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The processing of sequences and structures is indispensable 

to the field of bioinformatics. Pattern detection or matching is 

often required for various purposes in the analysis of DNA, 

RNA, or protein, because it gives an insight as to how the 

sequences relate to one another, which can in turn lead to the 

progress of many biological discoveries and advancements. 

The suffix tree is a data structure that allows fast searching 

and comparison of strings, which can increase both speed and 

accuracy in certain processes. This paper gives a brief 

explanation of several examples of the multiple ways that the 

suffix tree can be used in making the process and analysis of 

bioinformatics data possible, and how they are implemented in 

doing so. 
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I.   INTRODUCTION 

The mutual bond between biology and computers has 

significantly grown closer since the ever-growing 

advancement of algorithms. What used to take tremendous 

amounts of time in order to extract and process large 

amounts of biological data has now become increasingly 

more practical and feasible, thanks to bioinformatics. 

Bioinformatics (sometimes also called computational 

biology, although distinctions between the two terms vary) 

is a field of science which focuses on developing 

computational methods for understanding the flood of 

data that biology is continuously providing. There are 

many areas which rely on these methods, with some of the 

major branches being Genomics, Proteomics, Computer-

Aided Drug Design, Bio Data Bases & Data Mining, 

Molecular Phylogenetics, Microarray Informatics, and 

Systems Biology [1]. A few examples from the many 

existing algorithms currently applied in bioinformatics 

include: 

- Baum-Welch algorithm (forward-backward 

algorithm) used to find the unknown parameters of 

a hidden Markov Model, applied for finding genes 

- Needleman-Wunsch algorithm (dynamic 

programming algorithm) used for sequence-to-

sequence alignment 

- Kabsch algorithm used for calculating the optional 

rotation matrix that minimizes the root mean 

squared deviation between two paired sets of 

points, applied for comparing protein structures. 

A big part, or perhaps the biggest part, that plays in 

bioinformatics is the study of biological sequences, i.e. 

DNA, RNA, and protein sequences. These sequences are 

usually treated as text or strings. 

 
Fig 1.1. Multiple sequence alignment in bioinformatics [1] 

 

There is a great deal of information stored in these 

sequences, but it would take a long while to search each of 

the sequences one by one. This is where the suffix tree 

comes in handy.  

A suffix tree is one of the types of the tree data 

structure, which specialize in performing certain string 

operations quickly. It can easily find substrings, compare 

multiple strings together, detect or match patterns in the 

strings, and find plenty of other properties in each of the 

strings. However, recent progress in algorithms has also 

made way of implementing the suffix tree not only for 

string-like sequences but also more complex structures, 

especially protein. Thus, there are numerous ways that the 

suffix tree could be applicable in bioinformatics, some of 

which are further explained in this paper.  

 

II.  RELATED THEORIES 

A. Tree 

A tree is a connected undirected graph with no simple 

circuits [2]. In other words, an undirected graph is a tree if 

and only if there is a unique simple path between any two 

of its vertices. From Figure 2.1, we can conclude that G1 
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and G2 are trees. Meanwhile, G3 is not a tree because the 

nodes e, b, a, d, e form a circuit, and neither is G4 

because it is not a connected graph. 

 
Fig 2.1. Examples of trees and graphs that are not trees

[2]
  

 

A specific type of tree used in data structures are rooted 

trees, that is, a tree in which one vertex has been 

designated as the root and every edge is directed away 

from the root. As a convention, rooted trees may be drawn 

without direction as its direction is already implied. 

 
Fig 2.3. A tree and rooted trees formed by designated two different 

roots[2] 

 

Some terminologies concerning trees: 

- Root: the top node of a tree 

- Parent: the node leading to a given node 

- Child: each of the nodes one edge further from the 

given node 

- Siblings: nodes with the same parent 

- Ancestors: each of the nodes in the path from the 

root to a given node 

- Descendants: each of the nodes with the given 

node as its ancestor 

- Leaf: a node with no children 

- Internal vertices: nodes with children 

- Subtree: a tree created by taking a node from the 

original tree as the new root, consisting of all its 

descendants and the edges incident to these 

descendants 

- Forest: a disjoint union of trees 

- Level: 1 + the number of edges between the given 

node and the root 

- Height: the number of edges from the longest path 

between the root and a leaf 

 

B. Suffix Tree 

One of the many types of tree data structures is the 

suffix tree, also called PAT tree, firstly introduced by 

Weiner [3]. It is defined as a compact representation of a 

trie corresponding to the suffixes of a given string where 

all nodes with one child are merged with their parents [4]. 

It is considered the fundamental data structure for 

combinatorial pattern matching because of its quick 

performance on several substring operations. An example 

of a suffix tree can be illustrated as following. 

Let S denote a string of length n and S[i,j] denote the 

substring of S from position i to j. The symbol $ is 

concatenated to S. A suffix tree with n leaves has edges 

labeled by characters from the alphabet. The path from the 

root to the leaf j, denoted by P(j), will have a path label 

which reads the suffix of S[j,n] with a $ sign. 

 
Fig 2.4. A suffix tree for the string ‘aabccb’[5] 

 

A generalized suffix tree is a suffix tree for a set of 

strings which represents all the prefixes in those strings. 

By taking m strings, S1,...,Sm with lengths n1,...,nm, 

respectively, and adding $i to Si for i-1,...,m, the 

generalized suffix tree will have leaves the amount of the 

total of the lengths of its strings, with each leaf labeled by 

the number j of the string and a number between 1 and nj. 

The label of the path from the root to the leaf (i,j) 

represents the suffix Sj[i,nj] of the string j with a $ sign. 

Naive implementations of suffix tree constructions 

require a complexity of O(n
2
), where n indicates the 

length of the string. This made the use of suffix trees 

highly impractical for real-life applications in the past, 

due to the time and space requirements of its construction. 

In 1995, Ukkonen [6] proposed an a linear-time, online 

algorithm for constructing suffix trees which reduced the 

running time down to O(n) or O(n log n) in its worst case. 

Afterwards, Farach [7] gave the first algorithm that is 

optimal for all alphabets, which has now become the basis 

for new algorithms. 

Assuming that a suffix tree has been built for a string S 

with a length of n or that a generalised suffix tree has been 

built for the set of strings D = {S1,S2,...,Sk} of total length 

n = |n1| + |n2| + ... |nk|, the suffix tree will allow you to 

[8]: 

- Check if a string P of length m is a substring in 

O(m) time 

- Find the first occurrence of the patterns P1, ..., Pq 

of the total length m as substrings in O(m) time 

- Find all z occurrences of the patterns P1,...,Pq of 

total length m as substrings in O(m+z) time 
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- Search for a regular expression P in time expected 

sublinear in n 

- Find each suffix of a pattern P, the length of the 

longest match between a prefix of P[i...m] and a 

substring D in Θ(m) time 

- Find the longest common substrings of the string Si 

and Sj in Θ(ni + nj) time 

- Find all maximal pairs, maximal repeats or 

supermaximal repeats in Θ(n + z) time 

- Find the Lempel-Ziv decomposition in Θ(n) time 

- Find the longest repeated substrings in Θ(n) time 

- Find the most frequently occurring substrings of a 

minimum length in Θ(n) time 

- Find the shortest strings from ∑ that do not occur 

in D, in O(n + z) time, if there are z such strings 

- Find the shortest substrings occurring only once in 

Θ(n) time 

- Find for each i, the shortest substrings of Si not 

occurring elsewhere in D in Θ(n) time 

- Find the lowest common ancester between nodes in 

Θ(n) time 

- Find the longest common prefix between the 

suffixes Si[p..ni] and Sj[p..nj] in Θ(1) 

- Search for pattern P of length m with at most k 

mismatches in O(kn+z) time 

- Find all z maximal palindromes in Θ(n), or Θ(gn) 

time if gaps of length g are allowed, ir Θ(kn) time 

if mismatches are allowed 

- Find all z tandem repeats in O(n log n + z) and k-

mismatch tandem repeats in O(kn log (n/k) + z) 

- Find the longest commons substrings to at least k 

strings in D for k = 2,...,K in Θ(n) time 

- Find the longest palindromic substring of a given 

string in linear time 

 

C. Data in Bioinformatics 

The data that we are dealing with in bioinformatics can 

be roughly grouped into four types, i.e. DNA Data, RNA 

Data, Protein Data, and Micro Array Image Data 

(traditional Digital Images) [1]. However, the use of suffix 

tree is currently only relevant to the first three. 

- DNA 

DNA, or deoxyribonucleic acid, is a molecule 

which stores genetic information required by the 

cell to synthesize protein and replicate itself. It is 

made up of four nucleotide bases: Adenine (A), 

Guanine (G), Thymine (T), and Cytosine (C). 

Each base in a strand is paired with its 

complementary base on the opposite strand (A 

with T and vice-versa, G with C and vice-versa), 

with the two strands forming a double-helix 

structure.  The information can be extracted and 

transformed into a string consisting of 

combinations of four letters, each letter 

corresponding to its appropriate nucleotide base, 

according to the sequence found inside the DNA. 

 

 
Fig 2.5. DNA sequence[1] 

 

- RNA 

RNA, or ribonucleic acid, is a single-stranded 

molecule smaller than DNA which plays various 

roles in the synthesis of proteins (as mRNA, 

rRNA, or tRNA). The sequence of nucleotide 

bases in DNA is transferred to mRNA during 

transcription, in which Uracil binds to Adenine, 

thus replacing all occurrences of Thymine. The 

string depicting an RNA sequence also consists of 

combinations of four letters (A, U, G, and C). 

 
Fig 2.6. RNA sequence[1] 

 

- Protein 

Protein sequences differ from the former two 

because of its wider variations. There are 20 

different types of basic amino acids which can be 

found in a protein sequence, shown in the table 

below. 

No. Code Name 

1 A Alanine 

2 C Cysteine 

3 D Aspartic Acid 

4 E Glutamic Acid 

5 F Phenylalanine 

6 G Glycine 

7 H Histidine 

8 I Isoleucine 

9 K Lysine 

10 L Leucine 

11 M Methionine 

12 N Asparagine 

13 P Proline 

14 Q Glutamine 

15 R Arginine 

16 S Serine 

17 T Threonine 

18 V Valine 

19 W Tryptophan 

20 Y Tyrosine 
Table 1. Amino acid codes 
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Fig 2.7. Protein sequence[1] 

 

III.   APPLICATIONS AND IMPLEMENTATIONS OF 

SUFFIX TREES 

The applications of suffix trees and its variations in 

bioinformatics have grown wider and more diverse, along 

with the progress of the algorithms implementing it. 

Listed below are several examples of how the use of 

suffix trees could help the processes in bioinformatics. 

 

A. Multiple Sequence Alignment 

Sequence alignment, the most common task in 

bioinformatics, is a way of arranging DNA, RNA, or 

protein sequences for comparison in order to define 

functional, structural, or evolutionary relationships 

between the sequences. This is usually done by detecting 

certain similarities or patterns within the sequences. There 

exist already several systems implementing suffix trees for 

this function. 

An example is MUMmer [9], a system for rapidly 

aligning entire genomes, which performs a maximal 

unique match (MUM) decomposition between the input 

genome sequences.  The main biological features 

identified by the system are SNPs (Single Nucleotide 

Polymorphisms, which are single nucleotide ‘mutations’), 

regions where the input sequences have diverged by more 

than an SNP, repeats that occur in one genome but not the 

other, and tandem repeats (regions of repeated DNA that 

occur when a pattern of two or more nucleotides is 

repeated directly adjacent to each other). It combines the 

use of suffix trees, the longest increasing subsequence 

(LIS), and Smith-Waterman alignment. 

 

B. Recognizing DNA Contamination 

Various laboratory processes could often cause the 

contamination of a DNA string by unwanted DNA or even 

protein. There are plenty of manners that contamination 

could occur. For example, it might come from the host 

DNA itself in the form of bacteria or yeast. It could also 

occur in the cloning process, originating from the cloning 

vectors used to incorporate the desired DNA in a host 

organism, or from PCR (polymerase chain reaction) 

primers. DNA contamination is a serious problem which 

could cause not only waste of time and effort but may also 

lead to wrong conclusions, which marks the importance of 

this checking process that can be computed as following: 

Given a string S1 (a newly isolated and sequenced 

DNA string) and a set of strings S (sources of possible 

contamination), find all substrings of S that occur in S1 

and are longer than some given length l. 

This problem can be solved by the following process 

[8]: 

1. Build a generalized suffix tree T for S ∪ {S1} 

2. Mark all internal nodes of T whose subtree 

contains leaves for both S1 and some string of S 

3. Traverse T; For any marked node v with string-

depth ≥l report L(v) as a suspicious substring 

The total time is Θ(m) where m is the total length of 

the strings. 

 

C. Minimum Length Encoding 

The Ziv-Lempel method is a universal lossless data 

compression algorithm used in various utilities, including 

text and image compression. Gusfield [8] presented an 

efficient variant of the algorithm: 

For any position i in a string S of length m, define the 

substring Priori to be the longest prefix of S[i..m] that 

also occurs as a substring of S[1..i – 1]. For any position 

i in S, define li as the length of Priori. For li > 0, define si 

as the starting position of the left-most copy of Priori.  

The algorithm creates the compressed version of a 

string. For a small example, the string 

abababababababababababababababab can be  described 

as ab(1,2)(1,4)(1,8)(1,16), which uses less symbols than 

the original. The algorithm’s implementation using suffix 

trees allows it to run in O(m) time. 

Ziv-Lempel-like algorithms have been used in 

bioinformatics not for obtaining efficient storage but 

rather for measuring the “complexity” of strings, with 

significant strings having higher compression than random 

ones, studying the “relatedness” of two strings S1 and S2 

by compressing S2 using only the suffix tree for S1 (or vice 

versa), and estimating the “entropy” of short strings to 

distinguish exons and introns in eukaryotic DNA.  

 

D. Probe Selection 

Microarrays are a common tool in measuring the 

expression levels of multiple genes simultaneously. To 

function, each array requires one specific oligonucleotide, 

called a probe, to attach to its surface. Ideally, this probe 

should be unique to bind only to the target sequence and 

avoid cross-hybridization. Kaderali and Schlied [10] 

presented an algorithm based on the combination of suffix 

trees and dynamic algorithm to design and select the 

proper signatures for these arrays. The algorithm builds a 

generalized suffix tree from the reverse complement of all 

the candidate probe sequences then rejects non-unique 

probes which form perfect duplexes with more than one 

target by identifying all common substrings. 

The preselection of probes is done by taking account 

of probe length, unique probes, and probe melting 

temperature. A generalized suffix tree containing the 

complements of all target sequences is then generated and 

all infeasible probes are removed. Furthermore, the tree is 

then used to group probes with common prefixes together, 

which speeds up calculation. 
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E. Protein Indexing 

Determining similar proteins used to be done by 

finding amino acid sequences that are similar to one 

another. However, it has been discovered that structurally-

similar proteins also have similarities in functions even if 

they differ in their sequences. This is why protein 

structure analysis, including classification and prediction, 

requires an index structure that enables fast and scalable 

searching. There are several methods that are used for 

indexing protein structures. Reference [11] uses suffix 

trees in order to retrieve the maximal matches for all 

query segments, which are then chained to obtain 

alignments with database proteins. Similar proteins are 

selected by their alignment score against the query. 

Other variations include the use of the probabilistic 

suffix tree and the geometric suffix tree. The probabilistic 

suffix tree stores conditional probabilities associated with 

subsequences, with two approaches for local prediction 

(multiple-domain prediction and best-domain prediction), 

both achieved in O(Lm) time where L is the depth bound 

of the tree and m is the size of the query sequence [12]. 

Meanwhile, the geometric suffix tree is a new structure for 

indexing 3D structures of proteins [13]. While the edges 

in a traditional suffix tree represent substrings of text, the 

edges in this geometric suffix tree represent 3D 

substructures. The tree can be stored in O(N) space where 

N is the sum of the lengths of the proteins in the database 

and constructed in O(N
2
) time.  

 

F. RNA Structural Pattern Matching 
As with protein structures, RNA structures also tend to 

point out the similarities of certain properties. Although 

RNA sequences can be compared easily in a string sense 

using traditional suffix trees, the use of structural suffix 

tree (s-suffix tree) can also determine their relationship in 

a structural sense, as proposed by Shibuya [14]. This is 

done by comparing s-strings, which are a generalization of 

parameterized strings (a parameterized string is a string 

over the union of two alphabets ∑ and ∏, where ∑ is an 

ordinary alphabet and ∏ is a set of parameters). The s-

suffix tree can be constructed in O(n(log|∑|+log|∏|)) time. 

An example of an s-suffix tree is given below.  

 
Fig 3.1. The s-suffix tree for an RNA string S = “AUAUCGU” [14] 

 

The comparison between two structures is done by 

checking if the s-strings are an s-match. Two s-strings S 

and S’ are considered an s-match if and only if prev(S) = 

prev(S’) and compl(S) = compl(S’). The computation for 

prev and compl are given in the algorithm below: 

Let last_position(p) = 0 for all the parameters p at first. 

For 1 ≤ i ≤ n, let prev(S)[i] = compl(S)[i] = S[i] if S[i] is 

an ordinary alphabet character, otherwise do the 

following. 

1. Set 0 to prev(S)[i] if last_position(prev(S)[i]) = 

0. Otherwise set i – last_position(prev(S)[i]) to 

prev(S)[i]. 

2. Similarly, set 0 to compl(S)[i] if 

last_position(complement(prev(S)[i])) = 0. Otherwise set 

i – last_position(complement(prev(S)[i])) to compl(S)[i]. 

3. Set i to last_position(S[i]). 

Further algorithms are also given to increase the speed 

of this process. 

  

IV.   THE SPACE PROBLEM OF SUFFIX TREE 

IMPLEMENTATIONS 

The options for suffix tree implementations are vast, 

but the problem with suffix trees typically lies in their 

space requirements. The construction of a suffix tree 

typically calls for a complexity of O(m), which doesn’t 

sound so terrible. However, it is the constant in front of 

the m that limits much of the real-life applications it could 

theoretically serve. This constant factor varies with each 

implementation. 

MUMmer uses approximately 17 bytes for each 

basepair in the reference sequence [9]. It is able to build a 

whole genome alignment for an E.coli  in 77 MB and 

plenty of other types of species. A human chromosome, 

however, could take up almost 4 GB, and the total space 

required for a whole human genome is approximated to be 

about 47 GB. Compressed suffix trees succeeded in 

bringing the size of the human genome down to 3GB, but 

their performance became 90 times slower than the 

regular suffix tree. The high space requirement has led to 

the frequent use of disk-based construction methods for 

very large sequences, and the development of algorithms 

focused on space-efficiency. An example of an algorithm 

that allows inputs larger than the main memory is B
2
ST, 

which claims to build a suffix tree for 12 GB of real DNA 

sequences in 26 hours on a single machine with 2 GB of 

RAM [15]. A few problems still continue to exist but new 

algorithm designs also continue to appear as an attempt to 

solve them. 

Some have decided to search for another alternative. A 

powerful substitute to the suffix tree is the suffix array, 

which stores all the suffixes of a string inside an array. In 

general, searching processes with suffix arrays are not 

performed as fast as with suffix trees, but they do serve an 

advantage in lower memory consumption. Enhanced 

suffix arrays [16], on the other hand, are even said to also 

perform faster than suffix trees, which basically gives 

them the best of both worlds. Unfortunately, not so many 

programs for ESA construction or specific algorithms for 

bioinformatics implementing ESA are currently available, 

but several have already started to arise in the recent 

years. 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015 

 

V.   CONCLUSION 

In conclusion, suffix trees are a helpful data structure to 

use for comparisons and pattern detection, which makes it 

a versatile tool that can be applied to almost any kind of 

process in bioinformatics. It can determine the similarities 

between sequences and structures, find certain properties 

in a sequence, and can be combined with other algorithms 

to create new specific algorithms that are more efficient. 

On the other hand, the suffix tree still suffers from a major 

drawback in its memory requirement and must therefore 

be either improved or replaced when used for very large 

inputs. 
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