
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

Optimizing Rolling Hash in Rabin-Karp Pattern

Matching Algorithm with Randomized Modulo

Afrizal Fikri / 13513004

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

afrizal_f@students.itb.ac.id

Abstract—Pattern matching has widespread application

from the word processing, to the biometric recognition. Many

algorithm’s been developed. One of those is Rabin-Karp

algorithm which easy to implement and relatively fast than

other algorithm. Since this algorithm using hash as the main

component and also limitation of amount of hash key and

data representation in computer, we need to minimizing

collision between different patterns. We will look that

randomized modulo give many advantages.

Keywords—rolling hash, collision, hash value, false match.

I. INTRODUCTION

From the very beginning, pattern has appear in various

things. Those pattern data need to be analyzed to become

valuable information. Then this information can be used

for many purpose. For example, using goods prices pattern

government could make proper policies in monetary and

economic.

One of most important operation in pattern recognizing

is matching operation. We look for an already known

pattern in a long pattern which found, then make

conclusion from the data that gotten.

The most simple and widely studied pattern matching

problem is the following: given a pattern X of length n and

a text Y of length m ≥ n, find all occurrences of X as a

consecutive substring of Y. The easiest solution is to brute

force all position of pattern Y in X and check whether Y is

substring of X in this position.

In 1974, Donald Knuth and Vaughan Pratt, also

independently James H. Morris developed more efficient

algorithm called Knuth-Morris-Pratt (KMP) algorithm.

Then Aho-Corasick (1975) and Boyer-Moore (1977)

invented algorithm. O(n) registers to store a table of

pointers. The characters of the text Y can come in a stream

and require no storage. But for fast implementation it is

useful to have portions of Y in main memory [1].

In 1987, Richard M. Karp and Michael O. Rabin propose

another linear time algorithm which need only constant

number of register and a substring of length n of the text in

main memory [1]. The algorithm using hash function based

on polynomial which similar to number basis concept.

A. Pigeonhole Principle

In mathematics, pigeonhole principle is obvious fact

which occurred in many counting problems. This principle

originally states that if there are n item put into m

containers, with 𝑚 < 𝑛, there must be minimal a

container which contain more than one item inside.

This theorem can be generalized by considering each

container can obtain more than one items. So, for n items

put into m containers, there must be ⌈𝑛/𝑚⌉ item(s) for each

container.

B. Number Theory

1. Prime Number

Briefly, prime number is a positive number more than 1

whose only 2 divisor, 1 and itself. Positive numbers other

than prime number called composite numbers. So, all

composite number is consist of one or more prime

number(s).

From the fundamental theorem of arithmetic, we know

that all of positive integer more than 1 can be factorized to

one or more prime numbers. Simply, it can be derived from

the composite number’s properties above. Since the

composite number consist of prime numbers and,

obviously prime number consist of prime one itself, so the

theorem above valid.

2. Modular arithmetic

Integers can be written in the division form with divisor,

quotient, and residual (remainder). Modular arithmetic

concern to this remainder properties of integer. Formally

suppose we have a number n and m. We can rewritten m as

form of division by n become

 𝑚 = 𝑛𝑞 + 𝑟 (1)

with q and r < n are non-negative integers. Equation

above called Euclid Theorem [3].

With Euclid Theorem we can find greatest common

divisor of two number. Euclid also marks

that 𝐺𝐶𝐷(𝑚, 𝑛) = 𝐺𝐶𝐷(𝑛, 𝑟). This implies a recurrence

relation of GCD between two numbers. Also we can

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

determine coprimality between two numbers from the fact

that 2 coprime numbers have GCD equal 1.

There are another way to represent modulo of a number

from another number. That’s congruency. Slightly

different from the previous form, congruency has the form

 𝑚 ≡ 𝑟 𝑚𝑜𝑑 𝑛 (2)

Since we only concern about the division remainder, we

can throw out q (quotient).

There are some identity about modular congruency:

 (𝑎 + 𝑏) ≡ (𝑝 + 𝑞)𝑚𝑜𝑑 𝑛 (3)

 (𝑎 − 𝑏) ≡ (𝑝 − 𝑞)𝑚𝑜𝑑 𝑛 (4)

 𝑎𝑏 ≡ 𝑝𝑞 𝑚𝑜𝑑 𝑛 (5)

with 𝑎 ≡ 𝑝 𝑚𝑜𝑑 𝑛 and 𝑏 ≡ 𝑞 𝑚𝑜𝑑 𝑛.

C. Hashing

Hash is a storing and searching method which run in

complexity near constant [1]. Almost all of database

system nowadays using varies hash function to store their

data.

Figure 1.2 Hash table illustration with hash chaining resolution

Source: http://www.algolist.net/img/hash-table-chaining.png

Besides hashing there are many ways to store dataset

efficiently. For example, using tree data compression. But

we only concern to the hash function using here.

Usually hash is generated using some function which

mapping a key to a specific unique value, sometimes index

of storage table. Hash function generated value based on

key certain properties.

For example, the simplest hash function is by mapping

key based on modulo by a numerical value

 ℎ(𝑛) = 𝑛 𝑚𝑜𝑑 𝑚, 𝑚 > 0 (6)

As can be seen from the equation above, this function

only provide m distinct hash value (from 0 to m-1). By

pigeonhole principle mention above, must be a slots which

filled by 2 or more different key. This phenomenon also

known as collision.

Varied ways to get rid this collision. Those usually

called collision resolution. Most often resolution used is

open addressing / close hashing and hash chaining. Open

addressing is resolution by moving entry whose origin

place had taken. While hash chaining is by making list of

elements in collision indices so every entry can occupy the

proper place.

These two method cannot used to our string matching

problem because these method take action on storage

management. Since our algorithm only need the hash value

to be compared, we need another resolution method.

II. RABIN-KARP ALGORITHM

Before we talk about the Rabin-Karp algorithm we need

to know how the string matching normally works. Suppose

we have a pattern T with length m and string S with length

n ≥ m. First, we will put T sticking to beginning of S. Then

we check whether part of S which beside the T is equal with

T or not. If not, slide pattern T to next character. So on until

the end of S or the pattern has found in S. This operation

run in O(n).

Figure 2.1 String matching illustration from first to last

Each comparison of substring, we have to check every

letter of substring with pattern one by one. This operation

take O(m) since we have iterate at most m characters of

pattern. So overall comparison of this naïve method take

running time O(nm).

Inefficiency occurred because we check the same

character over and over. We could reduce running time by

http://www.algolist.net/img/hash-table-chaining.png

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

save last position which have same character with last

character checked before. KMP algorithm used this

approach with preprocessing table to save return position

after each checking in current position failed.

Another way to make a fast comparison is by turning the

string into an integer value then compare these two integers

to check equality of strings. Each character can be assigned

to a different value of integer. So there are no two different

string have the same integer value.

One of the way of turn the string into integer is using

polynomial hash. Suppose we want to turn a string S

consist only of uppercase alphabet. We could assign each

alphabet character with a number 0 – 25. Then each

alphabet depend of the position has a multiplier factor to

keep position of each character in the integer value

distinguished. From the last character multiplier factor is

p0, then previous character multiplied by p1, and so on until

the first character multiplied by p|S| – 1.

p|S|-1 p|S|-2 p|S|-3 … p2 p1 p0
Figure 2.2 Multiplier factor for each character position

Hence, the hash formula:

 ℎ(𝑆) = ∑ 𝑆𝑖 . 𝑝|𝑆|−𝑖

|𝑆|

𝑖=1

 (7)

with Si refers to value assigned to i-th character is S

instead of character itself and p is multiplier base.

Hash value of the string can be very large when the string

is long. Even for string with length = 15, the hash value can

reach 26
15 = 1677259342285725925376. Compare to

maximum value of unsigned 64-bit integer which is only

2
64 – 1 = 18446744073709551615 the hash value cannot

be represented by 64-bit integer.

To make hash value can be covered by 64-bit integer we

have to modulo that formula with a 64-bit integer number

too, supposed by k. Hence, the formula become:

 ℎ(𝑆) = (∑ 𝑆𝑖 . 𝑝|𝑆|−𝑖

|𝑆|

𝑖=1

) 𝑚𝑜𝑑 𝑘 (8)

and by modulo identity formula above can be rewritten:

ℎ(𝑆) = (∑(𝑆𝑖 . 𝑝|𝑆|−𝑖 𝑚𝑜𝑑 𝑘)

|𝑆|

𝑖=1

) 𝑚𝑜𝑑 𝑘 (9)

Now we start discuss the main algorithm. Suppose we

want to check a substring of a string S with a pattern T. We

have to calculate the hash value of substring and compare

to hash of pattern. If does not match, we get to the next

substring and calculate again the hash value. Until the

pattern found or reach the end of string. But calculate hash

value every substring take extra time even compared to

naïve method mention before.

Note that while going to next character, we only need

subtract hash value with first character, shifting hash value

to the left one, and add the last character. Subtracting the

last character can be done by compute the proper multiplier

factor than multiply with first character value, then

subtracting it from current hash value. Operation can be

optimized more by storing the multiplier factor for deletion

because the pattern length is constant. So, we don’t need to

compute many times. Shifting left one can be done only by

multiply current hash with multiplier base (p). Because

when we shifting left, component which changed are only

multiplier factor. Then the last one just add the value of last

character. Nothing to do with the multiplier factor because

the last character have multiplier factor equal p0
= 1. This

strategy also known as rolling hash.

This is pseudo code of the “raw” Rabin-Karp algorithm

Ideally, we assumed that if hash of substring and pattern

equal, than those two is same too. But notice that possible

hash value is limited only to k. While the hash value before

modulo should be 26|𝑇|. So, for some length of T the hash

value before the modulo will be excess the limit k. By the

function Rabin-Karp(S, T : string) : boolean
{ returning whether T occurred in the S
substring or not }
{ h : hash of current substring of S }
{ hp : hash of string T }

h 0
hp 0
for i : 1 to |T| do

h (h × p + Si) mod k
endfor
for i : 1 to |T| do

hp (hp × p + Ti) mod k
endfor
for i : |T| to |S| do

if h = hp then
return true

endif
if i < |S| then

h (h + k – p|T|-1 mod k) mod k
h (h × p + Si) mod k

endif
endfor
return false

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

pigeonhole principle, must be a hash value which

represented two or more different string, also known as

false match.

Hence, we add an additional checking. When the hash

value of two is equal, we consider to check whether two

string is same or not instead just conclude the two is same.

Here is the “improved” rolling hash pseudo code:

The worst case is when for each comparison, we have

equal hash value. So in worst case, running time of this

algorithm still O(nm). We need to optimize more to

suppress the collision.

III. REDUCING FALSE MATCH

Suppose for any fixed location i, the probability of an

incorrect match is δ. Then by a union bound over t − p + 1

locations we perform the equality test, the probability of

outputting some false positive is at most (t − p + 1). δ ≤ tδ.

If we want the final probability of error to be at most 1/2,

we should ensure that δ ≤ 1/(2t).

Notice the only randomness is in the choice of the

random prime k. We make a mistake when the number

represented by the p-bit substring S[i . . .(i+p−1)] (call this

number a) is not equal to the number represented by the p-

bit pattern T (call this second number b), but these two

numbers are the same modulo the random k. By the

definition of being equivalent modulo k, this means that k

divides |a − b|. Now |a − b| is also a p-bit number, so it can

have less than p distinct prime divisors. (Each prime

divisor is at least 2, and |a − b| < 2p). And if k | (a − b), then

k must have been one of these “bad” values, these prime

divisors.

We would like to claim that choosing a uniformly

random prime number k in the range {2, … , M}, the

chance that we choose one of (at most) p bad values is

smaller than 1/(2t). For this, it suffices to choose M large

enough such that there are at least 2pt primes between 2

and M.

And while this is just an asymptotic statement, we also

know that

 𝜋(𝑛) ≥
7𝑛

8 ln 𝑛
 (10)

with π(n) is number of primes less or equal by n. This

theorem was proved by Chebyshev back in 1848. Now

setting M to equal, say, 10pt ln pt ensures that π(M) ≥ 2pt

for large enough pt, which proves the result.

That method is good enough. But if we want to reduce

the error probability more, we could either pick several

independent primes k or perform the string matches in

parallel (claiming that there is a match at location i only

when all the hash values match).

IV. CONCLUSION

The idea of randomize sometimes can be very useful.

Since the randomize value can be varies, we also consider

the worst case of using this algorithm. Anyway, the rolling

hash matching still have important role in various field.

Maybe in future, more efficient method will be developed

and make a more productive world.

VII. ACKNOWLEDGMENT

I would thank to God for all resource He give to me for

helping me finishing this paper. Also I would like to thank

my lecturer, Mr. Rinaldi Munir and Mrs. Harlili for giving

me knowledge in computer science, and discrete

mathematic field especially. And to everybody who give

me inspiration and support in this paper work.

function Rabin-Karp(S, T : string) : boolean
{ returning whether T occurred in the S
substring or not }
{ h : hash of current substring of S }
{ hp : hash of string T }

h 0
hp 0
for i : 1 to |T| do

h (h × p + Si) mod k
endfor
for i : 1 to |T| do

hp (hp × p + Ti) mod k
endfor
for i : |T| to |S| do

if h = hp then {do additional check}
same true
for j : 1 to |T| do
 if Tj ≠ Si-1+j then

same false
 endif

endfor
return same

endif
if i < |S| then

h (h + k – p|T|-1 mod k) mod k
h (h × p + Si) mod k

endif
endfor
return false

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

REFERENCES

[1] Karp, Richard M.; Rabin, Michael O. (March 1987). "Efficient
randomized pattern-matching algorithms". IBM Journal of

Research and Development 31 (2). Retrieved on 8 Dec 2014.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.9502
&rep=rep1&type=pdf.

[2] Paulo Ribenboim. (1995). The New Book of Prime Number

Records (3rd ed.). New York: Springer-Verlag.
[3] K. H. Rosen. (2012), Discrete Mathematics and Its Applications

7th. New York: McGraw-Hill.

[4] Knuth, Donald (1998). 'The Art of Computer Programming'.
3: Sorting and Searching (2nd ed.). Addison-Wesley.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 10 Desember 2014

Afrizal Fikri

13513004

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.9502&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.9502&rep=rep1&type=pdf

