
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2015/2016

Counting the Number of Minimum Spanning Trees

Nathan James Runtuwene, 13514083
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13514083@std.stei.itb.ac.id

Abstract - One graph can have multiple minimum spanning
trees. In this paper we review about one way to find the
number of minimum spanning trees in a graph using
Kruskal’s Algorithm and also Kirchhoff’s Matrix Tree
Theorem. By considering all the edges of the same weight that
could possibly be a part of one of the minimum spanning trees
and counting the combination possibilities using Kirchhoff’s
Matrix Tree and then multiplying all the results, we could get
the number of minimum spanning trees a certain graph has.

Minimum spanning tree, Kruskal Algorithm, Graph

Theory, Kirchhoff’s Theorem

I. INTRODUCTION

A spanning tree of a graph is a sub-graph that connects
all the vertices and does not have any cycles or in other
words a tree. The minimum spanning tree (MST) of a
weighted graph is the spanning tree of that weighted
graph with the minimum total weighting for the edges
used in the MST. The MST has a few implementation in
real life with the most common example being how to
minimize the cost of building a communication network.

An MST has a few properties. One main property we
are going to look at in this paper is that a graph could
have more than one MSTs. So how many exactly are
there on a certain graph? That is the question we are
going to answer.

First we look at how to count the weight of an MST of
a certain graph. There are a few algorithms that can be
used to count the total cost of the MST of a graph. The
more popular and commonly used ones are Kruskal’s
algorithm and Prim’s Algorithm. Both of these algorithm
are greedy algorithms and both have the time complexity
of O(e log v) with e representing the number of edges of
the graph and v representing the number of vertices in the
graph.

II. PRELIMINARIES

For the theorems used in this paper we are going to
look at a few basic algorithms and data structures used in
graph theory.

A. Adjacency Matrix
The adjacency matrix is square matrix used to represent

a graph. It is only one of the many ways to represent a
graph. For a simple graph with n vertices, the adjacency
matrix is a matrix of size n x n with elements which
consists of only 0s and 1s. Ai,j is equal to 1 if there is an
edge connecting vertex i to vertex j, and 0 otherwise.

Consider the following graph.

Fig. 2.1 Example of a graph

An adjacency matrix equivalent to the graph on Fig. 1

would be

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0
1 1 0 1 0 0
0 0 1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Fig 2.2 Adjacency matrix

B. Degree Matrix
The degree matrix is a matrix representing the degree of

each of the nodes of a graph. If a graph has n nodes than
the matrix will be of size n x n, and for every node i in the
graph the cell Ai,I will be the degree of that node. Every
other cell will be filled with 0s, which means the matrix
will only be filled on its diagonal.

The degree matrix corresponding to the graph on Fig 2.1
would be

2
3

4 6 5

1

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2015/2016

2 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Fig 2.3 Degree matrix

C. Incidence Matrix
An incidence matrix is a rectangular matrix by size v x

e with v is the amount of vertex and e is the amount of
edges. The incidency matrix is another way of
representing a graph. The elements of an incidency matrix
are determined as follows: for every edge k connecting
vertex i to j and i<j then Ai,k=1 and Aj,k=-1, the rest of the
matrix is filled with 0s.

The incidence matrix for Fig 2.1 without the self loop
edge on node 6 is

1 1 0 0 0 0 0
−1 0 1 1 0 0 0
0 0 0 −1 0 1 1
0 0 0 0 1 −1 0
0 −1 −1 0 −1 0 0
0 0 0 0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Fig 2.4 Incidence matrix

D. Laplacian Matrix
The Laplacian matrix (L) of a graph is defined as:

L = D− A where D is the degree matrix of the graph
and A is the adjacency matrix of the graph.

The elements of the Laplacian matrix could also be
defined as:

Li, j =

deg(vj) if i = j

−1 if i ≠ j and (vi,v j)∈ E

0 otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

The Laplacian matrix is only to define a graph with no

self-looping edge.
The Laplacian matrix can also be factored into the

product of the incidence matrix of the graph and its
transpose.

The Laplacian matrix equivalent to the graph in Fig 2.1
without the self-loop edge on node 6 is

2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 3 −1 0 −1
0 0 −1 2 −1 0
−1 −1 0 −1 3 0
0 0 −1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Fig 2.5 Laplacian matrix

E. Kruskal Algorithm
The Kruskal algorithm finds the MST of a graph by

first sorting all the edges of the graph by weight into an
increasing order. Starting with an empty graph, for each
edge starting from the smallest weighted edge try using
that edge as a part of our MST, if taking an edge will not
create a cycle in the already created graph then use it in
the MST. An edge will create a cycle when used if its two
endpoints are already connected by other edges that are
already used in the graph. One way of checking whether
the endpoints are already connected is to use the union set
data structure.

F. Prim Algorithm
The Prim algorithm is similar with the Kruskal

algorithm in terms of the greedy algorithm. It selects the
smallest weighted edge available and uses it in the MST.
The difference from Kruskal is that after selecting the first
edge to be used in the MST, Prim checks the next
smallest edge available from the edges connected to the
already formed tree instead of from the whole set of
edges.

III. THEOREMS

A. Kirchhoff’s Matrix Tree Theorem
Kirchhoff’s matrix tree theorem is a theorem about the

number of spanning trees in a simple graph. The theorem
states that the number of spanning trees in a simple graph
is equal to the value of any cofactor in the graph’s
Laplacian matrix. Any cofactor of the Laplacian matrix is
the same because by adding rows and columns, switching
them around, and multiplying a row by -1 we can change
one cofactor of the matrix into another.

IV. COUNTING MINIMUM SPANNING TREES

A. Algorithm
Above we have shown how to calculate the cost of an

MST using Kruskal’s algorithm and how to count the
amount of spanning trees in a graph using Kirchhoff’s
matrix tree theorem. Now we are going to combine those
two to count the number of MSTs in a graph.

To do so we turn to another property of the MST,
which is the costs of the edges selected will be the same.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2015/2016

Which means that if you want to change any edge from
the MST you can only change it to another of the same
weight that is not used in the current MST.

The Kruskal Algorithm rejects edges of a certain
weight if the two vertices it connects are already
connected by edges with weight smaller than or equal to
its own weight. And thus if we want to insert this edge to
the MST we have to remove the edge with the same cost
as the current edge and is connected to the current edge
via the spanning tree already placed. Which means that
for all edges with the same weight there are as many
possibilities to choose a set from those edges so that there
are no cycles formed as the amount of spanning trees
those edges could create.

With those conditions, the number of MSTs of a graph
would be equal to the multiplication of the amount of
spanning trees of connected edges with equal weight.

A more step by step instructions are:

First, we begin like we would on the Kruskal algorithm,
initialize the union-data set, sort the edges by their
weight, and start processing the edges from the smallest
weight. After that, for every set of edges with the same
weight we change the endpoint vertices of those edges to
whatever union set those vertices are now in. Then, we
create a graph using only those edges. After that, we find
the connected components using graph traversal
algorithms and for each connected component we find the
number of spanning trees they have using the Kirchhoff
matrix tree theorem and multiply them to the answer.
Next, for every connected component you unite them in
the union-data set.

V. CONCLUSION

In conclusion, the amount of minimum spanning trees
in a graph can indeed be calculated, although with a time
complexity relatively far slower than only counting the
cost of the MST because we have to count the
determinant of the Laplacian matrix at every unique edge
cost. If we already know a limit to the maximum number
of edges with the same cost this problem could most
likely be solved in faster time by using normal
combinatorics or by hard coding every possibility of the
edges.

VI. ACKNOWLEDGMENT

First, I would like to thank God for the opportunity to
make this paper. I would like to thank my parents and my
family for their support since I am young. I would like to
thank Mr. Rinaldi and Ms. Harlili for their guidance
through this semester Discrete Mathematics class. And
finally, I would also like to thank my friends for helping
me out when I am having troubles with this paper.

REFERENCES
[1] http://www14.informatik.tu-

muenchen.de/konferenzen/Jass08/courses/1/pieper/Pieper_Paper.p
df, visited on December 9, 2015

[2] http://www.maths.manchester.ac.uk/~mrm/Teaching/DiscreteMath
s/LectureNotes/IntroToMatrixTree, visited on December 9, 2015

[3] http://math.fau.edu/locke/Graphmat.htm, visited on December 9,
2015

[4] http://www.math.kun.nl/~bosma/Students/jannekebc3.pdf, visited
on December 9, 2015

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 11 Desember 2015

Nathan James Runtuwene / 13514083

