
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

Implementation of Prim’s and Kruskal’s Algorithms’ on

Maze Generation

Fauzan Hilmi Ramadhian 13512003

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

fauzan_hilmi@students.itb.ac.id

Maze is an appealing subject to discuss in mathematics and

computer science. An interesting discussion about it is how the

solution path of the maze can be found by self-running

algorithms. The maze generation is interesting too; how can

such complex structure created without direct human

interventions? In this paper, two spanning-tree-based methods

of generating mazes, that is, Prim’s and Kruskal’s algorithms,

will be discussed. There will be discussed as well about how

their performances and mazes they produce are compared to

each other.

Index Terms— Kruskal’s algorithm, maze generation,

minimum spanning tree, Prim’s algorithm

I. INTRODUCTION

Maze is a graphical puzzle which consists of complex

structure with a series of interconnecting pathways. The

goal of the puzzle is to connect the start point with the

finish point by a single route.

Maze can be created or implemented on various shapes

and forms. There are mazes on 2 dimensions, 3

dimensions, and even on 4 dimensions surface (there are

“past” and “future” portals on 4 dimensions maze).

There is maze on a paper which can be solved by pencil

and rubber; there is also 3D maze that was made by

construction of blocks or bushes which the solver must go

inside the maze from entrance to the exit. Another thing

to note is that maze is a game which can be played

without any significant boundaries. There are no any

restrictions to play this game. Besides that, maze is a fun

game to play with. Every person can play this game alone

by her/himself or do a challenge with her/his friends or

families. Those things above make maze a popular game

to play with anywhere, by anyone.

Besides to play with, maze is also interesting and fun to

be analyzed and explored. The main topics about maze

study are its generations and solution findings. There are

many maze generation and solution finding methods that

have been discovered.

The maze generation methods are basically classified

into four types. They are graph-based method, recursive

division method, simple algorithm, and cellular automaton

algorithm. The maze generations that are discussed in this

paper are focused on the graph-based method; more

precisely, the spanning tree generation algorithms.

On a spanning tree based maze generation, a maze can

be generated by starting from a set of cells (or matrix of

cells on 2D maze generation) with wall sites between

them. This set of cells can be viewed as a connected graph

with nodes represented the cells and edges represented the

walls. Then, the algorithm proceeds by constantly adding

nodes or edges to the maze with certain rules until there

are no more nodes or edges in the set of cells that can be

added. Two of spanning tree based maze generations;

Prim’s and Kruskal’s algorithms, will be covered further

on this paper.

II. THEORY

A. Graph

Graph is defined as a pair of two sets as (V,E), which V

represents a non-null set of vertices or nodes and E

represents a set of edges. Graph is used to represent links

or connections between some objects, where the objects

are represented by nodes and the links are represented by

edges.

Fig. 2.1. An example of graph. The circles represent

nodes and the lines represent edges.

There are some basic terms about graph. Here are the

explanations of them.

i. Undirected Graph

Undirected graph is a kind of graph which the edges

don’t have particular direction. So, the ordering of two

adjacent nodes which is connected by an edge is

unnecessary.

ii. Directed Graph

Contradicted to undirected graph, the edges in

directed graph have direction to determine the initial

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

vertex and the terminal vertex. Ordering of two

adjacent nodes becomes necessary now as (va,vb) and

(vb,va) represents two different edges. In this kind of

graph, edges sometimes referred as arcs. That is, arc is

defined as directed edge

iii. Adjacent

Two different nodes are said to be adjacent to each

other if they are connected with an edge. In other

words, in a graph G, vertex va is said adjacent to vertex

vb if (va,vb) is an edge in G.

iv. Incident

An edge is said to be incident to be incident to two

different nodes if the nodes are connected by that edge.

In other words, in a graph G, if there is exist an edge e

= (va,vb), e is adjacent to va and vb.

v. Path

A path is a sequence of edges that started at a vertex

and travels from vertex to vertex along the edges in a

graph. Formally, in a graph G, a path with n length

from vertex va to vb is defined as a sequence of n edges

e1 , ... , en of G such that e1 is associated with

vertex pair (v0,v1), e2 is associated with (v1,v2), and so

on, with en is associated with (vn-1,vn), where v0 = va

and vn = vb.

vi. Connected

Two different nodes are said to be connected if there

is a path between them. If every pair of two nodes in an

undirected graph G is connected, G is a connected

graph. That is, an undirected graph G = (V,E) is said to

be a connected graph if every pair of nodes va and vb in

set V has a path that connects each other. Otherwise, G

is said to be an unconnected graph.

vii. Subgraph

A graph G1 is said to be a subgraph of graph G if

G “contains” G1. Formally, a graph G1 = (V1,E1) is a

subgraph of graph G = (V,E) if V1 ⊆ V and E1 ⊆ E.

viii. Spanning Subgraph

A subgraph G1 of graph G is said to be a spanning

subgraph if G1 contains all the nodes in G. That is, a

subgraph G1 = (V1,E1) of graph G = (V,E) is a spanning

subgraph if V1 = V.

ix. Circuit

A circuit is a path where the starting vertex is the

same with the terminal vertex. In other words, a circuit

is a path with sequence of n edges e1 , ... , en in graph G

where e1 is associated with (v0,v1), e2 is associated

with (v1,v2), and so on, with en is associated with (vn-

1,vn) and v0 = vn.

x. Weighted Graph

A graph is said to be a weighted graph if each of its

edges has a value or weight.

xi. Graph Weight

In a weighted tree G, graph weight is defined as the

sum of all edge weights in G.

B. Tree

Tree is graph with some specializations. A tree is

defined as an unconnected graph which doesn’t contain

any circuits. These are some basic terms about tree.

i. Forest

Forest is defined as a set of disjoint trees. Forest can

also be defined as unconnected graph which doesn’t

contain any circuits.

ii. Spanning Tree

Spanning tree is defined as spanning subgraph which

is also a tree. Every connected graph has at least one

spanning tree.

iii. Minimum Spanning Tree

In a weighted graph G, minimum spanning tree is a

spanning tree with the least weight among the others

spanning tree in G. A weighted graph can has more than

one minimum spanning tree.

Minimum spanning tree is considered as the most

important spanning tree because of its wide applications.

So, knowing how to generate a minimum spanning tree

from a weighted graph is important. There are some

techniques to do that, two of them are discussed here.

1) Prim’s Algorithm

Prim’s algorithm was discovered by Robert Prim

on 1957. It is a technique to generate a minimum

spanning tree from a weighted graph by choosing an

edge with the least weight, and then put it into the

spanning tree. Next, select one of the remaining edges

with the least weight so that the edge is incident with a

node already in the tree and not forming a circuit in

the tree. Then, add the edge to the tree. Repeat the

process until n-1 edges have been added (n is the

amount of nodes in graph at the beginning). The

pseudo-code of the algorithm is as follows.

procedure Prim (input G:Graph, output T:Tree)

{I.S : Graph G = (V,E) is defined

 F.S : Minimum spanning tree T = (V,E') is

defined

Process : Generating a minimum spanning tree

from a graph by Prim's algorithm}

Declaration

i, p, q, u, v, n : integer

Algorithm

n ← |V|

Find an edge (p,q) with the least weight from set

E

T ← {(p,q)}

for i=1 to n-2 do

Select an edge (u,v) wih the least weight

from E and is incident with a node in T

if (u,v) isn't forming circuit in T then

T ← T ∪ {(u,v)}

endif

endfor

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

2) Kruskal’s Algorithm

Joseph Kruskal invented this minimum spanning

tree creation algorithm on 1956. To carry out this

algorithm, first, arrange the edges of the graph G

based on their weights. Next, create a forest T that

contains all of the edges in G that are unconnected

each other. Then, successively as many as n-2 times,

add the least edge in G to T so that no circuits are

formed in T. In the end, T is a minimum spanning tree

from G. The pseudo-code of the algorithm is as

follows.

C. Maze

There are various types and kinds of mazes. Here will

be explained three important types of maze based on their

routings and their graph representations.

1) Sparse Maze

The first type is sparse maze. The passages on sparse

maze don’t pass on all cells. The unpassed cells

become inaccessible cells that the solver cannot go

through. Solving this kind of maze is not too difficult

because the solution path can easily spotted.

An example of a 3x3 sparse maze and its graph

representation is as follows.

Fig. 2.2. An example of sparse maze and its graph

representation.

Since there must be at least one unconnected node,

this maze type cannot be created by minimum spanning

tree creation algorithms.

2) Braid Maze

The second type is braid maze. Although braid maze

doesn’t have dead-ends, it haves junctions. The

junctions connect multiple paths to form circles or

loops. This is what makes braid maze quite difficult to

solve as the loops can cause confusion when the solver

is finding out the path to the finish. However, the loops

can also make the maze easier to solve because it gives

more than one possible solution paths.

An example of 4x4 braid maze and its graph

representation is as follows.

Fig. 2.3. An example of braid maze and its graph

representation.

 This maze type cannot be created by minimum spanning

tree creation algorithm since its graph representation

contains circuits, and thus is not a tree.

3) Perfect Maze

The third type is perfect maze. As the name suggests,

this is the most perfect kind of maze that can give

difficult challenge to do. In perfect maze, there are no

circles or loops. So, there is only one right path that

connects start point to finish point. What makes perfect

maze difficult to solve is that the maze has many dead-

ends that the solver must try to avoid of. Sometimes

perfect maze is referred as simply-connected maze.

An example of a 4x4 perfect maze and its graph

representation is as follows.

Fig. 2.4. An example of perfect maze and its graph

representation.

procedure Kruskal (input G:Graph, output T:Tree)

{I.S : Graph G = (V,E) is defined

 F.S : Minimum spanning tree T = (V,E') is

defined

 Process : Generating a minimum spanning tree from

a graph by Kruskal's algorithm}

Declaration

i, p, q, u, v, n : integer

Algorithm

n ← |V|

T ← {}

while number of T edges < n-1 do

 Select an edge (u,v) with the least weight

from E

 if (u,v) isn't forming circuit in T then

 T ← T ∪ {(u,v)}

 endif

endwhile

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

Since its graph is connected, contains all of the nodes

(cells) and doesn’t contain any circuits, a perfect maze

can be described as a spanning tree over the set of the

cells. Thus, this type of maze can be created with

spanning tree creation algorithm such as Prim’s and

Kruskal’s algorithm that will be discussed further on

this paper.

III. MAZE GENERATION

Here are the explanations of how the maze generation

works by each algorithm. Note that in the tree

representations of the mazes, the nodes are representing

the cells and the edges are representing the walls between

the cells. Since there are no “weights” in the tree, some

adaptations are conducted on the original algorithms to

solve the faced problems.

A. Prim’s Algorithm Method

The basic principles of Prim’s algorithm are choosing

a node from the graph, and then choose the edge with the

smallest weight that connects the first edge with another

edge in the graph, and then choose the edge with the

smallest weight that connects the second edge with

another edge in the graph, and so on. In maze generation,

there are some adaptations that must be applied on the

algorithm. First, because the cells are the nodes, we begin

with adding a random cell from the cells matrix to the

maze. Then, add a cell that is adjacent with the previous

added cell to the matrix. Repeat the second process until

there are no cells can be added.

Since it is an adapted version of Prim’s algorithm that

handles non-weighted edges on maze generation, this

algorithm is sometimes called Randomized Prim’s

Algorithm (The “randomized” term comes from the fact

that the algorithm choose the edge at random instead of

the least weighted). The pseudo-code of the algorithm is

as follows.

For a clearer understanding, let’s take a look at an

example of 3x3 maze generation by this algorithm. First,

let’s start with a matrix of 3x3 cells.

Fig. 2.5. The steps of maze generation by Prim’s

algorithm (1).

Then, select a cell at random and add it to the maze.

Mark the added cell in the matrix.

Fig. 2.6. The steps of maze generation by Prim’s

algorithm (2).

Now, select one of the three cells (the blue-shaded

cells) that are adjacent with the first cell that has been

added. Add the cell to the maze.

Fig. 2.7. The steps of maze generation by Prim’s

algorithm (3).

Again, select one of the cells (the blue-shaded cells)

that are adjacent with the cells that have been added

previously. Add the selected cell to the maze.

Fig. 2.8. The steps of maze generation by Prim’s

algorithm (4).

Now, if we select a cell that is adjacent to more than

one previously added cells, choose only one cell among

them as the “neighbor” of the newly selected cell. Then,

add the selected cell to the maze.

Fig. 2.9. The steps of maze generation by Prim’s

algorithm (5).

procedure PrimMaze (input S:Set of cells,

output M:Maze)

{I.S : Set of cells S is defined

 F.S : Maze M is generated

Process : Generating a perfect maze from a set

of cells by Prim's algorithm}

Declaration

c : cell

Algorithm

Select a random cell c from S

M ← c

while M is not full do

Select an unmarked random cell c from S

if c is adjacent to one of the cells in M then

M ← M ∪ c

 endif

Mark c so it will not be selected again in S

endwhile

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

Repeat these processes until the maze is full.

Fig. 2.10. The steps of maze generation by Prim’s

algorithm (6).

At this point, the algorithm terminates because there

are no more cells that can be selected from the matrix.

Now, add “a little touch” to complete the maze, that is,

add two “holes” on the outer wall to mark the start and

finish point of the maze.

Fig. 2.11. Final result of the maze.

Here it is, a perfect maze generated by Prim’s

algorithm is finished.

B. Kruskal’s Algorithm Method

Just like Prim’s algorithm, this adapted version of

Kruskal’s algorithm is sometimes referred as Randomized

Kruskal’s Algorithm. The algorithm started by creating a

forest of all nodes in cells matrix. Then, select a random

edge (wall between two cells) and add it with two cells

that are connected with it to the maze, creating a tree or a

set of cells. After that, select another random edge that

doesn’t connect two cells in a same “tree” and add it to

the maze. The processes finished when there are no edges

left to be selected, or there is only one tree remaining in

the cells matrix.

The pseudo-code of the algorithm is as follows.

Here is an example of a 3x3 maze generation by

Kruskal’s algorithm. The first step is creating a 3x3 cells

matrix with a forest of 9 disjoint trees (in this case, 9

nodes). Note that different colors represent different trees

or sets of cells.

Fig. 2.12. The steps of maze generation by

Kruskal’s algorithm (1).

Next, add a random edge from matrix to the maze. In

this case, the added edge is the edge between cell (2,2)

and (2,1).

Fig. 2.13. The steps of maze generation by

Kruskal’s algorithm (2).

procedure KruskalMaze (input S:Set of cells, output

M:Maze)

{I.S : Set of cells S is defined

 F.S : Maze M is generated

Process : Generating a perfect maze from a set of cells

by Kruskal's algorithm}

Declaration

e : edge

c1, c2 : cell

Algorithm

Select a random edge e = (c1, c2) in S

M ← {(c1, c2)}

while number of tree in S >1 do

Select a random edge e = (c1, c2) in S with c1 and

c2 is in different tree

M ← M ∪{(c1, c2)}

Unify c1 and c2 in S into a single tree

endwhile

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

Note that when an edge is added, two cells that are

connected to it are unified into a single tree. Now, let’s

add another edge to the maze.

Fig. 2.14. The steps of maze generation by Kruskal’s

algorithm (3).

Keep adding more edges until there is only one tree

remaining in the matrix.

Fig. 2.15. The steps of maze generation by Kruskal’s

algorithm (4).

Now add the edge between (2,2) and (3,2) so that the

orange and grey tree unified into one tree.

Fig. 2.16. The steps of maze generation by Kruskal’s

algorithm (5).

Again, add more edges.

Fig. 2.17. The steps of maze generation by Kruskal’s

algorithm (6).

At this point, the process is not yet stopped because

there are still two trees left behind in the matrix. The

adding of the edge between (1,2) and (2,2) unify the trees

and hence, marks the final step of the algorithm.

Fig. 2.18. The steps of maze generation by Kruskal’s

algorithm (7).

Finally, add random start and finish point to complete

the maze.

Fig. 2.19. Final result of the maze.

IV. ANALYSIS

The basic principle of randomized Prim’s and

Kruskal’s algorithm is same, that is, generating a perfect

maze based on minimum spanning tree algorithm. The

basic difference between them is that Prim’s is focused on

adding nodes or cells to the maze while Kruskal’s is

focused on adding the edges. In theory, they can generate

maze that is similar to each other. However, there must be

some differences on their performances and the mazes

they are generating as the implication of the algorithm

difference between them.

Here is a table that lists head-to-head performance

statistics between the two.

Table 4.1 Maze generation performance statistics by

Prim’s and Kruskal’s Algorithm.

Data was taken from astrolog.org/labyrnth/algorithm,

accessed on 8 December 2013, 10.46 pm.

These statistics was extracted from testing of several

NxN cells mazes. The dead end statistic measures the

approximate percentage of dead ends cells upon of the

total cells. The memory statistic represents how much

extra memory is required to implement the maze with

NxN cells. The time measures the relative time needed to

create one maze with the lower number being faster (the

fastest is speed 10). The last statistic, solution, represents

Algorithm Dead End Memory Time Solution

Kruskal 30% N
2

21 4.1%

Prim 36% N2 43 2.3%

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

the length or the “windiness” of the solution path (the path

that connects start to finish point). In other words, the

solution statistic represents the percentage of cells in the

maze that the solution path passes through. A maze with

long solution path is less complex in term of the maze

complexity.

From the statistics, we can see that Prim’s algorithm

generates more dead ends than Kruskal’s algorithm. This

happens because Prim’s maze tends to distribute nodes in

a short area of cells and thus, tends to have many short

dead ends. In terms of memory needed, both algorithms

equally needs as many as N
2

memory since both needs a

matrix of NxN cells as a “temporary storage” before

adding the cells to the maze.

In comparison of the Prim’s and Kruskal’s algorithm

time process, Kruskal’s is quite faster. This happens

because Kruskal’s maze generate less dead-ends than

Prim’s. Lastly, Kruskal’s maze tends to have longer and

more “windy” solution path than the Prim’s. So, it can be

said that Prim’s maze is more complex than Kruskal’s

maze. This stat is related to the fact that Prim’s generated

maze tends to have more dead-ends and thus, have less

cells in the solution path than the Kruskal’s maze.

In conclusion, Prim’s maze tends to have higher

complexity than Kruskal’s because it has more dead-ends

and less solution cells percentage. However, Kruskal’s

algorithm is better than the Prim’s algorithm in term of

process time.

V. CONCLUSIONS

Maze is a kind of graphical puzzle that was and is quite

popular around the world. There are several methods on

how to draw mazes; one of them is the spanning tree

based algorithms. Two commonly used spanning tree

algorithm to generate mazes are Prim’s algorithm and

Kruskal’s algorithm. In principle, Prim’s algorithm

generates the maze by placing cells one by one from the

cells matrix to the maze, whereas Kruskal’s algorithm

proceeds by placing the edges one by one.

Determining the best algorithm to use between Prim’s

and Kruskal’s algorithm is quite difficult. It is because

their methods are principally same. However, there are

some preferences that should be noted. If a complex and

hard-to-solve maze is wanted, Prim’s algorithm is the

choice. But, if the processing time is more important,

Kruskal’s algorithm is better.

VI. ACKNOWLEDGEMENT

 First of all, Author would say thank you to Almighty

God because of His mercy and grace Author can finish

this paper. Then, Author also wants to express his thanks

to Dr. Ir. Rinaldi Munir, M.T. and Mrs. Harlili, whose

give helpful advices and assistances. Finally, Author

wants to say thank you to his parents and beloved friends

who are always give Author strengths and spirits to pass

the struggles during the writing of this paper.

REFERENCES

[1] Buck, Jamis. ”Maze Generation: Kruskal's Algorithm,”

weblog.jamisbuck.org/2011/1/3/maze-generation-kruskal-s-

algorithm, January 3 2011, accessed on December 8 2013, 08.05

pm.

[2] Buck, Jamis. ”Maze Generation: Prim's Algorithm,”

weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-

algorithm, January 10 2011, accessed on December 8 2013, 08.07

pm.

[3] Munir, Rinaldi, Diktat Kuliah IF 2120, Matematika Diskrit,

Edisi Keempat, Program Studi Teknik Informatika, STEI ITB,

2006, pp. VIII-2 – VIII-18, IX-1 – IX-9.

[4] Pullen, Walter D., ”Maze Algorithms,”

astrolog.org/labyrnth/algorithm, accessed on December 8 2013,

10.46 pm.

[5] Rosen, Kenneth H., Discrete Mathematics and Its Applications,

Sixth Edition, Singapore:McGraw-Hill, 2007, pp. 622, 738-740.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 16 Desember 2013

Fauzan Hilmi Ramadhian - 13512003

