
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

Applications and Implementations of Suffix Trees for

Sequence and Structure Analysis in Bioinformatics

Asanilta Fahda 13513079

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

asanilta@students.itb.ac.id

The processing of sequences and structures is indispensable

to the field of bioinformatics. Pattern detection or matching is

often required for various purposes in the analysis of DNA,

RNA, or protein, because it gives an insight as to how the

sequences relate to one another, which can in turn lead to the

progress of many biological discoveries and advancements.

The suffix tree is a data structure that allows fast searching

and comparison of strings, which can increase both speed and

accuracy in certain processes. This paper gives a brief

explanation of several examples of the multiple ways that the

suffix tree can be used in making the process and analysis of

bioinformatics data possible, and how they are implemented in

doing so.

Keywords—suffix tree, bioinformatics, sequence,

structure, computational biology

I. INTRODUCTION

The mutual bond between biology and computers has

significantly grown closer since the ever-growing

advancement of algorithms. What used to take tremendous

amounts of time in order to extract and process large

amounts of biological data has now become increasingly

more practical and feasible, thanks to bioinformatics.

Bioinformatics (sometimes also called computational

biology, although distinctions between the two terms vary)

is a field of science which focuses on developing

computational methods for understanding the flood of

data that biology is continuously providing. There are

many areas which rely on these methods, with some of the

major branches being Genomics, Proteomics, Computer-

Aided Drug Design, Bio Data Bases & Data Mining,

Molecular Phylogenetics, Microarray Informatics, and

Systems Biology [1]. A few examples from the many

existing algorithms currently applied in bioinformatics

include:

- Baum-Welch algorithm (forward-backward

algorithm) used to find the unknown parameters of

a hidden Markov Model, applied for finding genes

- Needleman-Wunsch algorithm (dynamic

programming algorithm) used for sequence-to-

sequence alignment

- Kabsch algorithm used for calculating the optional

rotation matrix that minimizes the root mean

squared deviation between two paired sets of

points, applied for comparing protein structures.

A big part, or perhaps the biggest part, that plays in

bioinformatics is the study of biological sequences, i.e.

DNA, RNA, and protein sequences. These sequences are

usually treated as text or strings.

Fig 1.1. Multiple sequence alignment in bioinformatics [1]

There is a great deal of information stored in these

sequences, but it would take a long while to search each of

the sequences one by one. This is where the suffix tree

comes in handy.

A suffix tree is one of the types of the tree data

structure, which specialize in performing certain string

operations quickly. It can easily find substrings, compare

multiple strings together, detect or match patterns in the

strings, and find plenty of other properties in each of the

strings. However, recent progress in algorithms has also

made way of implementing the suffix tree not only for

string-like sequences but also more complex structures,

especially protein. Thus, there are numerous ways that the

suffix tree could be applicable in bioinformatics, some of

which are further explained in this paper.

II. RELATED THEORIES

A. Tree

A tree is a connected undirected graph with no simple

circuits [2]. In other words, an undirected graph is a tree if

and only if there is a unique simple path between any two

of its vertices. From Figure 2.1, we can conclude that G1

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

and G2 are trees. Meanwhile, G3 is not a tree because the

nodes e, b, a, d, e form a circuit, and neither is G4

because it is not a connected graph.

Fig 2.1. Examples of trees and graphs that are not trees

[2]

A specific type of tree used in data structures are rooted

trees, that is, a tree in which one vertex has been

designated as the root and every edge is directed away

from the root. As a convention, rooted trees may be drawn

without direction as its direction is already implied.

Fig 2.3. A tree and rooted trees formed by designated two different

roots[2]

Some terminologies concerning trees:

- Root: the top node of a tree

- Parent: the node leading to a given node

- Child: each of the nodes one edge further from the

given node

- Siblings: nodes with the same parent

- Ancestors: each of the nodes in the path from the

root to a given node

- Descendants: each of the nodes with the given

node as its ancestor

- Leaf: a node with no children

- Internal vertices: nodes with children

- Subtree: a tree created by taking a node from the

original tree as the new root, consisting of all its

descendants and the edges incident to these

descendants

- Forest: a disjoint union of trees

- Level: 1 + the number of edges between the given

node and the root

- Height: the number of edges from the longest path

between the root and a leaf

B. Suffix Tree

One of the many types of tree data structures is the

suffix tree, also called PAT tree, firstly introduced by

Weiner [3]. It is defined as a compact representation of a

trie corresponding to the suffixes of a given string where

all nodes with one child are merged with their parents [4].

It is considered the fundamental data structure for

combinatorial pattern matching because of its quick

performance on several substring operations. An example

of a suffix tree can be illustrated as following.

Let S denote a string of length n and S[i,j] denote the

substring of S from position i to j. The symbol $ is

concatenated to S. A suffix tree with n leaves has edges

labeled by characters from the alphabet. The path from the

root to the leaf j, denoted by P(j), will have a path label

which reads the suffix of S[j,n] with a $ sign.

Fig 2.4. A suffix tree for the string ‘aabccb’[5]

A generalized suffix tree is a suffix tree for a set of

strings which represents all the prefixes in those strings.

By taking m strings, S1,...,Sm with lengths n1,...,nm,

respectively, and adding $i to Si for i-1,...,m, the

generalized suffix tree will have leaves the amount of the

total of the lengths of its strings, with each leaf labeled by

the number j of the string and a number between 1 and nj.

The label of the path from the root to the leaf (i,j)

represents the suffix Sj[i,nj] of the string j with a $ sign.

Naive implementations of suffix tree constructions

require a complexity of O(n
2
), where n indicates the

length of the string. This made the use of suffix trees

highly impractical for real-life applications in the past,

due to the time and space requirements of its construction.

In 1995, Ukkonen [6] proposed an a linear-time, online

algorithm for constructing suffix trees which reduced the

running time down to O(n) or O(n log n) in its worst case.

Afterwards, Farach [7] gave the first algorithm that is

optimal for all alphabets, which has now become the basis

for new algorithms.

Assuming that a suffix tree has been built for a string S

with a length of n or that a generalised suffix tree has been

built for the set of strings D = {S1,S2,...,Sk} of total length

n = |n1| + |n2| + ... |nk|, the suffix tree will allow you to

[8]:

- Check if a string P of length m is a substring in

O(m) time

- Find the first occurrence of the patterns P1, ..., Pq

of the total length m as substrings in O(m) time

- Find all z occurrences of the patterns P1,...,Pq of

total length m as substrings in O(m+z) time

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

- Search for a regular expression P in time expected

sublinear in n

- Find each suffix of a pattern P, the length of the

longest match between a prefix of P[i...m] and a

substring D in Θ(m) time

- Find the longest common substrings of the string Si

and Sj in Θ(ni + nj) time

- Find all maximal pairs, maximal repeats or

supermaximal repeats in Θ(n + z) time

- Find the Lempel-Ziv decomposition in Θ(n) time

- Find the longest repeated substrings in Θ(n) time

- Find the most frequently occurring substrings of a

minimum length in Θ(n) time

- Find the shortest strings from ∑ that do not occur

in D, in O(n + z) time, if there are z such strings

- Find the shortest substrings occurring only once in

Θ(n) time

- Find for each i, the shortest substrings of Si not

occurring elsewhere in D in Θ(n) time

- Find the lowest common ancester between nodes in

Θ(n) time

- Find the longest common prefix between the

suffixes Si[p..ni] and Sj[p..nj] in Θ(1)

- Search for pattern P of length m with at most k

mismatches in O(kn+z) time

- Find all z maximal palindromes in Θ(n), or Θ(gn)

time if gaps of length g are allowed, ir Θ(kn) time

if mismatches are allowed

- Find all z tandem repeats in O(n log n + z) and k-

mismatch tandem repeats in O(kn log (n/k) + z)

- Find the longest commons substrings to at least k

strings in D for k = 2,...,K in Θ(n) time

- Find the longest palindromic substring of a given

string in linear time

C. Data in Bioinformatics

The data that we are dealing with in bioinformatics can

be roughly grouped into four types, i.e. DNA Data, RNA

Data, Protein Data, and Micro Array Image Data

(traditional Digital Images) [1]. However, the use of suffix

tree is currently only relevant to the first three.

- DNA

DNA, or deoxyribonucleic acid, is a molecule

which stores genetic information required by the

cell to synthesize protein and replicate itself. It is

made up of four nucleotide bases: Adenine (A),

Guanine (G), Thymine (T), and Cytosine (C).

Each base in a strand is paired with its

complementary base on the opposite strand (A

with T and vice-versa, G with C and vice-versa),

with the two strands forming a double-helix

structure. The information can be extracted and

transformed into a string consisting of

combinations of four letters, each letter

corresponding to its appropriate nucleotide base,

according to the sequence found inside the DNA.

Fig 2.5. DNA sequence[1]

- RNA

RNA, or ribonucleic acid, is a single-stranded

molecule smaller than DNA which plays various

roles in the synthesis of proteins (as mRNA,

rRNA, or tRNA). The sequence of nucleotide

bases in DNA is transferred to mRNA during

transcription, in which Uracil binds to Adenine,

thus replacing all occurrences of Thymine. The

string depicting an RNA sequence also consists of

combinations of four letters (A, U, G, and C).

Fig 2.6. RNA sequence[1]

- Protein

Protein sequences differ from the former two

because of its wider variations. There are 20

different types of basic amino acids which can be

found in a protein sequence, shown in the table

below.

No. Code Name

1 A Alanine

2 C Cysteine

3 D Aspartic Acid

4 E Glutamic Acid

5 F Phenylalanine

6 G Glycine

7 H Histidine

8 I Isoleucine

9 K Lysine

10 L Leucine

11 M Methionine

12 N Asparagine

13 P Proline

14 Q Glutamine

15 R Arginine

16 S Serine

17 T Threonine

18 V Valine

19 W Tryptophan

20 Y Tyrosine
Table 1. Amino acid codes

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

Fig 2.7. Protein sequence[1]

III. APPLICATIONS AND IMPLEMENTATIONS OF

SUFFIX TREES

The applications of suffix trees and its variations in

bioinformatics have grown wider and more diverse, along

with the progress of the algorithms implementing it.

Listed below are several examples of how the use of

suffix trees could help the processes in bioinformatics.

A. Multiple Sequence Alignment

Sequence alignment, the most common task in

bioinformatics, is a way of arranging DNA, RNA, or

protein sequences for comparison in order to define

functional, structural, or evolutionary relationships

between the sequences. This is usually done by detecting

certain similarities or patterns within the sequences. There

exist already several systems implementing suffix trees for

this function.

An example is MUMmer [9], a system for rapidly

aligning entire genomes, which performs a maximal

unique match (MUM) decomposition between the input

genome sequences. The main biological features

identified by the system are SNPs (Single Nucleotide

Polymorphisms, which are single nucleotide ‘mutations’),

regions where the input sequences have diverged by more

than an SNP, repeats that occur in one genome but not the

other, and tandem repeats (regions of repeated DNA that

occur when a pattern of two or more nucleotides is

repeated directly adjacent to each other). It combines the

use of suffix trees, the longest increasing subsequence

(LIS), and Smith-Waterman alignment.

B. Recognizing DNA Contamination

Various laboratory processes could often cause the

contamination of a DNA string by unwanted DNA or even

protein. There are plenty of manners that contamination

could occur. For example, it might come from the host

DNA itself in the form of bacteria or yeast. It could also

occur in the cloning process, originating from the cloning

vectors used to incorporate the desired DNA in a host

organism, or from PCR (polymerase chain reaction)

primers. DNA contamination is a serious problem which

could cause not only waste of time and effort but may also

lead to wrong conclusions, which marks the importance of

this checking process that can be computed as following:

Given a string S1 (a newly isolated and sequenced

DNA string) and a set of strings S (sources of possible

contamination), find all substrings of S that occur in S1

and are longer than some given length l.

This problem can be solved by the following process

[8]:

1. Build a generalized suffix tree T for S ∪ {S1}

2. Mark all internal nodes of T whose subtree

contains leaves for both S1 and some string of S

3. Traverse T; For any marked node v with string-

depth ≥l report L(v) as a suspicious substring

The total time is Θ(m) where m is the total length of

the strings.

C. Minimum Length Encoding

The Ziv-Lempel method is a universal lossless data

compression algorithm used in various utilities, including

text and image compression. Gusfield [8] presented an

efficient variant of the algorithm:

For any position i in a string S of length m, define the

substring Priori to be the longest prefix of S[i..m] that

also occurs as a substring of S[1..i – 1]. For any position

i in S, define li as the length of Priori. For li > 0, define si

as the starting position of the left-most copy of Priori.

The algorithm creates the compressed version of a

string. For a small example, the string

abababababababababababababababab can be described

as ab(1,2)(1,4)(1,8)(1,16), which uses less symbols than

the original. The algorithm’s implementation using suffix

trees allows it to run in O(m) time.

Ziv-Lempel-like algorithms have been used in

bioinformatics not for obtaining efficient storage but

rather for measuring the “complexity” of strings, with

significant strings having higher compression than random

ones, studying the “relatedness” of two strings S1 and S2

by compressing S2 using only the suffix tree for S1 (or vice

versa), and estimating the “entropy” of short strings to

distinguish exons and introns in eukaryotic DNA.

D. Probe Selection

Microarrays are a common tool in measuring the

expression levels of multiple genes simultaneously. To

function, each array requires one specific oligonucleotide,

called a probe, to attach to its surface. Ideally, this probe

should be unique to bind only to the target sequence and

avoid cross-hybridization. Kaderali and Schlied [10]

presented an algorithm based on the combination of suffix

trees and dynamic algorithm to design and select the

proper signatures for these arrays. The algorithm builds a

generalized suffix tree from the reverse complement of all

the candidate probe sequences then rejects non-unique

probes which form perfect duplexes with more than one

target by identifying all common substrings.

The preselection of probes is done by taking account

of probe length, unique probes, and probe melting

temperature. A generalized suffix tree containing the

complements of all target sequences is then generated and

all infeasible probes are removed. Furthermore, the tree is

then used to group probes with common prefixes together,

which speeds up calculation.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

E. Protein Indexing

Determining similar proteins used to be done by

finding amino acid sequences that are similar to one

another. However, it has been discovered that structurally-

similar proteins also have similarities in functions even if

they differ in their sequences. This is why protein

structure analysis, including classification and prediction,

requires an index structure that enables fast and scalable

searching. There are several methods that are used for

indexing protein structures. Reference [11] uses suffix

trees in order to retrieve the maximal matches for all

query segments, which are then chained to obtain

alignments with database proteins. Similar proteins are

selected by their alignment score against the query.

Other variations include the use of the probabilistic

suffix tree and the geometric suffix tree. The probabilistic

suffix tree stores conditional probabilities associated with

subsequences, with two approaches for local prediction

(multiple-domain prediction and best-domain prediction),

both achieved in O(Lm) time where L is the depth bound

of the tree and m is the size of the query sequence [12].

Meanwhile, the geometric suffix tree is a new structure for

indexing 3D structures of proteins [13]. While the edges

in a traditional suffix tree represent substrings of text, the

edges in this geometric suffix tree represent 3D

substructures. The tree can be stored in O(N) space where

N is the sum of the lengths of the proteins in the database

and constructed in O(N
2
) time.

F. RNA Structural Pattern Matching
As with protein structures, RNA structures also tend to

point out the similarities of certain properties. Although

RNA sequences can be compared easily in a string sense

using traditional suffix trees, the use of structural suffix

tree (s-suffix tree) can also determine their relationship in

a structural sense, as proposed by Shibuya [14]. This is

done by comparing s-strings, which are a generalization of

parameterized strings (a parameterized string is a string

over the union of two alphabets ∑ and ∏, where ∑ is an

ordinary alphabet and ∏ is a set of parameters). The s-

suffix tree can be constructed in O(n(log|∑|+log|∏|)) time.

An example of an s-suffix tree is given below.

Fig 3.1. The s-suffix tree for an RNA string S = “AUAUCGU” [14]

The comparison between two structures is done by

checking if the s-strings are an s-match. Two s-strings S

and S’ are considered an s-match if and only if prev(S) =

prev(S’) and compl(S) = compl(S’). The computation for

prev and compl are given in the algorithm below:

Let last_position(p) = 0 for all the parameters p at first.

For 1 ≤ i ≤ n, let prev(S)[i] = compl(S)[i] = S[i] if S[i] is

an ordinary alphabet character, otherwise do the

following.

1. Set 0 to prev(S)[i] if last_position(prev(S)[i]) =

0. Otherwise set i – last_position(prev(S)[i]) to

prev(S)[i].

2. Similarly, set 0 to compl(S)[i] if

last_position(complement(prev(S)[i])) = 0. Otherwise set

i – last_position(complement(prev(S)[i])) to compl(S)[i].

3. Set i to last_position(S[i]).

Further algorithms are also given to increase the speed

of this process.

IV. THE SPACE PROBLEM OF SUFFIX TREE

IMPLEMENTATIONS

The options for suffix tree implementations are vast,

but the problem with suffix trees typically lies in their

space requirements. The construction of a suffix tree

typically calls for a complexity of O(m), which doesn’t

sound so terrible. However, it is the constant in front of

the m that limits much of the real-life applications it could

theoretically serve. This constant factor varies with each

implementation.

MUMmer uses approximately 17 bytes for each

basepair in the reference sequence [9]. It is able to build a

whole genome alignment for an E.coli in 77 MB and

plenty of other types of species. A human chromosome,

however, could take up almost 4 GB, and the total space

required for a whole human genome is approximated to be

about 47 GB. Compressed suffix trees succeeded in

bringing the size of the human genome down to 3GB, but

their performance became 90 times slower than the

regular suffix tree. The high space requirement has led to

the frequent use of disk-based construction methods for

very large sequences, and the development of algorithms

focused on space-efficiency. An example of an algorithm

that allows inputs larger than the main memory is B
2
ST,

which claims to build a suffix tree for 12 GB of real DNA

sequences in 26 hours on a single machine with 2 GB of

RAM [15]. A few problems still continue to exist but new

algorithm designs also continue to appear as an attempt to

solve them.

Some have decided to search for another alternative. A

powerful substitute to the suffix tree is the suffix array,

which stores all the suffixes of a string inside an array. In

general, searching processes with suffix arrays are not

performed as fast as with suffix trees, but they do serve an

advantage in lower memory consumption. Enhanced

suffix arrays [16], on the other hand, are even said to also

perform faster than suffix trees, which basically gives

them the best of both worlds. Unfortunately, not so many

programs for ESA construction or specific algorithms for

bioinformatics implementing ESA are currently available,

but several have already started to arise in the recent

years.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

V. CONCLUSION

In conclusion, suffix trees are a helpful data structure to

use for comparisons and pattern detection, which makes it

a versatile tool that can be applied to almost any kind of

process in bioinformatics. It can determine the similarities

between sequences and structures, find certain properties

in a sequence, and can be combined with other algorithms

to create new specific algorithms that are more efficient.

On the other hand, the suffix tree still suffers from a major

drawback in its memory requirement and must therefore

be either improved or replaced when used for very large

inputs.

REFERENCES

[1] Achuthsankar S. Nair, “Computational Biology & Bioinformatics:

A Gentle Overview”. Communications of the Computer Society of

India, January 2007.

[2] Kenneth H. Rosen, Discrete Mathematics and Its Applications 7th

ed., McGraw-Hill, 2012.

[3] P. Weiner, “Linear pattern matching algorithm,” Proc.14 IEEE

Symposium on Switching and Automata Theory, 1973.

[4] Stefan Edelkamp, “suffix tree”, in Dictionary of Algorithms and

Data Structures [online]. Available:

http://www.nist.gov/dads/HTML/suffixtree.html. [Accessed: Feb.

10, 2014].

[5] Bálint Márk Vásárhelyi, “Suffix Trees and Their Applications”,

MSc Thesis, Faculty of Science, Eötvös Loránd University,

Budapest, 2013.

[6] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica,

vol. 14, pp. 249-260, 1995.

[7] M. Farach, “Optimal suffix tree construction with large

alphabets,” Proceedings of the 38th Annual Symposium on

Foundations of Computer Science, 1997.

[8] D. Gusfield, Algorithms on Strings, Trees and Sequences,

Cambridge University Press, 1997.

[9] The MUMmer Home Page [online]. Available:

http://mummer.sourceforge.net [Accessed: Feb. 10, 2014].

[10] Lars Kaderali and Alexander Schliep, “Selecting signature

oligonucleotides to identify organisms using DNA arrays”,

Bioinformatics, vol. 18, pp 1340-1349, 2002.

[11] Feng Gao and Mohammed J. Zaki, “PSIST: Indexing Protein

Structures using Suffix Trees,” Proc. IEEE Computational

Systems Bioinformatics Conference (CSB), 2005.

[12] Zhaohui Sun, “Local Prediction Approach for Protein

Classification Using Probabilistic Suffix Trees,” Proc of The

Second Asia-Pacific Bioinformatics Conference, vol. 29, 2004.

[13] T. Shibuya, "Geometric suffix tree: A new index structure for

protein 3D structures", Proc. Combinatorial Pattern Matching,

LNCS 4009, 2006

[14] T. Shibuya, “Generalization of a suffix tree for RNA structural

pattern matching”, Algorithmica, vol. 39 no. 1, 2004.

[15] M. Barsky, U. Stege, A. Thomo, and C. Upton, "Suffix trees for

very large genomic sequences," Proceedings of the 18th ACM

conference on Information and knowledge management, ser.

CIKM '09, 2009.

[16] M. I. Abouelhoda, S. Kurtz, et al. “Replacing suffix trees with

enhanced suffix arrays,” Journal of Discrete Algorithms, 2004.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 11 Desember 2014

Asanilta Fahda 13513079

http://www.nist.gov/dads/HTML/suffixtree.html
http://mummer.sourceforge.net/

