
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014 1

Obtaining the Most Effective Mass Public Transit Route

through the Combination of Graph Theory and Dijkstra’s

Algorithm

Tirta Wening Rachman - 13512004
1

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1
tirtawr@std.itb.ac.id

Abstract— As large cities like New York or Jakarta grow

larger and busier, it becomes increasingly difficult to

determine which route of public transit to take from point a

to point B. A solution for this problem can be obtained

through the combination of Graph Theory and Dijkstra’s

algorithm.

Index Terms—Dijkstra’s Algorithm, Computer Modeling,

Graph Theory, Mass Public Transit

I. INTRODUCTION

Aristotle concedes that, “human beings are social

animals.” Ever since the dawn of civilization, human

beings have always felt the need to be involved in social

activities. There was a time when for one to partake in a

social activity, all that one requires is the will to go out of

the house. However, when one resides in a big major city

like New York City of Jakarta, it requires one to travel a

considerable amount of distance to be involved in the

social activity of your choosing.

 While some people are able to get around trough the

use of their personal vehicles, most of urban dwellers get

around trough the use of public transit. Furthermore, as

the city grows larger and busier, it becomes increasingly

harder to determine which route of public transit to take.

Picking a route at random not only will cause a person to

lose a significant amount of time, but it may also lead a

person to be lost.

With the coming of the Digital Revolution in the

1950s, more and more real world problems are solved

through the use of modeling and computational

algorithms. With this in mind, a combined use of

modeling and algorithms should also be able to make it

easier for a person to get around a major city using public

transportation.

This paper shall discuss the possibility of combining

the use of weighted directed graphs and Dijkstra’s

algorithm to find the most efficient way around a large

urban city using public transit.

II. THEORETICAL APPROACH

A. Graphs

a. Definition

 A graph is a mathematical model where

objects known as vertices are connected

with one another. The connections between

two vertices are called edges.

b. Classification of Graphs

i. Simple and Un-simple Graphs

 Simple graphs are graphs which

don’t contain loops (a vertex can’t be

connected to itself) and the number of

edges connecting two vertices is limited

to one.

 Un-simple graphs are graphs which

contain at least one loop or it has

multiple edges connecting two distinct

vertices.

ii. Directed and Undirected Graphs

 Directed graphs are graphs in

which an edge not only represents a

connection between two vertices, but it

also represent the direction of the

connection. If vertex A is connected to

vertex B, vertex B may not be

necessarily connected to vertex A.

 Edges in undirected graphs on the

other hand, do not represent the

direction of a connection. If two

vertices are connected, they are

connected both ways.

iii. Weighted and Un-weighted Graphs

 Weighted graphs are graphs in

which the edge also represents the

“weight” of a connection between two

vertices. The weight between two

vertices can represent a number of

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014 2

things such as, but not limited to the

difficulty of connecting two objects or

the cost of traveling from point A to

point B.

iv. Planar and Non-planar Graphs

 Planar graphs are graphs which are

when drawn on a Euclidian Plane, it

does not contain any crossing between

edges. If a graph contain at least one

crossing between two edges it is

considered a non-planar graph.

c. Terms

i. Vertex

A vertex is the individual object which

can be connected to another vertex by

an edge. In a drawing of a graph, it is

represented as a node.

ii. Edge

An edge is the connection between two

vertices. In a drawing of a graph, it is

represented as a line between two

nodes.

iii. Isolated Vertex

An isolated vertex is a vertex which is

not connected to any other vertex.

iv. Loop

A loop is an edge that connects a vertex

with itself.

v. Adjacency

Two vertices are considered adjacent

when there is an edge connectiong

them.

vi. Incidence

A vertex and an edge are considered

incident when the edge connects the

vertex with another vertex (or itself).

vii. Degree

The degree of a vertex is the number of

edges incident to it. Loops are counted

twice.

viii. Order

The order of a graph is how many

vertices it has.

ix. Walk

A walk is a series of “steps” taken from

one vertex to another. It is an

alternating sequence between a vertices

and edges, beginning and ending with a

vertex. A closed walk or cycle is a walk

where the start and the end of the walk

is the same vertex. On the other hand,

an open walk or path is a walk where

the start and the end of the walk are

different vertices.

x. Sub-graph

A sub-graph is a graph within another

larger graph. Graph G1 is a sub-graph

of graph G if the vertices of G1 are a

subset of the vertices of G, and the

edges of G1 are also a subset of the

edges of G.

xi. Spanning Subgraph

A spanning sub-graph G1 is a sub-graph

of G if and only if it contains all of the

vertices of G.

d. Special Types of Graphs

i. Null Graph

A null graph is a graph which does not

contain any edges.

ii. Connected graph

A connected graph is a graph that does

not contain an isolated vertex.

iii. Cycle graph

A Cycle graph is a graph where all of

the vertices are connected by a single

cycle.

iv. Wheel Graph

A wheel graph is an order four or higher

graph formed by connecting a single

vertex to each vertex of a cycle graph.

v. Tree

A Tree is a connected graph which does

not contain any cycle within it.

vi. Complete Graph

A complete graph is a graph is which all

of the vertices are connected to all of

the other vertices.

vii. Regular Graph

A regular graph is a graph where all of

its vertices are connected to the same

number of vertices. In other words, they

all have the same degree.

B. Dijkstra’s algorithm

a. Brief History

 Dijkstra’s algorithm is an algorithm

used to find a path within a weighted graph

from one vertex to another with the least

amount of weight. It was conceived by a

Dutch computer scientist by the name of

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014 3

Edsger Wybe Dijkstra in 1956.

 Troughout his life, Dijkstra received

numerous awards and honors for his work in

computer science. Dijkstra was known for

writing his manuscripts by hand, and then

distributing a photocopy of it trough the

computer science community. These

manuscripts are known trough the

community as EWDs (his initials). He was a

brilliant scientist, but sadly he died in 2002.

b. Algorithm

 Let the node at which we are starting be

called the initial node. Let the distance of

node Y be the distance from the initial node

to node Y. Dijkstra’s algorithm will then run

as follows:

1. Assign a tentative distance value to

every node. Set it zero for the initial

node, and infinity for every other node.

2. Mark all nodes as unvisited. Set the

initial node as current. Create a set of

the unvisited nodes and call it the

unvisited set.

3. For the current node, consider all of its

unvisited neighbors and calculate their

tentative distances. For example, if the

current node X is marked with a

distance of 4 (from the initial node), and

the edge connecting it with neighbor Y

has length 3, then the distance to B will

be 4+3=7. If this distance is less than

the previously recorded distance, then

overwrite that distance. Even though a

neighbor has been examined, it is not

marked as visited at this time, and it

remains the unvisited set.

4. Once every neighbor of the current

node has been considered, mark the

current node as visited and remove it

from the unvisited set. A visited node

will never be checked again; its distance

recorded now is final and minimal.

5. If the destination node has been marked

as visited or if the smallest tentative

distance among the nodes in the

unvisited set is infinity, then the

algorithm has finished.

6. Set the unvisited node marked with the

smallest tentative distance as the next

current node and go back to step 3.

[2]

 It is worth noting that Dijkstra’s

algorithm only work for weighted graphs in

which the weight is a non-negative.

c. Implementation in C

 In 2010, an Indian programmer by the

name of Muffadal Makati implemented

Dijkstra’s algorithm in C programming

language. To model the graph, he created a

file format in which each line of code stands

for a single vertex. The format for each line

is as follows:

Figure 1.2.3 Line format of a vertex

 Makati gave this file format a .ospf

extension. A C implementation of Dijktra’s

algorithm and an example of a .ospf can be

viewed at Appendix A and Fig. 3.2.1

resprectively.

C. Public transit

 Public transit is a mode of transitation

available to the masses. For the most part, public

transit are provided by the government, but it is

not rare for a private company to operate and/or

own a fleet of public transit. Generally the

customers pay a certain amount of money, and

the provider transit the customer from point A to

point B.

 The vehicles used for public transitation

varies greatly in different countries. In the city of

Venice for example, the use of boats is

extremely common, but in the city of Jakarta it

would be almost impossible to spot a boat.

a. Personal Public Transit

 Personal public transit is a type of

public transit in which the passenger is

transited to and from a place of their

choosing. Also, they would not have to

share their ride with other passenger.

 Great example of a personal public

transit would be a taxicab. People pay the

driver a fare, and the driver takes the

passenger wherever they want to go. In

Southeast Asian countries such as Indonesia

or the Philippines, motorcycle taxis (also

known as ojeg in Indonesia) are extremely

popular.

 Generally, personal public transit is

considerably more expensive than mass

public transit because they can only serve

one customer at a time.

<node id>:<id of node it is

connected to>-<corresponding

cost>:…;

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014 4

b. Mass Public Transit

 Unlike personal public transit, in mass

public transit, passengers must follow a

predetermined route and they would have to

share the ride with other passengers.

 A good example of mass public transit

is the bus service. To get from point A to

point B, passengers would typically have to

take multiple routes. In the city of Bandung,

Indonesia, the use of cars is favored instead

of busses. These cars are called angkot,

short for angkutan kota (city transit).

Alternatively, beginning in January 25
th

2004 in the city of Jakarta, Indonesia, the

use of a bus rapid transit named

TransJakarta is getting more and more

popular.

 Generally, mass public transit is

considerably cheaper than personal public

transit.

 As the city grows more and more crowded,

the need of finding the right combination of mass

public transit routes is getting more and more

crucial.

III. ANALYSIS

A. Modeling mass public transit routes through the use

of weighted directed graphs

 In some cities, mass public transit only stop on

certain locations, while in other cities people can get

on or off the transit as they please. To simplify the

matter, in this paper the subject matter will only be

transits which stop at certain locations.

 As apparent on the map in Appendix III,

different locations are connected to one another by

public transit routes. This phenomenon is similar to a

graph. In a graph different vertices are connected to

one another by edges. Therefore it would be not only

possible, but also practical to utilize a graph to model

the routes of mass public transport. Each vertex

represents a location, and each edge represents a

route of transit between them.

 Another thing to consider is that the distance,

time, and price needed to travel between two

locations is not always the same. Therefore, in this

model, the use of weighed graph is necessary.

 The weight of the graph can represent either the

distance, time, or price needed to travel between two

locations. In determining which model to use, one

would first need to have one’s priority in order,

whether it is cost, or time. If it is cost, then the weight

of the graph represents the price to go from vertex A

to vertex B, but if its time, then the weight of the

graph can represents either the time needed to go

from vertex A to vertex B or the distance between the

two vertices.

 If a person is able to get from point A to point B

by riding on a certain route, it is not necessarily true

that they can get back using the same route.

Therefore, the use of directed graphs is also

necessary.

As an example, we shall use the map below:

Figure 3.1.1 A map

After modeling it through the use of weighted

directional graph, we are able to obtain the graph

below (names of places and distances are converted

into integer so that it may be easily computed):

Figure 3.1.2 A weighted directional graph

B. Obtaining the most effective combination through the

use of Dijkstra’s algorithm

 After a model is produced, all it takes is some

simple computational calculations to find the most

effective path.

 By following the format of .ospf files, we are

able to compute the most effective routes to take

from point A to point B. A .ospf file representation of

our map is shown below:

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014 5

Figure 3.2.1 .ospf representation of Fig. 3.1.2

 As an example, we shall find the most effective

route to take from Point A to Point D. In the model, it

is represented by vertices 1 and 4 respectively. After

running it trough Muffadal Makati’s program, we are

able to find out that the most effective route to take is

first to go from Point A to Point D, then to go from

Point D to Point E. The route is 10.4km far.

Figure 3.2.2 The most effective route from Point A to

Point D

V. CONCLUSION

It is possible to obtain the most effective mass public

transit route through the use of graph theory and

Dijkstra’s algorithm as shown in this paper. Nevertheless

there are still numerous factors that need to be considered

such as walking distance, weather, and comfort.

VI. APPENDIX

A. Implementation of Dijkstra’s algorithm in C

/*

 * Author: Mufaddal Makati

 Official Post: http://www.rawbytes.com

 Copyright [2010] [Author: Mufaddal Makati]

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 See the License for the specific language governing permissions and

 limitations under the License.

 *

 * Created on September, 2010.

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MAX_CONN 10

#define MAX_NODES 50

#define INFINITE 9999

void view(); /* just prints out the graph*/

void djkstra(); /*runs at the begining and when file is rescaned*/

void min_route();

void scanfile(); /*it does not check for wrong format of the file.it is up to the user to verify

it.*/

struct node /*data structure to store information of each node*/

{

 int id;

 struct node *l[MAX_CONN+1]; /*array that points to all other nodes connected with this

node*/

 int cost[MAX_CONN+1]; /*array that stores cost of all connections with this node*/

 struct node **next; /*address of the pointer of the next node to traverse, for the ith

1:2-20:3-61:5-92;

2:1-50:4-52;

3:5-70;

4:2-52:3-34;

5:1-92:4-34;

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014 6

destination node in the array of records datastructure*/

 int *mincost;/*minimum cost to traverse the ith destination node in the array of records

datastructure*/

};

typedef struct node nodes;

struct record /* data structure to map node id and corresponding address of nodes structure.*/

{

 int nid;

 struct node *add;

};

typedef struct record records;

records nlist[MAX_NODES+1]={0}; /*create array of records and mark the end of the array with

zero.*/

int count; /*stores number of nodes*/

int main()

{

 int c;

 nlist[MAX_NODES+1].nid=0;

 system("clear");

 scanfile();

 printf("\nSucessfully Scanned the graph.\n");

 djkstra();

 for(;;)

 {

 view();

 printf("\n1.Rescan file.");

 printf("\n2.View minimum route between nodes.");

 printf("\n3.Exit.");

 printf("\nEnter:");

 scanf("%d",&c);

 switch(c)

 {

 case 1:

 {

 scanfile();

 djkstra();

 system("clear");

 break;

 }

 case 2:

 {

 min_route();

 system("clear");

 break;

 }

 case 3:

 {

 exit(0);

 }

 default:

 {

 printf("\nEnter proper choice.\n");

 break;

 }

 }

 }

 return (EXIT_SUCCESS);

}

void scanfile()

{

 FILE *f;

 int d;

 int i=0,j=0,n_id,n_cost;

 nodes *temp=0,*temp1=0;

 if((f=fopen("graph.ospf","r"))== NULL)

 {

 printf("Error opening file.\n");

 exit(1);

 }

 memset(nlist, 0, sizeof(struct record) * MAX_NODES);

 count=0;

 do /*first get the id and address of all nodes*/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014 7

 {

 fscanf(f,"%d",&n_id);

 for(i=0;nlist[i].nid!=0;i++)

 {

 if(n_id==nlist[i].nid)

 {

 printf("Id already exists.");

 return;

 }

 }

 temp=(nodes *)malloc(sizeof(nodes));

 if (temp == 0)

 {

 printf("ERROR: Out of memory\n");

 return;

 }

 memset(temp, 0, sizeof(struct node));

 temp->id=n_id;

 temp->l[MAX_CONN+1]=0;

 temp->cost[MAX_CONN+1]=0;

 for(i=0;nlist[i].nid!=0;i++)

 {}

 nlist[i].nid=n_id;

 nlist[i].add=temp;

 count++;

 while((d=fgetc(f)!=';'))

 {}

 }while((d=fgetc(f))!=EOF);

 rewind(f);

 for(i=0;i<count;i++) /*now get the information of all nodes connections.*/

 {

 fscanf(f,"%*d");

 temp=nlist[i].add;

 while((d=fgetc(f)!=';'))

 {

 fscanf(f,"%d-%d",&n_id,&n_cost);

 for(j=0;nlist[j].nid!=0;j++)

 {

 if(nlist[j].nid==n_id)

 {

 temp1=nlist[j].add;

 break;

 }

 }

 for(j=0;temp->cost[j]!=0;j++)

 {}

 temp->cost[j]=n_cost;

 temp->l[j]=temp1;

 }

 }

 fclose(f);

}

void view()

{

 int i,j;

 nodes *temp=0,*temp1=0;

 printf("\nID\tConnceted to- ID:cost");

 for(i=0;nlist[i].nid!=0;i++)

 {

 printf("\n%d",nlist[i].nid);

 temp=nlist[i].add;

 for(j=0;temp->l[j]!=0;j++)

 {

 temp1=temp->l[j];

 printf("\t%d:%d",temp1->id,temp->cost[j]);

 }

 }

 printf("\n \n \n");

}

void djkstra()

{

 int i,j,k,num,num1=0,min=INFINITE;

 int *tcost=0,*done=0;

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014 8

 nodes *temp=0,*temp1=0,**tent=0;

 tcost=(int*)calloc(count, sizeof(int));

 if (tcost == 0)

 {

 printf("ERROR: Out of memory\n");

 return;

 }

 done=(int*)calloc(count, sizeof(int));

 if (done == 0)

 {

 printf("ERROR: Out of memory\n");

 return;

 }

 tent=(nodes**)calloc(count, sizeof(nodes));

 if (tent == 0)

 {

 printf("ERROR: Out of memory\n");

 return;

 }

 for(i=0;nlist[i].nid!=0;i++)

 {

 for(j=0;j<count;j++)

 {

 tcost[j]=INFINITE;

 done[j]=0;

 }

 temp=nlist[i].add;

 temp->next=(nodes**)calloc(count, sizeof(nodes));

 temp->mincost=(int*)calloc(count, sizeof(int));

 tcost[i]=0;

 done[i]=1;

 temp->mincost[i]=0;

 temp1=temp;

 for(;;)

 {

 for(num1=0;nlist[num1].nid!=0;num1++)

 {

 if(nlist[num1].add==temp1)

 break;

 }

 for(k=0;temp1->l[k]!=0;k++)

 {

 for(num=0;nlist[num].nid!=0;num++)

 {

 if(nlist[num].add==temp1->l[k])

 break;

 }

 if(tcost[num] > (tcost[num1]+temp1->cost[k]))

 {

 tcost[num]= tcost[num1] + temp1->cost[k];

 if(temp1==temp)

 tent[num]=temp1->l[k];

 else

 tent[num]=tent[num1];

 }

 }

 min=INFINITE;num1=0;

 for(j=0;j<count;j++)

 {

 if(tcost[j]<min && done[j]!=1 && tcost[j]!=0)

 {

 min=tcost[j];

 num1=j;

 }

 }

 if(min==INFINITE)

 break;

 temp1=nlist[num1].add;

 temp->mincost[num1]=tcost[num1];

 temp->next[num1]=tent[num1];

 done[num1]=1;

 }

 }

}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014 9

void min_route()

{

 int i,sid,did,num,chk=0;

 nodes *temp=0,*temp1=0;

 printf("\nEnter source node ID:");

 scanf("%d",&sid);

 printf("\nEnter destination node ID:");

 scanf("%d",&did);

 for(i=0;nlist[i].nid!=0;i++)

 {

 temp=nlist[i].add;

 if(temp->id==sid)

 {

 chk=1;

 break;

 }

 }

 if(chk==0)

 {

 printf("\nSource Id not found.\n");

 return;

 }

 chk=0;

 for(num=0;nlist[num].nid!=0;num++)

 {

 temp1=nlist[num].add;

 if(temp1->id==did)

 {

 chk=1;

 break;

 }

 }

 if(chk==0)

 {

 printf("\nDestination Id not found.\n");

 return;

 }

 printf("%d-",temp->id);

 temp1=temp;

 for(;;)

 {

 if(temp1->id==did)

 break;

 if(temp1->next[num]!=0)

 {

 temp1=temp1->next[num];

 printf("-%d-",temp1->id);

 }

 else

 {

 printf("No Route");

 break;

 }

 }

 printf("\nTotal cost:%d",temp->mincost[num]);

}

[4]

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014 10

REFERENCES

[1] M. Rinaldi, “Diktat Kuliah IF 2091 Struktur Diskrit”, Program

Studi Teknik Informatika, 2008, Bandung, Indonesia.

[2] Nugraha, Tubagus A. "Pathfinding through Urban Traffic Using
Dijkstra’s Algorithm." 2011. TS. Institut Teknologi Bandung,

Bandung, Indonesia.

[3] Marrana, Joao. "Transport and Urban Life: Developments and

Trends." International Association of Public Transport. UITP, n.d.

Web. 14 Dec. 2013.

[4] Makati, Mufaddal. "Dijkstra’s Algorithm in C." Web log post.
Rawbytes. N.p., 20 Dec. 2012. Web. 15 Dec. 2013.

PERNYATAAN

 Dengan ini saya menyatakan bahwa makalah yang

saya tulis ini adalah tulisan saya sendiri, bukan saduran,

atau terjemahan dari makalah orang lain, dan bukan

plagiasi.

Bandung, 15 November 2013

Tirta Wening Rachman - 13512004

