

Makalah IF2120 Matematika Diskrit – Sem. 1 Tahun 2013/2014 |

Application of Huffman Coding in Lossless

Video Compression

Mahessa Ramadhana - 13511077

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

mahessaramadhana@itb.ac.id

Abstract—Lossless video compression can reduce the file

size of video while keeping the video exactly the same as the

uncompressed video. This paper will explain the use of

Huffman coding in lossless video compression using

HuffYUV video codec.

Index Terms—compression, Huffman, video, lossless

I. INTRODUCTION

Video is one media that people often use to record their

important moments. Not only that, video is also widely

used in the entertainment business, namely in television,

theatres, and even in video games.
Decades ago, all videos are taken and stored in analog

format. People use film reels to take and store movies. For

home video, there are several different video tape formats

available, such as Beta tape and VHS. Film reels work

similar to single-shot camera films, only that they take

sequence of images instead of single-shots, while video

tapes work similar to cassettes, storing electrical

information using magnetic tapes.
Nowadays, videos are also often taken and stored in

digital format. Digital camera videos are now widely used,

and videos can now be stored using digital media such as

DVDs, Blu-rays, or even a computer hard disk.
The problem in digital videos, however, is the amount

of storage they require. A minute of uncompressed

standard definition video can take more than 1 gigabytes

of storage. Imagine how much space it would take for a

full-length movie, which usually take 90 minutes and

more.
People then invented ways to reduce the file sizes of

digital videos. These methods is calles video compression,

and there are many kinds of them, each for differing uses.
II. THEORIES

A. Lossless and Lossy Compression
Compression can be roughly divided into two types:

lossless and lossy compression. Each have their own

strengths and weakness, one is better suited to certain uses

than the other.
Lossless compression is a type of compression where

there are no loss of data during the encoding process. This

means that once you decode a compressed file, you will

get exactly the same file as the original file. However,

such compression method have relatively poor

compression rate compared to lossy compression.
Lossy compression on the other hand, is a type of

compression where some data are discarded during the

encoding process to further reduce the file size. Better

compression methods usually have priorities in which data to

discard, with less important data having higher priority to be

discarded. Such compression method can yield much smaller

file size than lossless compression, but the decoded file will

not be exactly the same as the source.
Which one is better depends on the situation. For

compressing text files and programs, it is mandatory that

there is absolutely no loss of data during the encoding

process, otherwise, in the case of text files, some

information may be rendered illegible, while for program

files, the program may not work as it should be.
For music, pictures, and videos, lossy compression is

the better option. Often, some information stored in

music, pictures, and videos may be difficult, or even

impossible, to be perceived by human senses. Such

information may be discarded, which will make the

decoded file different from the source, but to human

senses, such difference may be hard to notice. Of course,

there are cases where extreme compression can distort the

music/picture/video badly that the difference starts to

become clear.

B. Lossless Video Compression
While it’s been mentioned that lossy compression is

better suited for video, lossless compression also has its

use for video compression. In video editing, a video file

can go through many compression processes. Using lossy

compression, every compression process will result in a

loss of data. The more compression process the video

underwent, the more data is lost. This is where lossless

video comes in. Using lossless compression, one can keep

the video file relatively small compared to uncompressed

video while making sure nothing gets lost during the

editing process. There are a few lossless video codecs

available, one such codec is HuffYUV, which employs the

Huffman coding method during the encoding process.

Makalah IF2120 Matematika Diskrit – Sem. 1 Tahun 2013/2014 |

C. Basic Digital Video Theories
Digital videos are simply a sequence of digital images.

A certain number of images are shown each second, which

is called the frame rate. Each frame is constructed from a

number of pixels. The number of horizontal pixel lines is

called the vertical resolution, and the number of vertical

pixel lines is called the horizontal resolution. Each pixel

have their own color. The color of each pixel can be

represented using several different colorspace, e.g. RGB,

CMYK, and YUV. Video generally use YUV colorspace,

which represents color using three 8-bit integers based on

how human perceive color. These 8-bit integers (called

channels, or color planes from now on) are the Y channel,

which represents luminance (black and white color), U

channel which represents blue chrominance (blue and

yellow color), and V channel which represents red

chrominance (red and green color).
Since videos are basically a sequence of images, the

compression technique for images can be used to

compress video. In HuffYUV’s case, the compression

technique is the same as Lossless JPEG, so in this paper

we will use the information from how Lossless JPEG

works.

For example, we will make a Huffman encoding tree

from the string ‘go go gophers’. First, we count the

frequency of each characters.

character frequency
‘g’ 3
‘o’ 3
‘ ‘ 2
‘p’ 1
‘h’ 1
‘e’ 1
‘r’ 1
‘s’ 1
Table 2.1 Frequency table

Then, we make a forest of trees from the table.

Figure 2.1 Forest of one-node trees.

Pick two nodes with the least weight, and make a new

tree with weight equals the sum of the two trees.

D. Huffman Coding
Huffman coding is a technique that can be used to

reduce the space required to store files. Huffman coding is

a based on statistical coding, which means the more

frequent a symbol occurs, the shorter its bit-representation

will be. In other words, Huffman coding uses variable-

length coding system as opposed to the standard fixed-

length coding system. Fixed-length coding system uses the

same length of bit-representation for all symbols, while

variable-length coding system will use shorter

representations for more frequent symbols, and longer

representations for less frequent symbols, which will

result in a reduction of the total length of bit-

representation of data.
To assign bits to each symbol in, for example, a string,

we must build a binary tree follow these steps:
1. Count the frequency of each characters.
2. Make a forest trees. All trees are one node, with the

weight of a tree equal to the weight of the character

in the node.
3. Choose two trees with lowest weight, call these

trees T1 and T2. Make a new tree whose weight

equals T1+T2 and whose left sub-tree is T1 and

right sub-tree is T2.
4. Repeat step 3 until there is only one tree. This tree

is the optimal encoding tree.

5. Assign bits to each symbol by traversing from the

root until you find the symbol. Assign ‘0’ to left

sub-trees and ‘1’ to right sub-trees.

Figure 2.2 First step.

Continue this step until you only have one tree.

Makalah IF2120 Matematika Diskrit – Sem. 1 Tahun 2013/2014 |

Figure 2.3 Method to get the optimal Huffman tree.

After we obtain the optimal Huffman tree, we assign

bit-representations to the characters, by assigning ‘0’ to

left sub-tree and ‘1’ to right sub-tree. We now get:

character representation
‘g’ 00
‘o’ 01
‘ ‘ 100
‘p’ 1110
‘h’ 1101
‘e’ 101
‘r’ 1111
‘s’ 1100

Table 2.2 Bit-representation for characters.

Now, using this table, if we convert the string ‘go go

gophers’, we would have 000110000011000001

1110110110111111100. That is 37 bits of data. Using ASCII

fixed-length coding, the string would end up as 104 bits of

data. This shows how Huffman coding can significantly

reduce the length of bit-representation, which

means a reduction in file size as well.
To decode a Huffman code, we need to traverse through

the bit stream and the Huffman tree, going to the left sub-

tree when we find ‘0’ in the bit stream, going to the right

sub -tree when we find ‘1’ in the bit stream, and back to

the root when we find a leaf and outputs said character.

Using the example above, first we find ‘0’, so we go left

in the tree. Next, we find ‘0’ again, so we go left again.

We find ‘g’ in the tree, so we go back to the root and

outputs ‘g’. Next we find another ‘0’, we go left again in

the tree. Next is ‘1’, so we go right, and find ‘o’. Go back

to the root and output ‘o’. Repeat this step until the code

is fully decoded. A code of 0001100000110000

011110110110111111100, using the tree from our

previous example, will be decoded as ‘go go gophers’.

This decoding algorithm is very simple, and it runs very

fast as well.

III. HUFFYUV

As mentioned above, lossless video compression is

useful in video editing environments where people would

like to make sure that no loss of data occurs during the

countless editing processes. One popular lossless video

compression to use is HuffYUV.
HuffYUV works in these steps:
1. Separate the color planes into Y, U, and V planes.
2. Use prediction function to predict each sample.
3. Use Huffman encoding to compress the predicted

values.

“Prediction function” here refers to a method to further

increase the efficiency of Huffman encoding. While

Huffman coding can achieve great compression

efficiency, its efficiency drops as the number of unique

data rises. For example, if we only have two unique data,

then we only need one bit representation for each data, ‘0’

and ‘1’. But if we have three unique data, we need up to

two bits representations for each data, ‘0’, ‘10’, and ‘11’.

As the number of unique data rises, the number of

maximum bit-representation rises as well. In video, each

channel is represented by an 8-bit integer, which means

each channel has the possibility of having up to 255

unique data. This will highly impact the efficiency of

Huffman encoding. To mitigate this problem, HuffYUV

uses the predictor function, to reduce the amount of

possible unique data.
Predictor works by comparing current sample with its

neighbors, then predicts the value for the current sample.

HuffYUV has three choices for predictor methods:
1. Left predictor, which predicts from the sample left

of the current sample.

2. Gradient predictor, which predicts from the sample

left of current + sample above current – sample

above-left of current.
3. Median predictor, which predicts from the median

of the sample left of current, sample above current,

Makalah IF2120 Matematika Diskrit – Sem. 1 Tahun 2013/2014 |

and the gradient predictor.

C(195) B(198)

A(193) X(197)

Table 2.3 Visual representation for predictor example.

For example, using median predictor, if the current

sample, say X, is 197, left sample, say A, is 193, above

sample, say B, is 198, and above-left sample, say C, is

195. Then the gradient predictor is A+B-C = 196. The

median of A, B, and the gradient predictor is 196, so the

median predictor is 196. The predicted value for the

current sample is X – median predictor = 1. For real-life

footage, where most of the time, the difference of a

neighboring pixels is usually very small, this effectively

reduces the range and variance of possible data to be

Huffman-encoded, increasing compression efficiency.
The predicted values, containing integers calculated

from the pixel values with the predictor functions, are then

Huffman-encoded. While normal Huffman encoding

creates a table for every data compressed, HuffYUV uses

built-in tables for each channel in order to save time.

These built-in tables are made from various experiments

to find the table that works well with most common

videos. While these tables may work quite well in most

cases, they are not the optimal Huffman tables. However,

some application allows the user to specify custom

Huffman tabled to increase efficiency.
After the file has been encoded, the Huffman table is

attached to the encoded file. This table is used to later

decode the file. By attaching the Huffman table, in case

that future HuffYUV encoder uses different table, the old

files can still be decoded perfectly without having to

explicitly support old tables.
It should be noted that HuffYUV decoding algorithm is

really fast. This means that for video editing, HuffYUV

encoded videos can be decoded quickly, thus speeding up

the editing process. This makes HuffYUV a very suitable

choice of video compression codec in video editing

environments.

IV. CONCLUSION

Huffman coding is used in many compression

algorithms. One of them is the HUffYUV video codec,

which is a lossless video compression. Lossless video

compression is useful in video editing environments

where people need to avoid any data loss caused by lossy

video compression. Huffman encoding efficiency for

video and image compression can be further improved

using predictor functions, with the assumption that in

video and images, most of the time a sample’s value is

very close to its neighbors to reduce the amount of unique

data.

REFERENCES

[1] http://www.animemusicvideos.org/guides/avtech/video3.h

tm Date of access: December 18th, 2012. 10:36 PM
[2] http://www.cs.duke.edu/csed/poop/huff/info/

Date of access: December 18
th

, 2012, 11:13 PM

[3] http://neuron2.net/www.math.berkeley.edu/benrg/huffyuv.html

Date of access: December 19
th

, 2012 00:23 AM

[4] http://en.nerdaholyc.com/huffman-coding-on-a-string/

Date of access: December 19
th

, 2012, 01:20 AM

[5] XIL Programmer’s Guide August 1994. California: Sun

Microsystems, 1994 , ch. 17.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 16 Desember 2013

Mahessa Ramadhana

http://www.cs.duke.edu/csed/poop/huff/info/
http://neuron2.net/www.math.berkeley.edu/benrg/huffyuv.html
http://en.nerdaholyc.com/huffman-coding-on-a-string/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

