
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

Implementation of Tree and Recursion in Checking C

Syntax’s using Context Free Grammar

William Sentosa / 13513026

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

e-mail : williamsentosa@students.itb.ac.id

Abstract— Tree is a graph which don’t has directions, all

of its nodes is connected and it contains no circular path.

Tree is generally used in science, including in computer

science. In this science, it will work pairs with the recursion.

Recursion is a process that defined itself in the similar way.

It is playing an important role not only in computer science,

but also in language theory. One of the theorem that use this

recursion is Context Free Grammar. Context Free

Grammar is a formal notation for expressing the recursive

definitions of languages. This notation can be used in

expressing the syntax of C programming language. The tree

will be used to parse the syntax and it can determine

whether the syntax is valid.

Keyword—Context Free Grammar, parse tree, recursive,

syntax.

I. INTRODUCTION

Tree is defined as the structure of graph which is

mostly used in science. Not only used in computer

science, but also in language. Tree is undoubtedly play an

important role in the language theorem, especially when it

has to be processed by the computer. The ability to parse

down the sentence into word in a root tree is the key why

tree is used in this theory.

 Language theory in computer science brought a drastic

change in compiler technology, especially after Context

Free grammar was found. Since that time, they turned the

implementation of parsers (function that discover the

structure of program) from a time-consuming, ad hoc-

implementation task into a routine job that can be done in

an afternoon. More recently, the context-free grammar

has been used to describe document formats, via the so-

called document-type definition (DTD) that is used in the

XML (extensible markup language) community for

information exchange on the Web.

Context Free grammar is structured by recursive

notations. So, the recursion theorem play a major role

here. Recursion is quite well-known in language theory,

since the language is also recursive by nature. The word

“and”, for example, can be construed as a function that

can apply to sentence meanings to create new sentences,

and likewise for noun phrase meanings, verb phrase

meanings, and others. It can also apply to intransitive

verbs, transitive verbs, or ditransitive verbs. In order to

provide a single denotation for it that is suitably flexible,

and is typically defined so that it can take any of these

different types of meanings as arguments. This can be

done by defining it for a simple case in which it combines

sentences, and then defining the other cases recursively in

terms of the simple one.

In this paper, we will see if tree and recursion can be

useful to check the syntax of the C programming

language. C language is a well-known programming

language. It can be proven by seeing facts that C compiler

is available in almost available computer architectures

and operating systems. Not only that, C is also used in

many competitive programming contest and was used in

lots programming class.

II. RELATED THEORIES

1. Tree

 Tree is defined as an undirected graph without any

circular vertex. A graph is called as a tree if it doesn’t

have any circular vertex and it was connected each other.

Tree, in computer science, is usually processed

recursively because of its ability to act as a subtree where

every subtree is also a tree, as shown in picture 2.1.

 Subtree

 Picture 2.1

 In picture 2.1, We can see that the subtree is also a tree.

So it is easier to process it recursively by having an empty

tree as a basis.

The definition of tree :

Assume that G = (V, E) is an undirected graph and has n

vertices. Then, all of those statement is true :

1. G is a tree.

2. Every pairs of vertices in G is connected by a singular

path.

3. G is connected each other.

4. G contains no circuit.

A

C B

G F D E

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

5. Adding one edge in a vertex will only create one

circuit.

6. G has (n-1) edges.

1.1 Spanning tree
 Spanning tree is a subgraph which can be defined as a

tree. This tree can be obtained by cutting edges in a graph.

One graph may have two or more spanning tree. The

illustration is in picture below

 Picture 2.2

http://mathworld.wolfram.com/SpanningTree.html

retrieved in 7 Dec 2014

The rightmost side is graphs and the rest side is its

spanning trees.

1.2 Rooted tree
 Rooted tree is defined as a tree which has a root and all

of its edges have directions. It was largely used in

computer science especially in data structure. The tree

below is classified as a rooted tree.

 Picture 2.3

There are some terminology in rooted tree, such as:

a. Child / Children and parent, supposed that T is a

rooted tree. If V is a vertex in T other than root, the parent

of V is the unique vertex U such that there is a directed

edge from U to V. In picture below, F and G are children

from C and C is the parent of them.

 Parent

 Children

 Picture 2.4

b. Subtree, the subtree of A is a tree consisting only a

node in A and all of its descendants. Picture below clearly

showed the subtree from node A.

 Subtree Subtree

 Picture 2.5

c. Degree, the degree of a node is defined as the total of

children or subtrees which it has. In picture 2.5, Node C

has two degrees because it has two children (F and G) and

also two subtrees.

d. Leaf / leaves, defined as nodes without having any

child or, in a similar way, have a zero degree. In picture

below, we can say that D, E, F, G is leaves for it have no

child.

 Leaves

 Picture 2.6

e. Internal nodes, all of the nodes that have a child /

children is called as internal nodes. In picture 2.1, node B,

alongside with node C, is internal node.

 Internal Nodes

 Picture 2.7

A

C B

G F D E

A

C B

G F D E

A

C B

G F D E

A

C B

G F D E

A

C B

G F D E

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

f. Height or depth, height is the longest path from the root

to a leaf. In illustration below, the height of the rooted

tree is 3, since one of its longest path is A, C, G.

 Height

 Picture 2.8

1.3 N-ary tree
N-ary tree is a rooted tree with all nodes have at most N

children. N-ary tree will be used, in this paper, as a parse

tree which will be explained later.

 Picture 2.9

http://pioneer.netserv.chula.ac.th/~skrung/2301365/Lect

ure004.html retrieved in 7 Dec 2014 16:40

In the picture 2.9 above, we can see a ternary tree, for its

most children is three.

2. Recursion
 Recursion is a process that called itself in similar way.

It is used both in computer science and mathematics. It is

also largely used in language theory.

A recursion function is defined by two parts:

a. Basis

The part that will stop the recursion and produce a value

b. Recursion

This part shall reduce all other case toward the basis.

Here is an example of recursive functions:

The functions above is factorial, which will return 1 if the

input was 0. The recursion part will reduce input value

and will return the multiplication of x and the value of the

factorial of x-1. Then, the recursion will stop when x is

zero, which was the basis in this case.

There are many definition in language that used the

recursion :

1. String, a set of characters.

2. Null String, defined as an empty string

3. Alphabet, a set of characters which construct a string

3. Context Free Grammar
 Context Free Grammar is a formal notation for

expressing the recursive definitions of languages. The

language it defined is called as Context Free Language. It

was generally used to define the rules of the languages.

 There are four important components in Context Free

Grammar :

1. There is a finite set of symbol that form the strings of

the language being defined. We call this alphabet as

terminal symbols.

2. There is a finite set of variables, also called as non-

terminals or syntactic categories

3. One of the variables represents the language being

defined; it is called the start symbol.

4. There is a finite set of productions or rules that

represent the recursive definition of language. Each

production consist of :

• A variable that is being defined by the

production. This variable is often called the head

of the production.

• The production symbol →

• A string of zero or more terminals and variables.

This string, called the body of the production,

represents one way to form strings in the

language of the variable of the head.

 We can represent CFG by four components, which is

G=(V,T,P,S), where V is the set of variables, T the

terminals, P the set of productions, and S the start symbol.

Here is an example of CFG notation :

 G = ({S,A}, {a,b}, P, {S})

 P :

 S → aSa | Ab

 A → Aa | b

 S is a start state and S can produce either aSa or Ab. A

is a variable that can produce Aa or b. In both variable S

and A, there are a recursive notation, aSa in S and Aa in

A, which gives them ability to call itself. Now we already

have the CFG, but how it works?

 We can use the derivation to produce the language

defined by the context free grammar. Those derivation

can be represented as a tree which we called as parse tree.

3.1 Parse Tree
 This tree has been proved to be extremely useful in

representing the derivations. This parse tree is tied closely

to the existence of derivations and recursive inference.

The parse tree for grammar G = (V, T, P, S) is:

A

C B

G F D E

f(x) = 0 x = 0 Basis

f(x) = x . f(x-1) x > 0 Recursion

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

• Each interior node is labeled by a variable in V.

• Each leaf is labeled by either a variable, a

terminal, or ϵ, then it must be the only child of

its parent.

• If an interior node is labeled A, and its children

are labeled

 X1,X2,…,Xk

respectively, from left, then A → X1,X2,…,Xk is

a production in P.

 Picture 2.10

 In picture 2.10 above, we see the parse tree. S is a start

state have to be the root. And then, it can produce aSa.

We found another S which is the child of the root S. Node

a is also the child of S but since it was already a terminal,

it can’t produce anything. S then produced Ab. After that,

A produced a terminal a. Finally, the derivation stopped.

We can see the tree produce leaves aaba. It means that

aaba is a language for CFG G.

III INTRODUCTION TO C LANGUAGE

 C language first developed by Dennis Ritchie between

1969 and 1963 at AT&T Bell Labs. Like most procedural

languages, C has capability for structured programming.

C is one of the most widely used programming language

of all time, and C compilers are available in most of

available computer architectures and operating systems.

 C is an imperative language. It was designed to be

compiled using a straightforward compiler. C is a coveted

programming language since it was relatively simple and

fast because most C implementations compile directly to

machine code.

3.1 Some simple syntax for C language

 C program’s source text uses the semicolon as a

statement terminator and curly braces for grouping blocks

of statements. The language also allows you to declare

new variables in the middle of the program.

 There are some simple syntax in C that will be used in

making the Context Free Grammar in this paper:

1. Conditional declaration

2. Looping declaration

3. Comment

4. Assignment

5. Expression

6. Input / Output

7. Variable declaration

8. Statement

 Statement contains conditional declaration, looping

declaration, comment, assignment, Input/output, and

variable declaration.

IV. CONTEXT FREE GRAMMAR FOR C’S SYNTAX

 Context free grammar is the most effective way in

representing the syntax. We have already limit the syntax

S

a a S

A b

a

if (Expression) {

 Statement

}

if (Expression) {

 Statement

} else {

 Statement

}

while (Expression) {

 Statement

}

do {

 Statement

} while (Expression);

{ Any String }

printf(“………..”);

scanf(“………...”);

type var;

typedef struct {

 type var;

 …….;

} new_type

a=b*5;

a<80

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

which will be checked here. So, the notation wouldn’t be

so complicated. We will use the recursive capability of

CFG to express the repetitive notation and then we will

parse it down using the parse tree.

Here is the CFG :

 It is the general notation for C syntax. We assume that

the comment, assignment, expression, input/output, and

variable declaration is already valid. So we didn’t make

the notations for them. As we can see, in variable A there

are a production AA which indicates that there is a

recursive notation. It gives capability to repeat the process

of A and produce more terminals. You may also note that

different notation can bring the same results, so this is not

only the right version.

 First, for the start state, we will have to create the curly

braces in the beginning and end. A is the statement. Next,

A can be filled with conditional, looping, comment,

assignment, input/output, and variable declaration. Don’t

forget that we should put AA to make repeated

productions. For the expression we will use it in looping

and conditional.

 4.1 Checking the syntax using the parse tree

 Input languages can be checked by building the parse

tree. We could make the tree started by defining its root

as a start state. Then we can derive the start state into

another state or terminal. We have to try for making

leaves of the tree is equal to the input language. The

process is shown below. The circle is mark as variables,

while the square is marked as terminals.

Check whether this subprogram is valid :

Building parse tree :

Put the start state as the root of the tree.

Step 1:

Search for the productions that have curly brace.

Step 2:

In variable A, search the production that will produce

Input/Output, which is F

Step 3:

See the production of F, which is Input/output.

Step 4:

Since the leaves is equal to the subprogram, the syntax is

valid.

Another example, Check whether this subprogram is

valid:

Building the parse tree:

Put the start state as the root of the tree.

Step 1:

Search for the productions that have curly brace.

Step 2:

(Start state) S → { A }

(Statement) A → if (E) S | if (E) S else S | while (

E) S | do S while (E); | C | D | F | G | AA

(Comment) C → Comment

(Assignment) D → Assignment

(Expression) E → Expression

{

 printf(“Hello world”);

}

S

S

A

S

A

F

S

A

F

{

if b < 8 {

 x = 8 + b ;

 }

}

S

S

A

{ }

{ }

{ }

printf(“Hello world”);

} }

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

In variable A, search the production that will produce if

then without else

Step 3:

See the production for E and S.

Step 4:

In variable A, search the production that will produce

asignments, which is D

Step 5:

See the production is D which is the assignment.

Step 6:

 As we can see, the leaves don’t produce the exact

language of the subprogram. So, the subprogram is not

valid. The tree has produced another language, which

should be the valid syntax for it. The language which has

been produced by the tree is

The language above is a valid one, so the parse tree only

can produce the language following the rule of production

in CFG.

 The key of using the parse tree is trying to make the

exact terminal at the leaves to the input language by

following the rule of production that have been made

through context free grammar. Whenever the result is not

same as the input, then the input is not valid, and the

leaves it produced should be the correct one.

VI. CONCLUSION

Tree theorem can be applied in checking the syntax in

C language by using it as a parser. Tree is the best

representation for this problem, since we use the context

free grammar which have a recursive notation and we all

know that tree works perfectly with recursion. Recursion

is also plays an important role in defining the rule of

context free grammar, since it gives the ability to produce

the variable repeatedly.

The implementation of tree in checking the syntax of

the C language is by having it as a parser, also known as

the parse tree. By putting the start state in the root and

having the production to its children node, we can

determine whether the language is defined by the context

free grammar.

The implementation of recursion in checking the syntax

of the C language is by having it in the rule of production.

The nature of language is having the string recursively

called and it was defined in the context free grammar

which has a recursive notation.

In conclusion, the tree and recursion theorem,

alongside with the context free grammar, can be used to

determine if the syntax in any language is valid or not.

And in this paper, it was proven to be worked in the

simplified C language.

VI. ACKNOWLEDGMENT

 I would like to thank to God for his guide while

preparing, writing and editing this paper. I would also

express my gratitude to my advisor Dr. Ir. Rinaldi

Munir,MT, who has helped me a lot and Dra. Harlili S.,

S

A

E S

A

E S

S

A

D

} {

) (If

If

{ }

} {

) (

S

b<8

S

x=8+b;

{

if (b<8) {

 x = 8 + b ;

 }

}

A

E S

A

If

{ }

} {

) (

b<8

D

A

E S

A

If

{ }

} {

) (

b<8

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2014/2015

M.sc that had taught me lots about Context free grammar.

I also thank to my friends and family who has given me a

strength to finish this paper. Finally, I would like to thank

to Institut Teknologi Bandung for the support during the

completion of this paper.

REFERENCES

[1] Rinaldi Munir, Matematika Diskrit 3rd, Bandung: Informatika ,

2009
[2] Giannini, Mario; Code Fighter, Inc.; Columbia University (2004).

"C/C++". In Hossein, Bidgoli. The Internet encyclopedia 1. John

Wiley and Sons. p. 164. ISBN 0-471-22201-1. Retrieved 16

December 2012.

[3] Hopcroft, John, “Introduction to Automata Theory, Languages and
Computation, 3rd edition, Febuary 2006.

[4] Barbara Partee and Mats Rooth. 1983. In Rainer Bäuerle et al.,

Meaning, Use, and Interpretation of Language. Reprinted in Paul
Portner and Barbara Partee, eds. 2002. Formal Semantics: The

Essential Readings. Blackwell.

[5] http://programmers.stackexchange.com/questions/141329/what-
makes-c-so-popular-in-the-age-of-oop accessed in 9 Dec 2014

13:48

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 27 November 2013

ttd

William Sentosa

13513026

