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Abstract - One graph can have multiple minimum spanning 
trees. In this paper we review about one way to find the 
number of minimum spanning trees in a graph using 
Kruskal’s Algorithm and also Kirchhoff’s Matrix Tree 
Theorem. By considering all the edges of the same weight that 
could possibly be a part of one of the minimum spanning trees 
and  counting the combination possibilities using Kirchhoff’s 
Matrix Tree and then multiplying all the results, we could get 
the number of minimum spanning trees a certain graph has. 
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Theory, Kirchhoff’s Theorem 
 
 

I.   INTRODUCTION 

A spanning tree of a graph is a sub-graph that connects 
all the vertices and does not have any cycles or in other 
words a tree. The minimum spanning tree (MST) of a 
weighted graph is the spanning tree of that weighted 
graph with the minimum total weighting for the edges 
used in the MST. The MST has a few implementation in 
real life with the most common example being how to 
minimize the cost of building a communication network. 

An MST has a few properties. One main property we 
are going to look at in this paper is that a graph could 
have more than one MSTs. So how many exactly are 
there on a certain graph? That is the question we are 
going to answer. 

First we look at how to count the weight of an MST of 
a certain graph. There are a few algorithms that can be 
used to count the total cost of the MST of a graph. The 
more popular and commonly used ones are Kruskal’s 
algorithm and Prim’s Algorithm. Both of these algorithm 
are greedy algorithms and both have the time complexity 
of O(e log v) with e representing the number of edges of 
the graph and v representing the number of vertices in the 
graph.  

 
 

II. PRELIMINARIES 

For the theorems used in this paper we are going to 
look at a few basic algorithms and data structures used in 
graph theory. 

 
A. Adjacency Matrix 
The adjacency matrix is square matrix used to represent 

a graph. It is only one of the many ways to represent a 
graph. For a simple graph with n vertices, the adjacency 
matrix is a matrix of size n x n with elements which 
consists of only 0s and 1s. Ai,j is equal to 1 if there is an 
edge connecting vertex i to vertex j, and 0 otherwise. 

Consider the following graph. 
 
 

 
 

 
Fig. 2.1 Example of a graph 

 
An adjacency matrix equivalent to the graph on Fig. 1 

would be 
 

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0
1 1 0 1 0 0
0 0 1 0 0 1
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Fig 2.2 Adjacency matrix 

 
B. Degree Matrix 
The degree matrix is a matrix representing the degree of 

each of the nodes of a graph. If a graph has n nodes than 
the matrix will be of size n x n, and for every node i in the 
graph the cell Ai,I will be the degree of that node. Every 
other cell will be filled with 0s, which means the matrix 
will only be filled on its diagonal. 

The degree matrix corresponding to the graph on Fig 2.1 
would be 
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4 6 5 
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2 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 3
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Fig 2.3 Degree matrix 

 
C. Incidence Matrix 
An incidence matrix is a rectangular matrix by size v x 

e with v is the amount of vertex and e is the amount of 
edges. The incidency matrix is another way of 
representing a graph. The elements of an incidency matrix 
are determined as follows: for every edge k connecting 
vertex i to j and i<j then Ai,k=1 and Aj,k=-1, the rest of the 
matrix is filled with 0s. 

The incidence matrix for Fig 2.1 without the self loop 
edge on node 6 is 

 

1 1 0 0 0 0 0
−1 0 1 1 0 0 0
0 0 0 −1 0 1 1
0 0 0 0 1 −1 0
0 −1 −1 0 −1 0 0
0 0 0 0 0 0 −1
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Fig 2.4 Incidence matrix 

 
D. Laplacian Matrix 
The Laplacian matrix (L) of a graph is defined as: 

L = D− A  where D is the degree matrix of the graph 
and A is the adjacency matrix of the graph. 

The elements of the Laplacian matrix could also be 
defined as: 

 

Li, j =

deg(vj ) if i = j

−1 if i ≠ j and (vi,v j )∈ E

0 otherwise
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The Laplacian matrix is only to define a graph with no 

self-looping edge. 
The Laplacian matrix can also be factored into the 

product of the incidence matrix of the graph and its 
transpose. 

The Laplacian matrix equivalent to the graph in Fig 2.1 
without the self-loop edge on node 6 is  

 

2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 3 −1 0 −1
0 0 −1 2 −1 0
−1 −1 0 −1 3 0
0 0 −1 0 0 1
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Fig 2.5 Laplacian matrix 

 
E. Kruskal Algorithm 
The Kruskal algorithm finds the MST of a graph by 

first sorting all the edges of the graph by weight into an 
increasing order. Starting with an empty graph, for each 
edge starting from the smallest weighted edge try using 
that edge as a part of our MST, if taking an edge will not 
create a cycle in the already created graph then use it in 
the MST. An edge will create a cycle when used if its two 
endpoints are already connected by other edges that are 
already used in the graph. One way of checking whether 
the endpoints are already connected is to use the union set 
data structure. 

 
F. Prim Algorithm 
The Prim algorithm is similar with the Kruskal 

algorithm in terms of the greedy algorithm. It selects the 
smallest weighted edge available and uses it in the MST. 
The difference from Kruskal is that after selecting the first 
edge to be used in the MST, Prim checks the next 
smallest edge available from the edges connected to the 
already formed tree instead of from the whole set of 
edges. 

 
 

III.  THEOREMS 

A. Kirchhoff’s Matrix Tree Theorem 
Kirchhoff’s matrix tree theorem is a theorem about the 

number of spanning trees in a simple graph. The theorem 
states that the number of spanning trees in a simple graph 
is equal to the value of any cofactor in the graph’s 
Laplacian matrix. Any cofactor of the Laplacian matrix is 
the same because by adding rows and columns, switching 
them around, and multiplying a row by -1 we can change 
one cofactor of the matrix into another.  

 
 

IV. COUNTING MINIMUM SPANNING TREES 

A. Algorithm 
Above we have shown how to calculate the cost of an 

MST using Kruskal’s algorithm and how to count the 
amount of spanning trees in a graph using Kirchhoff’s 
matrix tree theorem. Now we are going to combine those 
two to count the number of MSTs in a graph. 

To do so we turn to another property of the MST, 
which is the costs of the edges selected will be the same. 
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Which means that if you want to change any edge from 
the MST you can only change it to another of the same 
weight that is not used in the current MST.  

The Kruskal Algorithm rejects edges of a certain 
weight if the two vertices it connects are already 
connected by edges with weight smaller than or equal to 
its own weight. And thus if we want to insert this edge to 
the MST we have to remove the edge with the same cost 
as the current edge and is connected to the current edge 
via the spanning tree already placed. Which means that 
for all edges with the same weight there are as many 
possibilities to choose a set from those edges so that there 
are no cycles formed as the amount of spanning trees 
those edges could create. 

With those conditions, the number of MSTs of a graph 
would be equal to the multiplication of the amount of 
spanning trees of connected edges with equal weight. 

A more step by step instructions are: 
 

First, we begin like we would on the Kruskal algorithm, 
initialize the union-data set, sort the edges by their 
weight, and start processing the edges from the smallest 
weight. After that, for every set of edges with the same 
weight we change the endpoint vertices of those edges to 
whatever union set those vertices are now in. Then, we 
create a graph using only those edges. After that, we find 
the connected components using graph traversal 
algorithms and for each connected component we find the 
number of spanning trees they have using the Kirchhoff 
matrix tree theorem and multiply them to the answer. 
Next, for every connected component you unite them in 
the union-data set.  
 

 
V.   CONCLUSION 

In conclusion, the amount of minimum spanning trees 
in a graph can indeed be calculated, although with a time 
complexity relatively far slower than only counting the 
cost of the MST because we have to count the 
determinant of the Laplacian matrix at every unique edge 
cost. If we already know a limit to the maximum number 
of edges with the same cost this problem could most 
likely be solved in faster time by using normal 
combinatorics or by hard coding every possibility of the 
edges. 
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