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Maze is an appealing subject to discuss in mathematics and 

computer science. An interesting discussion about it is how the 

solution path of the maze can be found by self-running 

algorithms. The maze generation is interesting too; how can 

such complex structure created without direct human 

interventions? In this paper, two spanning-tree-based methods 

of generating mazes, that is, Prim’s and Kruskal’s algorithms, 

will be discussed. There will be discussed as well about how 

their performances and mazes they produce are compared to 

each other. 

 

Index Terms— Kruskal’s algorithm, maze generation, 

minimum spanning tree, Prim’s algorithm 

 

I.   INTRODUCTION 

Maze is a graphical puzzle which consists of complex 

structure with a series of interconnecting pathways. The 

goal of the puzzle is to connect the start point with the 

finish point by a single route.   

Maze can be created or implemented on various shapes 

and forms. There are mazes on 2 dimensions, 3 

dimensions, and even on 4 dimensions surface (there are 

“past” and “future” portals on 4 dimensions maze).   

There is maze on a paper which can be solved by pencil 

and rubber; there is also 3D maze that was made by 

construction of blocks or bushes which the solver must go 

inside the maze from entrance to the exit.  Another thing 

to note is that maze is a game which can be played 

without any significant boundaries. There are no any 

restrictions to play this game. Besides that, maze is a fun 

game to play with. Every person can play this game alone 

by her/himself or do a challenge with her/his friends or 

families. Those things above make maze a popular game 

to play with anywhere, by anyone. 

Besides to play with, maze is also interesting and fun to 

be analyzed and explored. The main topics about maze 

study are its generations and solution findings. There are 

many maze generation and solution finding methods that 

have been discovered. 

The maze generation methods are basically classified 

into four types. They are graph-based method, recursive 

division method, simple algorithm, and cellular automaton 

algorithm. The maze generations that are discussed in this 

paper are focused on the graph-based method; more 

precisely, the spanning tree generation algorithms.  

On a spanning tree based maze generation, a maze can 

be generated by starting from a set of cells (or matrix of 

cells on 2D maze generation) with wall sites between 

them. This set of cells can be viewed as a connected graph 

with nodes represented the cells and edges represented the 

walls. Then, the algorithm proceeds by constantly adding 

nodes or edges to the maze with certain rules until there 

are no more nodes or edges in the set of cells that can be 

added. Two of spanning tree based maze generations; 

Prim’s and Kruskal’s algorithms, will be covered further 

on this paper. 

 

II. THEORY 

A. Graph 

Graph is defined as a pair of two sets as (V,E), which V 

represents a non-null set of vertices or nodes and E 

represents a set of edges. Graph is used to represent links 

or connections between some objects, where the objects 

are represented by nodes and the links are represented by 

edges. 

  
Fig. 2.1. An example of graph. The circles represent 

nodes and the lines represent edges. 

 

There are some basic terms about graph. Here are the 

explanations of them.  

i. Undirected Graph 

Undirected graph is a kind of graph which the edges 

don’t have particular direction. So, the ordering of two 

adjacent nodes which is connected by an edge is 

unnecessary. 

ii. Directed Graph 

Contradicted to undirected graph, the edges in 

directed graph have direction to determine the initial 
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vertex and the terminal vertex. Ordering of two 

adjacent nodes becomes necessary now as (va,vb) and 

(vb,va) represents two different edges. In this kind of 

graph, edges sometimes referred as arcs. That is, arc is 

defined as directed edge 

iii. Adjacent 

Two different nodes are said to be adjacent to each 

other if they are connected with an edge. In other 

words, in a graph G, vertex va is said adjacent to vertex 

vb if (va,vb) is an edge in G. 

iv. Incident 

An edge is said to be incident to be incident to two 

different nodes if the nodes are connected by that edge. 

In other words, in a graph G, if there is exist an edge e 

= (va,vb), e is adjacent to va and vb. 

v. Path 

A path is a sequence of edges that started at a vertex 

and travels from vertex to vertex along the edges in a 

graph. Formally, in a graph G, a path with n length 

from vertex va to vb is defined as a sequence of n edges  

e1 , ... , en  of G  such  that  e1  is  associated  with 

vertex pair (v0,v1),  e2  is  associated  with (v1,v2), and so 

on, with en  is  associated  with (vn-1,vn), where v0 = va 

and vn =  vb. 

vi. Connected  

Two different nodes are said to be connected if there 

is a path between them. If every pair of two nodes in an 

undirected graph G is connected, G is a connected 

graph. That is, an undirected graph G = (V,E) is said to 

be a connected graph if every pair of nodes va and vb in 

set V has a path that connects each other. Otherwise, G 

is said to be an unconnected graph. 

vii. Subgraph 

A graph G1 is said to be a subgraph of graph G if 

G “contains” G1. Formally, a graph G1 = (V1,E1)  is a 

subgraph of graph G = (V,E) if V1 ⊆ V and E1 ⊆ E. 

viii. Spanning Subgraph 

A subgraph G1 of graph G is said to be a spanning 

subgraph if G1 contains all the nodes in G. That is, a 

subgraph G1 = (V1,E1) of graph G = (V,E) is a spanning 

subgraph if V1 = V. 

ix. Circuit 

A circuit is a path where the starting vertex is the 

same with the terminal vertex. In other words, a circuit 

is a path with sequence of n edges e1 , ... , en  in graph G 

where e1  is  associated  with (v0,v1), e2  is  associated  

with (v1,v2), and so on, with en  is  associated  with (vn-

1,vn) and v0 = vn.   

x. Weighted Graph 

A graph is said to be a weighted graph if each of its 

edges has a value or weight. 

xi. Graph Weight 

In a weighted tree G, graph weight is defined as the 

sum of all edge weights in G. 

 

 

 

B. Tree 

Tree is graph with some specializations. A tree is 

defined as an unconnected graph which doesn’t contain 

any circuits. These are some basic terms about tree. 

i.  Forest 

Forest is defined as a set of disjoint trees. Forest can 

also be defined as unconnected graph which doesn’t 

contain any circuits. 

ii. Spanning Tree 

Spanning tree is defined as spanning subgraph which 

is also a tree. Every connected graph has at least one 

spanning tree. 

iii. Minimum Spanning Tree 

In a weighted graph G, minimum spanning tree is a 

spanning tree with the least weight among the others 

spanning tree in G. A weighted graph can has more than 

one minimum spanning tree.  

Minimum spanning tree is considered as the most 

important spanning tree because of its wide applications. 

So, knowing how to generate a minimum spanning tree 

from a weighted graph is important. There are some 

techniques to do that, two of them are discussed here.  

1) Prim’s Algorithm 

Prim’s algorithm was discovered by Robert Prim 

on 1957. It is a technique to generate a minimum 

spanning tree from a weighted graph by choosing an 

edge with the least weight, and then put it into the 

spanning tree. Next, select one of the remaining edges 

with the least weight so that the edge is incident with a 

node already in the tree and not forming a circuit in 

the tree. Then, add the edge to the tree. Repeat the 

process until n-1 edges have been added (n is the 

amount of nodes in graph at the beginning). The 

pseudo-code of the algorithm is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

procedure Prim (input G:Graph, output T:Tree) 

{I.S : Graph G = (V,E) is defined 

  F.S  : Minimum spanning tree T = (V,E') is               

defined  

Process : Generating a minimum spanning tree 

from a graph by Prim's algorithm} 

 

Declaration 

i, p, q, u, v, n : integer 

 

Algorithm 

n ← |V| 

Find an edge (p,q) with the least weight from set 

E 

T ← {(p,q)} 

for i=1 to n-2 do 

Select an edge (u,v) wih the least weight  

from E and is incident with a node in T  

if (u,v) isn't forming circuit in T then 

T ← T ∪ {(u,v)} 

endif 

endfor 

 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013 

 

 

2) Kruskal’s Algorithm 

Joseph Kruskal invented this minimum spanning 

tree creation algorithm on 1956. To carry out this 

algorithm, first, arrange the edges of the graph G 

based on their weights. Next, create a forest T that 

contains all of the edges in G that are unconnected 

each other. Then, successively as many as n-2 times, 

add the least edge in G to T so that no circuits are 

formed in T. In the end, T is a minimum spanning tree 

from G. The pseudo-code of the algorithm is as 

follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Maze 

There are various types and kinds of mazes. Here will 

be explained three important types of maze based on their 

routings and their graph representations. 

1) Sparse Maze 

The first type is sparse maze. The passages on sparse 

maze don’t pass on all cells.  The unpassed cells 

become inaccessible cells that the solver cannot go 

through. Solving this kind of maze is not too difficult 

because the solution path can easily spotted. 

An example of a 3x3 sparse maze and its graph 

representation is as follows. 

 
Fig. 2.2. An example of sparse maze and its graph 

representation. 

Since there must be at least one unconnected node, 

this maze type cannot be created by minimum spanning 

tree creation algorithms.  

 

2) Braid Maze 

The second type is braid maze. Although braid maze 

doesn’t have dead-ends, it haves junctions. The 

junctions connect multiple paths to form circles or 

loops. This is what makes braid maze quite difficult to 

solve as the loops can cause confusion when the solver 

is finding out the path to the finish. However, the loops 

can also make the maze easier to solve because it gives 

more than one possible solution paths. 

An example of 4x4 braid maze and its graph 

representation is as follows. 

 
 

Fig. 2.3. An example of braid maze and its graph 

representation. 

 

   This maze type cannot be created by minimum spanning 

tree creation algorithm since its graph representation 

contains circuits, and thus is not a tree. 

3) Perfect Maze 

The third type is perfect maze. As the name suggests, 

this is the most perfect kind of maze that can give 

difficult challenge to do. In perfect maze, there are no 

circles or loops. So, there is only one right path that 

connects start point to finish point. What makes perfect 

maze difficult to solve is that the maze has many dead-

ends that the solver must try to avoid of.  Sometimes 

perfect maze is referred as simply-connected maze.  

An example of a 4x4 perfect maze and its graph 

representation is as follows. 

 
 

Fig. 2.4. An example of perfect maze and its graph 

representation. 

 

 

 

        

  

 
 
 

 

  

 

 

   

  

 

 

   

   

   

 

 

  

        

   

   

   

 

 

  

        

   

   

   

procedure Kruskal (input G:Graph, output T:Tree) 

{I.S : Graph G = (V,E) is defined 

 F.S : Minimum spanning tree T = (V,E') is 

defined  

 Process : Generating a minimum spanning tree from 

a graph by Kruskal's algorithm} 

  

Declaration 

i, p, q, u, v, n : integer 

 

Algorithm 

n ← |V| 

T ← {} 

while number of T edges < n-1 do 

 Select an edge (u,v) with the least weight 

from E 

 if (u,v) isn't forming circuit in T then 

  T ← T ∪ {(u,v)} 

 endif 

endwhile 
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Since its graph is connected, contains all of the nodes 

(cells) and doesn’t contain any circuits, a perfect maze 

can be described as a spanning tree over the set of the 

cells. Thus, this type of maze can be created with 

spanning tree creation algorithm such as Prim’s and 

Kruskal’s algorithm that will be discussed further on 

this paper.  

 

III.   MAZE GENERATION 

Here are the explanations of how the maze generation 

works by each algorithm. Note that in the tree 

representations of the mazes, the nodes are representing 

the cells and the edges are representing the walls between 

the cells. Since there are no “weights” in the tree, some 

adaptations are conducted on the original algorithms to 

solve the faced problems. 

 

A. Prim’s Algorithm Method 

The basic principles of Prim’s algorithm are choosing 

a node from the graph, and then choose the edge with the 

smallest weight that connects the first edge with another 

edge in the graph, and then choose the edge with the 

smallest weight that connects the second edge with 

another edge in the graph, and so on. In maze generation, 

there are some adaptations that must be applied on the 

algorithm. First, because the cells are the nodes, we begin 

with adding a random cell from the cells matrix to the 

maze. Then, add a cell that is adjacent with the previous 

added cell to the matrix. Repeat the second process until 

there are no cells can be added.  

Since it is an adapted version of Prim’s algorithm that 

handles non-weighted edges on maze generation, this 

algorithm is sometimes called Randomized Prim’s 

Algorithm (The “randomized” term comes from the fact 

that the algorithm choose the edge at random instead of 

the least weighted). The pseudo-code of the algorithm is 

as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a clearer understanding, let’s take a look at an 

example of 3x3 maze generation by this algorithm. First, 

let’s start with a matrix of 3x3 cells. 

   

                              

   

Fig. 2.5. The steps of maze generation by Prim’s 

algorithm (1). 

 

Then, select a cell at random and add it to the maze. 

Mark the added cell in the matrix.  

 

 

 

 

 

 

Fig. 2.6. The steps of maze generation by Prim’s 

algorithm (2). 

 

Now, select one of the three cells (the blue-shaded 

cells) that are adjacent with the first cell that has been 

added. Add the cell to the maze. 

 

 

 

 

 

 

Fig. 2.7. The steps of maze generation by Prim’s 

algorithm (3). 

 

Again, select one of the cells (the blue-shaded cells) 

that are adjacent with the cells that have been added 

previously. Add the selected cell to the maze. 

 

 

 

 

 

 

Fig. 2.8. The steps of maze generation by Prim’s 

algorithm (4). 

 

Now, if we select a cell that is adjacent to more than 

one previously added cells, choose only one cell among 

them as the “neighbor” of the newly selected cell. Then, 

add the selected cell to the maze. 

 

 

 

 

 

 

Fig. 2.9. The steps of maze generation by Prim’s 

algorithm (5). 

 

   

   

   

   

   

   

   

 

   

   

   

  

  

   

   

   

  

  

 

  

  

  

procedure PrimMaze (input S:Set of cells, 

output M:Maze) 

{I.S : Set of cells S is defined 

  F.S  : Maze M is generated 

Process : Generating a perfect maze from a set 

of cells by Prim's algorithm} 

 

Declaration 

c : cell 

 

Algorithm 

Select a random cell c from S 

M ← c 

while M is not full do 

Select an unmarked random cell c from S  

if c is adjacent to one of the cells in M then 

M ← M ∪ c 

 endif 

Mark c so it will not be selected again in S 

endwhile 
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Repeat these processes until the maze is full. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10.  The steps of maze generation by Prim’s 

algorithm (6). 

 

At this point, the algorithm terminates because there 

are no more cells that can be selected from the matrix. 

Now, add “a little touch” to complete the maze, that is, 

add two “holes” on the outer wall to mark the start and 

finish point of the maze. 

 

 

 

 

 

 

Fig. 2.11. Final result of the maze. 

 

Here it is, a perfect maze generated by Prim’s 

algorithm is finished. 

 

B. Kruskal’s Algorithm Method 

Just like Prim’s algorithm, this adapted version of 

Kruskal’s algorithm is sometimes referred as Randomized 

Kruskal’s Algorithm. The algorithm started by creating a 

forest of all nodes in cells matrix. Then, select a random 

edge (wall between two cells) and add it with two cells 

that are connected with it to the maze, creating a tree or a 

set of cells. After that, select another random edge that 

doesn’t connect two cells in a same “tree” and add it to 

the maze. The processes finished when there are no edges 

left to be selected, or there is only one tree remaining in 

the cells matrix.  

The pseudo-code of the algorithm is as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here is an example of a 3x3 maze generation by 

Kruskal’s algorithm. The first step is creating a 3x3 cells 

matrix with a forest of 9 disjoint trees (in this case, 9 

nodes). Note that different colors represent different trees 

or sets of cells. 

 

 

 

 

 

Fig. 2.12. The steps of maze generation by 

Kruskal’s algorithm (1). 

 

Next, add a random edge from matrix to the maze. In 

this case, the added edge is the edge between cell (2,2) 

and (2,1). 

 

 

 

 

 

 

Fig. 2.13. The steps of maze generation by 

Kruskal’s algorithm (2). 

 

 

 

 

  

  

 

   

   

   

   

   

   

  

   

  

   

   

   

  

  

  

   

   

   

  

  

 

   

   

   

  

  

  

  

   

   

   

   

   

  

   

   

   

procedure KruskalMaze (input S:Set of cells, output 

M:Maze) 

{I.S : Set of cells S is defined 

  F.S  : Maze M is generated 

Process : Generating a perfect maze from a set of cells 

by Kruskal's algorithm} 

 

Declaration 

e : edge 

c1, c2 : cell 

 

Algorithm 

Select a random edge e = (c1, c2) in S 

M ← {( c1, c2)} 

while number of tree in S >1 do 

Select a random edge e = (c1, c2) in S with c1 and 

c2 is in different tree 

M ← M ∪{( c1, c2)} 

Unify c1 and c2 in S into a single tree 

endwhile 
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Note that when an edge is added, two cells that are 

connected to it are unified into a single tree. Now, let’s 

add another edge to the maze. 

 

 

 

 

 

 

Fig. 2.14. The steps of maze generation by Kruskal’s  

algorithm (3). 

 

Keep adding more edges until there is only one tree 

remaining in the matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15. The steps of maze generation by Kruskal’s  

algorithm (4). 

 

Now add the edge between (2,2) and (3,2) so that the 

orange and grey tree unified into one tree. 

 

 

 

 

 

 

Fig. 2.16. The steps of maze generation by Kruskal’s  

algorithm (5). 

 

Again, add more edges. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.17. The steps of maze generation by Kruskal’s  

algorithm (6). 

 

 

At this point, the process is not yet stopped because 

there are still two trees left behind in the matrix. The 

adding of the edge between (1,2) and (2,2) unify the trees 

and hence, marks the final step of the algorithm. 

 

 

 

 

 

 

Fig. 2.18. The steps of maze generation by Kruskal’s  

algorithm (7). 

 

Finally, add random start and finish point to complete 

the maze. 

 

 

 

 

 

 

Fig. 2.19. Final result of the maze. 

 

 

IV.   ANALYSIS 

The basic principle of randomized Prim’s and 

Kruskal’s algorithm is same, that is, generating a perfect 

maze based on minimum spanning tree algorithm. The 

basic difference between them is that Prim’s is focused on 

adding nodes or cells to the maze while Kruskal’s is 

focused on adding the edges. In theory, they can generate 

maze that is similar to each other. However, there must be 

some differences on their performances and the mazes 

they are generating as the implication of the algorithm 

difference between them. 

Here is a table that lists head-to-head performance 

statistics between the two. 

 

Table 4.1 Maze generation performance statistics by 

Prim’s and Kruskal’s Algorithm. 

Data was taken from astrolog.org/labyrnth/algorithm, 

accessed on 8 December 2013, 10.46 pm. 

 

These statistics was extracted from testing of several 

NxN cells mazes. The dead end statistic measures the 

approximate percentage of dead ends cells upon of the 

total cells. The memory statistic represents how much 

extra memory is required to implement the maze with 

NxN cells. The time measures the relative time needed to 

create one maze with the lower number being faster (the 

fastest is speed 10). The last statistic, solution, represents 

   

   

   

  

   

  

   

   

   

  

  

  

   

   

   

  

  

  

   

   

   

  

  

  

   

   

   

  

 

  

   

   

   

 

 

  

   

   

   

 

  

 

  

Algorithm Dead End  Memory Time Solution  

Kruskal 30% N
2 

21 4.1% 

Prim 36% N2 43 2.3% 
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the length or the “windiness” of the solution path (the path 

that connects start to finish point). In other words, the 

solution statistic represents the percentage of cells in the 

maze that the solution path passes through. A maze with 

long solution path is less complex in term of the maze 

complexity. 

From the statistics, we can see that Prim’s algorithm 

generates more dead ends than Kruskal’s algorithm. This 

happens because Prim’s maze tends to distribute nodes in 

a short area of cells and thus, tends to have many short 

dead ends. In terms of memory needed, both algorithms 

equally needs as many as N
2 

memory since both needs a 

matrix of NxN cells as a “temporary storage” before 

adding the cells to the maze.    

In comparison of the Prim’s and Kruskal’s algorithm 

time process, Kruskal’s is quite faster. This happens 

because Kruskal’s maze generate less dead-ends than 

Prim’s. Lastly, Kruskal’s maze tends to have longer and 

more “windy” solution path than the Prim’s. So, it can be 

said that Prim’s maze is more complex than Kruskal’s 

maze. This stat is related to the fact that Prim’s generated 

maze tends to have more dead-ends and thus, have less 

cells in the solution path than the Kruskal’s maze.  

In conclusion, Prim’s maze tends to have higher 

complexity than Kruskal’s because it has more dead-ends 

and less solution cells percentage. However, Kruskal’s 

algorithm is better than the Prim’s algorithm in term of 

process time. 

 

V.   CONCLUSIONS 

Maze is a kind of graphical puzzle that was and is quite 

popular around the world. There are several methods on 

how to draw mazes; one of them is the spanning tree 

based algorithms. Two commonly used spanning tree 

algorithm to generate mazes are Prim’s algorithm and 

Kruskal’s algorithm. In principle, Prim’s algorithm 

generates the maze by placing cells one by one from the 

cells matrix to the maze, whereas Kruskal’s algorithm 

proceeds by placing the edges one by one. 

Determining the best algorithm to use between Prim’s 

and Kruskal’s algorithm is quite difficult. It is because 

their methods are principally same. However, there are 

some preferences that should be noted. If a complex and 

hard-to-solve maze is wanted, Prim’s algorithm is the 

choice. But, if the processing time is more important, 

Kruskal’s algorithm is better. 
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