
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Pattern Matching for Detecting Plagiarism on Artworks

Azalea Fisitania 13511028
1

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1
13511028@std.stei.itb.ac.id

Abstract—Plagiarism has been a serious concern, not only

in Indonesia but everywhere, especially developed countries

and developing countries. Plagiarism happens not only on

literatures, papers, or books but also on artworks such as

drawings, paintings, photographs. This paper presents a way

for plagiarism detection on artworks using pattern

matching. One of pattern matching technique, Knuth-

Morris-Pratt algorithm (KMP), will be used in the program

implementation. At the end of the paper, it will be concluded

that pattern matching can be used to detect plagiarism with

some simplification and constraints due to limitation of

program.

Index Terms— artworks, Knuth-Morris-Pratt algorithm,

pattern matching, plagiarism, plagiarism detection.

I. INTRODUCTION

Plagiarism, n. means the appropriation or imitation of

another’s ideas and manner of expressing them, as in art,

literature, etc., to be passed off as one’s own. Plagiarize,

v. means to commit plagiarism. Plagiarist, n. is one who

plagiarizes
[1]

. Term “plagiarize” is defined as to take

(ideas, documents, code, images, etc.) from another and

pass the off as one’s own without proper citation
[2]

.

Plagiarism happens in a lot of forms. On school,

plagiarism is simply copying whether only some parts

from another student’s work or even the whole work. It is

inconvenience; plagiarists will gain undeserved advantage

such as higher scores for their assignments with less

effort. It actually is unfortunate for plagiarists because

their brains won’t be stimulated to think and less

developed than those who do assignments on their own.

Still, it can be a demotivating factor for those who do

assignments because it’s unfair for them. On college, it

happens on student assignments, papers, etc.

Images plagiarism also happens on artworks such as

drawings, paintings, photographs, etc. Images plagiarism

increases as image manipulation technology, ease of

distribution, and publication via Internet advances. On

this Internet Age, it’s very easy to share through upload

and download images on social media (e.g. Facebook,

Twitter, Multiply) or blog posts (e.g. Tumblr, Wordpress,

Blogspot). Licenses and watermarks have been applied on

works published into the Internet. Creative Commons

(CC) is a non-profit organization that provides free

license one works. The license differs considering

whether the author gives permission on adaptations and/or

commercial uses of the work or not. For people who

respect the original artist, it’s useful. For those who don’t,

it remains as formality. On the other side, websites for

publishing artworks e.g. deviantART, iStockPhoto, and

ClipartOf provide automatic watermarks on the whole

image. It takes a lot of time to remove all the watermarks.

Safer, but it detracts the beauty of the artwork itself so a

lot of artists make their own watermarks manually. They

usually are small and easy to be erased using image

applications e.g. Adobe Photoshop thus easier to be

plagiarized. Not to mention careless artists who don’t

aware on plagiarism and don’t apply any watermarks.

It’s hard to prevent plagiarism, but still can be detected

after the occurrence; expecting that the plagiarism can be

reported to the original artist and that the plagiarist can be

forced to erase the image after it is confirmed by the

original author. Detecting image plagiarism simply is

done by matching two images: the original one and the

plagiarized-suspected one. In the term of algorithm

strategy, it’s called pattern matching. In this paper, there

will be discussed pattern matching for detecting image

plagiarism.

 Actually there are already some Internet-apps/plugins

and stand-alone programs that can detect plagiarism on

documents using the same concept: pattern matching.

Nowadays, known an Internet plugin called TinEye

plugin that able to search images in Internet. Currently,

users of TinEye said that it still does exact match, so it

isn’t optimal in performing plagiarism detection.

II. PROBLEM DEFINITION

There is already term for matching images, called

image matching. It involves image processing, which is a

complicated mechanism. Thus, the image type here is

limited into ASCII art which is the most universal

computer art form in the world. ASCII art is any sort of

pictures or diagrams drawn with the printable characters

in the ASCII character set
[3]

. Because ASCII takes form

as multi-line containing text using ASCII characters, it

can be approached by pattern matching.

There is no explicit classification in ASCII art, but can

be distinguished by its complexity as the two ASCII art

images on Fig. 1 and Fig. 2 below:

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Image Source | http://asciiartist.com/

Fig. 1 A Simple ASCII Art

Image Source | http://www.collectorsquest.com/

Fig. 2 A More Complicated ASCII Art

Fig. 1 is simpler since it has fewer lines and uses fewer

ASCII character types. Fig. 2 is more complicated as it

takes a lot of lines and uses a lot of ASCII character

types. The difference will take effect on pattern matching

performance.

III. PATTERN MATCHING ALGORITHM

Given a text string T with n characters long and a

pattern string P with m characters long (assuming m < n).

Pattern matching is finding the pattern inside the text.

There are a lot of pattern matching algorithm, such as

Brute Force, Knuth-Morris-Pratt, and Boyer-Moore. The

algorithm used in this paper is Knuth-Morris-Pratt

(KMP).

KMP algorithm is discovered by Donald E. Knuth

(born January 10, 1938), a computer scientist and

Professor Emeritus at Stanford University. The technique

is to look for the pattern in the text in a left-to-right order.

Just like the brute force algorithm, but the shifting in

KMP is more intelligently than the brute force algorithm.

If a mismatch occurs between the text T and pattern P at

P[j], the most shifting can be done to the pattern to avoid

wasteful comparisons is the largest prefix of P[1 .. j-1]

that is a suffix of P[1 .. j-1]
[4]

.

Source | Dr. Andrew Davison, Pattern Matching Slide

Fig. 3 Illustration of KMP Shifting Technique

KMP preprocesses the pattern to find matches of

prefixes of the pattern with the pattern itself. As seen on

Fig. 3, given text T “…abaabx…” and pattern P “abaaba”.

String “ab” is a suffix of matched string between pattern

and text which is also a prefix of the original pattern.

Suppose:

j = mismatch position in P[]

k = position before the mismatch (k = j-1)

The border function, or also called failure function,

b(k) is defined as the size of the largest prefix of P[1..k]

that is also a suffix of P[1..k]
[4]

. If a mismatch occurs at

P[j] (i.e. P[j] != T[i]), then

k = j-1;

j = b(k) + 1; //obtain the new j
[4]

To clarify the KMP concept, given an example such

there are string T “abacaabaccabacabaabb” and pattern P

“abacab”, find if there is any match with P in T. The

illustration of KMP algorithm execution is shown below

in Fig. 4:

Source | Dr. Andrew Davison, Pattern Matching Slide

Fig. 4 Illustration of Pattern Matching using KMP

The mismatch occurs on P[j] where j = 6. The p’ is now

“abaca”. Suffixes from p’ are { “a”, “ca”, “aca”, “baca” }

while prefixes from P are { “a”, “ab”, “aba”, “abac”,

“abaca” }. Thus, the longest suffix on p’ which is also the

longest prefix on P is “a” then shift the pattern as much

as:

length(p’) – length(“a”) = 5 – 1 = 4.

The matching and shifting is performed until exact match

is found.

http://asciiartist.com/2013/09/create-ascii-art-text-pictures-keyboard/
http://www.collectorsquest.com/uploads/blog/2012/04/spring-ascii-art-flower1.jpg

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

KMP has some advantages, such as:

 KMP runs in optimal time: O(m+n), which is

very fast

 KMP never needs to move backwards in the

input text. This makes KMP good for

processing very large files that are read in

from external devices or through a network

stream.

Besides the advantages, KMP also has disadvantages,

such as:

 KMP doesn’t work so well as the size of the

alphabet increases because more possible

mismatches. KMP is only faster when the

mismatches occur later, not from early.

 Basic KMP try to re-match the letter in the

text that caused the mismatch. For this

problem, there is already KMP-extension that

skips the mismatch letter. In other words, the

shifting is incremented by 1.
[4]

VI. PROBLEM SOLVING ANALYSIS WITH KMP

ALGORITHM

As said on the introduction, content of ASCII art image

is only ASCII characters, so simple pattern matching can

be done on ASCII arts. Below is the pseudo code for

reading ASCII art file that will be processed by the KMP

algorithm in the program:

// Data Member

 Vector<String> textASCII;

 Vector<String> patternASCII;

 // Read ASCII from file

 fillASCIIArt(String filename)  Vector<String>

 {

 create fileReader to read lines;

 Vector<String> containerASCII;

 String line;

 while (next_line isn't null) {

 line  next_line;

 add line to containerASCII;

 }

  containerASCII;

 }

To perform KMP algorithm, some basic methods to do

string process are needed; get suffix of a string, get prefix

of a string, and also get the longest suffix of a string that

is also the longest prefix of another string. The pseudo

code for string process is written below:

 // String Process

 getSuffixes(String _p)  Vector<String>

 {

 Vector<String> listSuff;

 for (int i=length(_p)-1; i>=1; i--) {

 String suffix  "";

 for (int j=i; j<length(_p); j++) {

 sufix  sufix + p’[j];

 }

 add sufix to listSuff;

 }

  listSuff;

 }

 getPrefixes(String P)  Vector<String>

 {

 Vector<String> listPref;

 for (int i=1; i<=length(P)-1; i++) {

 String suffix  "";

 for (int j=0; j<i; j++) {

 prefix = prefix + P[j];

 }

 add prefix to listPref;

 }

  listPref;

 }

getLongestPrefSuff(String P, String _p) 

String

{

 Vector<String> prefixes  getPrefixes(P);

 Vector<String> suffixes  getSufixes(_p);

 Vector<String> prefsuff;

 for (int i=0; i<size(suffixes); i++) {

 if(suffixes[i] == prefixes[i]) {

 add suffixes[i] to prefsuff;

 }

 }

 String longest  "";

 for (int i=0; i<size(prefsuff); i++) {

 if (length(prefsuff[i])>length(longest)) {

 longest = prefsuff[i];

 }

 }

  longest;

}

Then KMP algorithm can be performed. As a note, the

pure KMP algorithm is implemented in isMatchKMP.

Meanwhile, isAllMatchKMP is specific to the problem

discussed in this paper; ASCII art image. Below is

pseudo-code for evaluating the two ASCII art images:

// Knuth-Morris-Pratt Algorithm

isMatchKMP(String T, String P)  boolean

{

 int N  length(T);

 int _n  length(P);

 int PosisiP0diT  0;

 int i  PosisiP0diT;

 int j  0;

 while (not end of T or P) {

 String _p  "";

 while (not end AND P[j] == T[i]) {

 _p = _p + P[j];

 i++;

 j++;

 }

 if (not end AND P[j] != T[i]) { //mismatch

 if (length(_p)==0) {

 PosisiP0diT++;

 i  PosisiP0diT;

 j  0;

 } else {

 String l  getLongestPrefSuff(P, _p);

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

 int geser length(_p)- length(l);

 shift PosisiP0diT geser times;

 i  PosisiP0diT;

 j  0;

 }

 }

 }

 if(end of T but not end of P) {

  false;

 } else {

  true;

 }

 }

isAllMatchKMP (Vector<String> patternASCII,

Vector<String> textASCII)  Boolean

{

 for (int i=0; i<size(textASCII); i++) {

 if(get empty line on patternASCII[i] or

textASCII[i]) {

  false;

 } else {

 if (!isMatchKMP(textASCII[i],

patternASCII[i])) {

  false;

 }

 }

 }

  true;

}

V. IMPLEMENTATION ON PROGRAM

A. Program Specification

The inputs of the program are two files consisting

ASCII art image (any type of file extension is allowed, as

long as it contains ASCII art) which are the original

image as the pattern P) and the suspected one (as the text

T). The output of the program is whether the suspected

image is plagiarized one or not. Pattern matching on this

program is exact matching; not applicable for plagiarized

image which applies resizing, rotating, or cropping the

original image.

The program processes both of the file by scanning

each line and put them into array of array of string.

Suppose line of text i where i = 1, 2, 3... For each line i

(array of string), do pattern matching between line i in the

original image and line i in the suspected image. The loop

ends after the last line i has evaluated by pattern

matching.

Below are headers of the source code to provide an

overview of the program execution plot:

public class PatternMatching2 {

// Data Member

public Vector<String> textASCII;

public Vector<String> patternASCII;

// Read ASCII from file

public Vector<String> fillASCIIArt(String

filename);

public void printASCIIArt(Vector<String>

containerASCII);

// String Process

public Vector<String> getSuffixes(String _p);

public Vector<String> getPrefixes(String P);

public String getLongestPrefSuff(String P,

String _p);

// Knuth-Morris-Pratt Algorithm

public boolean isMatchKMP(String T, String P);

public boolean isAllMatchKMP (Vector<String>

patternASCII, Vector<String> textASCII);

}

B. Program Testing

Program testing here is supposed to test whether the

matching between two images succeeds or not. Also, it

will be shown how line of ASCII art effects the algorithm

performance.

1. Test Case 1

Here will be compared the algorithm performance

according to ASCII art complexity. Images used as

comparison are three ASCII art images below as seen on

Fig. 5, Fig. 6, and Fig. 7. Each image has its plagiarized

version which is the exact match with the original version.

There will be three pattern matching processes done for

each original ASCII art images with its plagiarized

version. The comparison is based on execution time for

each ASCII art image.

** owl-2 ** 10/96

 ,___,

 (6v6)

 (_^(_\

 jgs^^^"^" \\^^^^

 ^^^^^^^^^^^^^

Source | http://www.chris.com/ascii/

Fig. 5 Low Complexity ASCII Art, Total 6 Lines

 %% `%%;,

 ,%%#; %%#%%;___%%;`

 ;%' ;%-_#%, / _%_-;%'`

 %_% %/%% / /%%#%'

 /_'_____/_____________/ _/

 _______ _$_____________/ ,%%;

 %% %-// $ \ \ %#%%___-%%;`

 %`;-/_%;` \ ______/ __ %%#%%`

 %%%%#% $ \$_______/,%%#%%;%`,

 %;` $ $,%%` %',

 ______O_____________O_____

 /.-.-.-.-.-.-.-.-.-.-.-.-.-\

 /.-.-.-.-.-.-.-.-.-.-.-.-.-.-\

 /.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-\

 /.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-\

 '=================================='

 \|| ||/

 || _ _ ||

 || ('< <') ||

 ||_______\(_)_______(_)/____||

 _||__________________________||_

 |________________________________|lc

Source | http://www.chris.com/ascii/

Fig. 6 Medium Complexity ASCII Art, Total 23 Lines

http://www.chris.com/ascii/
http://www.chris.com/ascii/

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

 //

 <<<;>>

 <<<<\;;;>>

 (() <<::\>>>>>

 ()\ () / ,-\;;;>

 ()\/()/

 (()) ;`--------;

 :::::::: \\

 `::::' \\

 ;;;;;; xx

 `;;;;' XXxxxx

 `;' XXXxx

 .----. XXXxxx

 ,' `. __----.__ XXXxxx

 : (o) `_-'_.oooo._ `.__ xxxXX

 <'; .oooOOOOOOoo. `-._ xxXXX

 `--._ ,oOOOOooooo,-' `. ,-`-.__ xxxXXX

 ; ,oooooo' ; `.}}}}}`---.____________

 `. :ooo. __.-' `.}}}}}}}}} -- }}}}})

 /\ `.:oOooo-.___ _ `-._} `.}}}}}}}}""""""">>>>)

 |::; `.`oooOooooooo._ `~-._ `. >;;;;;;;;;;;;;_.--'

 / `' `-._`ooOOOOooooo-._ ~-.;-_>>>>>>,---'xxx|

 \ `-.__ooooooooooo`. ; |xxXXX|

 // @.)X)`-)X) `-. \ ;xxXXX:

 // `@\xxxxxxxxxx\ __// __//___ `\) `.xxXXT|

``\ `xxXXXXXXXXXxxxxxxxx ~~~; ~~~; xxx`\ `xxxaXXX

 | ~~~~~~~~~~\xXXXXXXXXXXXXXXX XxxxxxxxxxxxxxxxccYrYYY

 `----._ ~~~~~~~~~~~~~~~~~~~~~\xXXXXXXXXXXXXXXXXgX))

 ,/`\ Baltimore Oriole ~~~~~~~~~~~~~~~xxoXXX

 `,;;;`-. xxnXXX

 ,;;; .'

 `;;;

Source | http://www.chris.com/ascii/

Fig. 7 High Complexity ASCII Art, Total 32 Lines

Screenshots for pattern matching on each image are

shown below on Fig. 8, Fig. 9, and Fig. 10:

Fig. 8 Pattern Matching Result for Fig. 4

Fig. 9 Pattern Matching Result for Fig. 5

Fig. 10 Pattern Matching Result for Fig. 6

The result is shown on Fig. 11:

Test

No.

Execution time (ms)

Fig. 4 Fig. 5 Fig. 6

1 561 2870 5746

2 720 3803 7134

3 678 3923 7167

Average

result
653 3532 6682.33

Fig. 11 Table of Execution Time on Fig. 4, Fig. 5, and Fig. 6

As seen on the program results above, it is obvious that

the execution time is longer as number of line in the

ASCII art increases.

2. Test Case 2

Here will be proved that the program doesn’t support

non-exact match. Inputs used are the same ASCII art

image as Fig. 6 (as the original version) and the

plagiarized one which applied cropping on the original

eliminating the artist’s signature. As seen on Fig. 12, the

bottom of the image has no more author’s signature as in

the original one.

 (()) ;`--------;

 :::::::: \\

 `::::' \\

 ;;;;;; xx

 `;;;;' XXxxxx

 `;' XXXxx

 .----. XXXxxx

 ,' `. __----.__ XXXxxx

 : (o) `_-'_.oooo._ `.__ xxxXX

 <'; .oooOOOOOOoo. `-._ xxXXX

 `--._ ,oOOOOooooo,-' `. ,-`-.__ xxxXXX

 ; ,oooooo' ; `.}}}}}`---.____________

 `. :ooo. __.-' `.}}}}}}}}} -- }}}}})

 /\ `.:oOooo-.___ _ `-._} `.}}}}}}}}""""""">>>>)

 |::; `.`oooOooooooo._ `~-._ `. >;;;;;;;;;;;;;_.--'

 / `' `-._`ooOOOOooooo-._ ~-.;-_>>>>>>,---'xxx|

 \ `-.__ooooooooooo`. ; |xxXXX|

 // @.)X)`-)X) `-. \ ;xxXXX:

 // `@\xxxxxxxxxx\ __// __//___ `\) `.xxXXT|

``\ `xxXXXXXXXXXxxxxxxxx ~~~; ~~~; xxx`\ `xxxaXXX

 | ~~~~~~~~~~\xXXXXXXXXXXXXXXX XxxxxxxxxxxxxxxxccYrYYY

Source | http://www.chris.com/ascii/

Fig. 12 Plagiarized Version of Fig. 6

http://www.chris.com/ascii/
http://www.chris.com/ascii/

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

The result is shown on Fig. 13:

Fig. 13 Pattern Matching Result for Fig. 12

As seen on the result above, it is seen that the program

cannot detected the plagiarized image as plagiarism from

the original image due to exact matching on pattern

matching.

V. CONCLUSION

Pattern matching can be used to detect plagiarism on

artworks, such as ASCII arts. ASCII art are made of

ASCII characters so pattern matching can be done as

easily as matching between two strings. The algorithm

used to do the match is Knuth-Morris-Pratt Algorithm

(KMP). The performance of the algorithm, however,

depends on complexity of the ASCII art image. Also,

definition of similarity between two ASCII art images is

still an exact match.

VI. FUTURE POSSIBLE ACTIONS

The program is still very simple, but it can be improved

more by doing these on the future:

1. Compare the pattern matching with Brute Force,

Boyer-Moore, and other techniques to find out the

most proper technique for matching ASCII art

images.

2. Exact match isn’t a good solution for detecting

plagiarism. How if the image is cropped from the

original one? The program algorithm (outside the

pattern matching algorithm between two strings)

needs to be modified. There are two ideas:

a. Use percentage. The higher similarity

percentage, the higher probability the image to

be a plagiarized from the original one.

b. Be flexible. The pattern can be the original

image or the suspected image. If any match is

found, there must be plagiarism.

3. How if the image is rotated from the original one?

Rotate the original one and do the pattern matching

again using the rotated version.

4. How if some text in the image is erased (e.g. the

original artist signature)? Use percentage as said

before.

5. According to the program made, at least one

ASCII art has to be the original one as pattern

between two ASCII arts. How if the original one

isn’t known? The idea is to check the date that the

file created. The smallest date is assumed to be the

original.

6. As said on the Chapter III, KMP is also good for

processing very large files that are read through

network stream. The program may be deployed to

the Internet to detect plagiarism on files distributed

in the Internet just like TinEye plugin mentioned

on the Chapter I.

REFERENCES

[1] 1991. The Macquarie Dictionary: The National Dictionary
Second Edition. Macquarie University: The Macquarie

Library. Page 1353

[2] Bin-Habtoor, A. S. and M. A. Zaher. “A Survey on
Plagiarism Detection Systems”. International Journal of

Computer Theory and Engineering Vol. 4, No. 2, April 2012
[3] http://www.ascii-art.de/ascii/faq.html. Last accessed

Wednesday, December 18, 2013 at 18.29

[4] Munir, Rinaldi. 2009. Diktat Kuliah IF2211 Strategi
Algoritma.

STATEMENT

I hereby state that this manuscript I wrote is my own

writing; not an adaptation or translation from another

manuscript, also not a plagiarism.

Bandung, December20, 2013

Azalea Fisitania

13511028

http://www.ascii-art.de/ascii/faq.html

