels closer than the outer 

radius parameter (left). The graph will then be separated 

into multiple minimum spanning trees, with each 

minimum spanning tree representing a segment in the 

image (right). 

 

This algorithm will join regions with smooth color 

gradients, as the color differences between adjacent pixels 

in smooth gradients are small. However, this property 

causes problems when trying to process blurry images, as 

soft region edges may cause the region to be joined with 

the background. An obvious solution is to preprocess the 

image with a sharpening filter, though experiments shows 

that sharpening filters increase the amount of noise in the 

image, thus lowering its quality. An alternative solution is 

to define an inner radius parameter, which prevents the 

algorithm from creating edges which connects pixels that 

are too close together, so that region edges can be 

distinguished more accurately. 

The number of separate minimum spanning trees or 

image segments t can be calculated from the number of 

pixels/vertices v and the number of edges e used to create 

the minimum spanning trees: 

𝑡 = 𝑣 − 𝑒      (2) 

 

From these t segments, we need to select one which 

represents the background of the image. The simplest 

method, which is used in the author’s implementation of 

this algorithm, is to select the segment with the most pixels. 

Alternatives exist, for example to select segments with 

sizes exceeding a limit or segments which are located near 

the borders of the image. The segments are then marked by 

changing the color of pixels contained in each segment. In 

the author’s implementation, the background segment is 

colored white, while the other segments are set to the 

average color of all pixels in each segment. 

The total time complexity of this algorithm is generally 

O(n log n), not much different Kruskal’s algorithm. The 

most time-consuming processes are the edge creation 

(O(log n), but with a large constant factor depending on the 

radius parameters) and the edge sort (O(n log n)). In certain 

cases, however, the sorting algorithm could be replaced 

with an O(n) algorithm such as counting sort, so that the 

overall time complexity can be reduced to O(n). 

 

IV.   APPLICATIONS 

This algorithm can be used to automatically remove the 

backgrounds of images. However, because of its 

limitations, the author’s implementation of the algorithm 

will only work best on images with clearly defined 

backgrounds. 

This algorithm can also be applied to correct photos of 

documents, i.e. to remove shadows and lighting effects. A 

document photo typically contains black text or figures on 

a white background, which has high contrast and easy to 

distinguish from the text. An interesting side effect is to 

slightly reduce noise, as pixels are grouped together in the 

segmentation process. 

 

 
 

Figure 3. Result of algorithm (threshold = 200, inner 

radius = 0, outer radius = 3, join foreground = false). 

Sample image taken by author. 

 

 
 

Figure 4. Result of algorithm for correcting photo of 

document (threshold = 200, inner radius = 0, outer radius 

= 3, join foreground = true). Sample image taken by 

author. 

 

To prevent segments inside closed shapes being treated 

separately from the background (such as segments inside 

the letter ‘o’, ‘p’, ‘d’, and such), we set the outer radius 

parameter to several pixels wide. To handle slightly blurry 

images, we increase the inner radius parameter. However, 

it should be kept in mind that the larger the difference 

between the outer radius and inner radius parameter, the 

slower the execution time will be, as more edges will be 

considered. 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2015/2016 

 

 

V.   CONCLUSION 

Recognizing image backgrounds is a useful problem in 

image processing, which may be applied for automatic 

background removal or scanned documents color 

correction. An algorithm for separating image backgrounds 

based on minimum spanning trees is discussed and 

implemented in this paper. However, the current 

implementation leaves much room for improvement, both 

to the quality of the result and to its efficiency. 

 

VI.   APPENDIX 

The author’s implementation of the algorithm discussed in 

this paper and the sample images shown can be accessed 

on Github (https://github.com/nathanchrs/mstsegment). It 

is written in Python, and requires the Pillow image 

processing module and NumPy scientific computing 

module to run. 

 

VII.   ACKNOWLEDGMENT 

The author thanks Dra. Harlili S. M.Sc. as the lecturer of 

the author’s Discrete Mathematics class, for guidance in 

preparing this paper. The author would also like to thank 

the developers and contributors of the open-source Pillow 

Python image library and NumPy scientific computing 

library, which has greatly simplified the author’s 

implementation of the image segmentation and 

background separation algorithm. 

 

REFERENCES 

[1] P.F. Felzenszwalb and D.P. Huttenlocher, Efficient Graph-Based 

Image Segmentation. [Online]. Available: 
http://cs.brown.edu/~pff/papers/seg-ijcv.pdf (Retrieved 30 

November 2016). 

[2] M. Yu, et al. (11 February 2015). Hierarchical clustering in 
minimum spanning trees. [Online]. Available: 

https://www.nas.ewi.tudelft.nl/people/Piet/papers/Chaos2015_Hier

archical_clustering_MSTs.pdf (Retrieved 4 December 2016). 
[3] K.H. Rosen, Discrete Mathematics and its Applications, 7th ed. 

New York: McGraw-Hill, 2012, pp. 641-802. 

[4] S. Halim and F. Halim, Competitive Programming 3. Singapore: 
Lulu, 2013, pp. 52-53 and 138-144. 

 

PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang saya 

tulis ini adalah tulisan saya sendiri, bukan saduran, atau 

terjemahan dari makalah orang lain, dan bukan plagiasi. 

 

Bandung, 9 Desember 2016    

 

ttd. 

 

 
 

Jonathan Christopher - 13515001 


