
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014

Using Prim’s Algorithm as a Method to Dynamically
Distribute Bandwidth

Mario Filino (13512055)1

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1mario.filino@students.itb.ac.id

Abstract—Graph as discrete structure has many
implications in representing real life data and by using
Prim’s algorithm to find minimum spanning tree, many
kinds of optimization can be made. One possible
optimization is by making priority in the graph such that
edges with larger weight value will be given higher priority.
In this paper, writer will use that priority in distributing
bandwidth speed in communication links depending on their
traffic. This paper will focus on looking for priority in a
graph by using Prim’s algorithm to find maximum weighted
tree thus being given higher priority. This method of
searching for priority in a graph has many other implication
besides the on discussed in this paper.

Index Terms—Minimum spanning tree, Prim’s algorithm,
Bandwidth, Graph

I. INTRODUCTION
Graph is a type of discrete structure firstly introduced

by Leonhard Euler on his paper, Seven Bridges of
Königsberg. Graph has many kind of application both in
mathematics and computer science. One application of the
graph theory is its implementation as a method to
dynamically distribute bandwidth by implementing a
Prim’s algorithm to find the minimum spanning tree on a
weighted graph which will be discussed in this paper.

Nowadays, data network can be found almost anywhere
we go and it is part of our life to be connected to a
network whether it is by an email or a social media.
Growing network traffic is a common thing nowadays and
to compensate that needs of larger bandwidth on a
network, one solution might lie in optimizing data
bandwidth distribution across the network.

Suppose for example we have a network connecting A
to B and C connected to B, with the same static bandwidth
distribution in the link connecting A to B and C to B, say
100 Mbps. In this example, assume that node B is the root
bridge. When traffics are equally distributed across two
links or that the traffic are below the network link
capacity, it might not be a problem and wouldn’t require
any optimization. Now, consider a case where the traffic
in the link connecting node A and B has a much higher
traffic and that the traffic has exceed its link bandwidth
capacity whereas link connecting node C and B has a

lower traffic. In this case, network congestion will occur
in the link connecting node A and B which can result in
poor performance of the network and the deterioration of
the quality of service. In many cases, we might see the
result of this congestion as a delay in data queuing, data
loss or even the rejection of a new connection. We can see
from the above example that an equally distributed
bandwidth speed may not always be the best solution in a
data network. Such problem can be a huge disadvantage
when referred to a large scale network connection say in a
data network based company or any company with large
data traffic on the customer service area. Addressing the
above case, optimization can to be made by dynamically
distributing bandwidth speed across the network based on
the traffic which can be regarded as priority level by using
an algorithm called Prim’s algorithm. So that a higher
traffic will have a higher bandwidth speed whereas the
lower traffic can have its link bandwidth speed lowered
thus improving the efficiency of the limited bandwidth
speed. Thus, this paper will discuss a way of
implementing the minimum spanning tree using the Prim’s
algorithm to make priority on the bandwidth distribution
of links connecting nodes in a network.

II. THEORIES
2.1 Definition of Graph

Graph is a discrete structure used to represent the
connection of objects called vertices by links called edges.
Graph has many implications in representing
acquaintanceships between objects such as cities, power
grid, computers in network, and even in biology using a
specific structure of a graph called tree to represent a
phylogenetic tree. Mathematically, graph is defined by a
notation of G = (V, E) with V being the set of vertices and
E being the set of edges of a graph. In a graph, set V has
to be a nonempty set whereas the set E can be an empty
set. An empty graph is defined as a graph having an empty
set of E. There are several types of graph depending on
the existence of direction on the edges, whether vertices
can be connected by multiple edges, whether edges can
form a loop, and whether the edges have a value. Graph
with the edges having direction is called directed graph

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014

whereas the opposite is called undirected graph. Graph
with multiple edges connecting two vertices is called
nonsimple graph whereas the opposite is called simple
graph. The type of graph that will be considered in this
paper is a simple graph with undirected edges.

Consider the following example of a graph:

Figure 2.1 Graph
The above image is an example of a simple graph with

undirected edges with six vertices and eight edges. Thus,
we can write:

V = {1, 2, 3, 4, 5, 6}
E = {(1, 2), (1, 3), (3, 5), (2, 3), (2, 5), (2, 6), (5, 4),
 (6, 4)}

2.2 Weighted Graph
A weighted graph is simply a graph with the edges

being given a number as a value or weight of the edges.
These values can represent many things, it can be a
number representing distance between vertices, cost going
from one vertex to another vertex, etc. We usually call
these values as the weight of the edges.

Here is a graph from figure 2.1 with values given to its
edges as a weight.

Figure 2.2 Weighted Graph
In a graph these edges, vertices and weight can be used

to represent many things, that is why graph as a data
structure has many implications in representing real life
data.

2.3 Minimum Spanning Tree

Spanning tree is a subgraph which contains all vertex of
the graph and does not create a cycle. For every connected
graph there will be a spanning tree. From the above
example of weighted graph in figure 2.2, many spanning
tree can be generated from such graph.

Here are several example of spanning tree generated

from the weighted graph in figure 2.2.

(a) (b)

Figure 2.3 (a) Spanning Tree One (b) Spanning Tree Two

 The two examples above shows different kind of
spanning tree generated from the same graph in figure 2.2.
The difference between both spanning tree above can be
distinguished by the total cost obtained by adding all the
total weight of a tree. Spanning tree (a) has a total cost of
72 whereas spanning tree (b) has a total cost of 73. Many
other spanning trees can be generated from figure 2.2.
From all of the spanning trees generated, the spanning tree
with the least total cost is called the minimum spanning
tree.

 Here is the minimum spanning tree generated from the
graph illustrated in figure 2.2.

Figure 2.4 Minimum Spanning Tree

 The above image is the minimum spanning tree
generated using Prim’s algorithm, it has a total cost 48
which is the lowest cost possible with all vertex
connected.

2.4 Prim’s Algorithm

There are several algorithms that can be used for
generating minimum spanning tree from a graph:
Borůvka, Prim, and Kruskal algorithm. All three
algorithms are a greedy algorithm meaning that the choice
made at one stage does not affect decision on future
stages. In this paper the writer uses the Prim’s algorithm
to find the minimum spanning tree.

Prim’s algorithm has several time complexity
depending on the data structure being used: O (V2) by
using adjacency matrix, O (E log(V)) by using binary
heap and adjacency list, and O (E + V log(V)) by using
fibonacci heap and adjacency list. The implementation
using fibonnaci heap has the lowest time complexity but
with a much more complicated algorithm than with
adjacency matrix or binary heap.

Here is the pseudo code for Prim’s algorithm.[4]

1
2

3
4

5

6

1
2

3
4

5

6

20

15

5

21

17

13
9

6

9

6

20

21

17 1

2

3

4

5

6

6

15

21

17

13

1

2

3

4

5

6

9

6

15

5 13

1
2

3
4

5

6

http://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014

Figure 2.5 Prim’s Algorithm Pseudo Code

The above pseudo code explains the steps of how
Prim’s algorithm generated a minimum spanning tree.
Lines 1 – 5 initialize the priority queue PQ with all
vertices of a graph. All the vertices are then set to infinity
(line 2) except for vertex r which is set to zero (line 3).
The vertex r then becomes the starting vertex of the tree
T. The tree T is then initialize with Nil (line 5) indicating
an empty tree. Lines 8 – 9 then adds the closest vertex and
edge to tree T.[4] Lines 10 – 13 works by getting all the
adjacent vertices, then updates the D value for all adjacent
vertex which has not been added to the tree, save the
current minimum weight edge, then restore the heap
property.[4] The iteration continues until the priority queue
PQ which initially contains all vertices of the graph
becomes an empty set, the minimum spanning tree T is
then returned by the function.

 By using the above code to generate a spanning tree,
here is the example of the steps in generating minimum
spanning tree from graph in figure 2.2.

Steps Edges Weight Spanning Tree

1 (2, 5) 5

2 (5, 4) 6

3 (4, 6) 9

4 (3, 2) 13

5 (1, 2) 15

Table 1 Steps of Generating Minimum Spanning Tree

From the above execution table, we can see that in

every step we select a vertex which will contributes to
giving the minimum edge weight. Going from step 1 to
step 2 we can either choose vertex 1, 3, 6, or 4. By
connecting vertex 5 and 4, we get the lowest edge weight
of 6, thus we choose vertex 4 and edge (5, 4). The similar
steps continue until the spanning tree contains all vertices
from the graph. In the example above, we get a minimum
spanning tree with total cost 48.

2.5 Maximum Spanning Tree

 In this paper, the writer uses Prim’s algorithm to
generate a maximum spanning tree. This can be done in
two ways: changing the Prim’s algorithm to pick the
maximum edges weight or by negating the value of the
edges weight. The writer uses the second option to
maintain Prim’s algorithm as it is and still generating a
minimum spanning tree. Thus by replacing the negated
value with the original edges weight value after minimum
spanning tree is generated; we generated the maximum
spanning tree with the highest possible total cost.

2.6 Computer Network

 Today, internet being a specific computer network has
become the largest system created by mankind, with
hundreds of millions of connected computer,
communication links, and switches; with billions of users
connected to it through their laptop, desktop,
smartphones, tablets, and other gadget devices.[3]

Simply, a computer network is telecommunication
network connecting computers or end systems in general
that allow them to exchange data. In this paper, nodes of a
graph will represent the network’s end system and the
edges representing the network’s communication link. The
absolute value of the edges weight will represent
communication links traffic or priority, with priority level
proportional to its traffic; higher traffic means higher
priority level.

III. ANALYSIS AND IMPLEMENTATION
In this paper, the writer uses a simple example of a

network represented in the graph below and will use
Prim’s algorithm to increase the effectiveness of
bandwidth distribution throughout the network.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014

Figure 3.1 Simple Network Diagram

From the above graph, let nodes a, b, c, and d represent
regional offices of a certain company with e being the
head office. Nodes j and h being the local and global isp
respectively. The rest of the nodes represent home
networks connected to the local isp. Now assume that
bandwidth is equally distributed throughout the whole
network with traffic capacity (representing bandwidth
capacity) of 1000, meaning that each communication link
can handle up to 1000 packet of data.

 In the above case it can be seen that network
congestion will occur on link (c, e), (c, d), (d, e), (e, j),
(f, j), and (f, i). This congestion can result in data lost and
poor network connection which has to be avoided. For
this case, the writer suggest implementing Prim’s
algorithm in order to find which communication link has
to be given a higher bandwidth speed and which can have
a lower bandwidth speed. Therefore, bandwidth does not
have to be distributed equally but instead allocating it
according to priority or traffic. In that way,
communication links with higher traffic or priority will
have higher bandwidth speed whereas lower priority
communication links will have lower bandwidth speed.

The method of finding the solution for this problem is
straightforward due to the network diagram already
represented as a graph. Therefore any kind of
transformation into a graph is unnecessary. The edges
weight in the given graph above are in positive value,
therefore we can’t use Prim’s algorithm directly without
any modification as it will generate spanning tree with the
lowest traffic instead of the highest traffic. Thus, it is
necessary to negate these values first.

In this paper, the writer will find the solution for the
above problem in three levels of bandwidth distribution:
highest, second highest, and lowest bandwidth
distribution. This is to differentiate bandwidth distribution
in communication links with very low traffic such in

communication link between node g and i with
communication links with high traffic but below
bandwidth capacity such as communication link
connecting node i and j. By using three level of bandwidth
distribution, each communication link will have
bandwidth speed closest to their traffic and therefore more
efficient.

To find these three levels of bandwidth distribution,
finding several minimum spanning trees is needed with
different types of modification to the edges weight value.
To find the first minimum spanning tree, values
representing traffic have to be negated thus generating
spanning tree with highest absolute value of the total cost.
If values of exceeding traffic capacity still exist in
remaining edges of the graph, the second minimum
spanning tree from the same graph will have to be
generated. To find spanning tree with the lowest traffic,
original values of the graph edges will be used.

Here is the network graph with the negated edges value
to generate spanning tree with highest traffic, all edges
have the same color which is black indicating same
bandwidth distribution throughout the whole network.

Figure 3.2 Network Graph with Negated Values

To find the minimum spanning tree, start by selecting
an edge with the lowest value. Thus, edge connecting
node h and j is selected with its value -1371. In node j,
node e, f, g, and i can be chosen. Edge (e, j) is selected
due to having the lowest value of -1363. Then we
continue this process by choosing edge (c, e), edge (f, j),
edge (c, d), edge (a, c), edge (b, d), edge (f, g), and edge
(f, i). All edge with the minimum possible values without
creating any cycle. Thus we have generated the minimum
spanning tree from the above graph.

Here is the result of the minimum spanning tree
generated from the above graph indicated by red colored
edges with the steps given in the table below.

a

b

c

d

e

f
g

h

i

j

137

1213

1113 1363

888

973

842

101

1255

689

1245 99

150

854

1371

a

b

c

d

e

f
g

h

i

j

-137

-1213

-1113
-1363

-888

-973

-842

-101

-1255

-689

-1245 -99

-150

-854

-1371

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014

Figure 3.3 Links with Highest Traffic

Steps Edges Weight
1 (j, h) -1371
2 (e, j) -1363
3 (c, e) -1255
4 (f, j) -1245
5 (c, d) -1213
6 (a, c) -999
7 (b, d) -973
8 (f, g) -854
9 (f, i) -842

Table 2 Execution of Prim’s Algorithm

The above tree generated shows communication links

with the highest amount of traffic and therefore have to be
given highest priority in bandwidth distribution. But in
above example of network, congestion will still occur on
link connecting node d and e. Therefore edge (e, d) has to
be included in the above graph with red colored edge. To
do so, the algorithm to find the second minimum spanning
tree can be used.

Here is the algorithm to find the second minimum
spanning tree.[7]

Set Δ|T| = ∞
Set Enew = 0 and Eold = 0
For every edge e not in tree, do:
 Add edge e to the tree, thus creating a cycle
 Find the maximum weight edge k in the cycle, k ≠ e
 Remove k from the tree
 Calculate the difference in tree weight δ
 If δ < Δ|T| then
 Set Δ|T| = δ
 Set Enew = e
 Set Eold = k
Replace edge k with edge e in the graph

This algorithm works by trying all edge replacement
and find the edge replacement with the least cost

difference with the first minimum spanning tree. First and
second minimum spanning tree will differ by exactly one
edge and that new edge will indicate links with network
congestion, in this case it should be edge (d, e). This
process of searching second minimum spanning tree
continues until no link with congestion exists in the graph.

By using above algorithm, here is the table showing
execution process on finding second minimum spanning
tree of graph in figure 3.3.

Steps e k δ Δ|T| Enew Eold

1 (a, b) (b, d) 872 872 (a, b) (b, d)
2 (b, c) (b, d) 836 836 (b, c) (b, d)
3 (d, e) (c, d) 100 100 (d, e) (c, d)
4 (g, j) (f, g) 755 100 (d, e) (c, d)
5 (g, i) (f, i) 692 100 (d, e) (c, d)
6 (i, j) (f, i) 153 100 (d, e) (c, d)

Table 3 Steps in finding second minimum spanning tree

As the iteration stops, edge (c, d) will be removed from

the tree replacing it with edge (d, e) thus creating the
second minimum spanning tree with total cost differ by
100 with first minimum spanning tree. By overlapping the
first and second minimum spanning tree in the graph, we
will get edge (d, e) included in partition of links with
highest traffic. This process continues until all edges with
traffic exceeding traffic capacity are included in this
partition, in this case finding the third and fourth
minimum spanning tree is unnecessary.

Here is the network graph with first and second
minimum spanning tree overlapped.

Figure 3.4 First and Second MST Overlapped

From the above diagram, we can see that

communication links (a, c), (b, c), (g, j), and (g, i) differ
by significant amount of traffic with link (j, i), therefore it
is necessary to find first minimum spanning tree from the
graph with unnegated weight to highlight edges (a, b), (b,
c), (g, i), and (g, j). By using Prim’s algorithm to find
minimum spanning tree from graph in figure 3.1, we will
get minimum spanning tree with edges (j, h), (j, e), (d, e),

a

b

c

d

e

f
g

h

i

j

-137

-1213

-1113
-1363

-888

-973

-842

-101

-1255

-689

-1245 -99

-150

-854

-1371

a

b

c

d

e

f
g

h

i

j

-137

-1213

-1113
-1363

-888

-973

-842

-101

-1255

-689

-1245 -99

-150

-854

-1371

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2013/2014

(b, d), (b, c), (a, b), (g, j), (g, i), and (g, f). We now have
two sets of edges: edges highlighted in red in figure 3.4
(E1) and edges of minimum spanning tree we just
generated (E2).

E1 = {(a, c), (b, d), (c, d), (c, e), (d, e), (e, j), (h, j),

(f, j), (f, g), (f, i)}
E2 = {(j, h), (j, e), (d, e), (b, d), (b, c), (a, b), (g, j),

(g, i), (g, f)}

By using set operation E2 – E1, we will get edges that
are in E2 but not in E1.

E2 – E1 = {(b, c), (a, b), (g, j), (g, i)}

We now have set E2 – E1 which is a set of edges with

lowest traffic. Remaining edge (i, j) can be obtained by
subtracting set of all edges in the graph with set of
highlighted edges and set E2 – E1.

Here is the network graph with edges in set E2 – E1
highlighted in green and edge (i, j) highlighted in yellow.

Figure 3.5 Completed Priority-Based Bandwidth
distribution

The graph above shows the network communication

links highlighted in different color based on traffic. Links
with highest traffic are highlighted in red, links with the
lowest traffic highlighted in green, and the rest highlighted
in yellow. These colors indicated a priority in bandwidth
distribution; links in red have the highest priority in
bandwidth distribution, links in yellow have the second
highest priority, and links in green have the least priority.

V. CONCLUSION
Prim’s algorithm as a method to find minimum

spanning tree has many implication in real life such as one
discussed in this paper in distributing bandwidth speed
based on priority. This similar approach can as well be

implemented in situation requiring priority such as in
emergency situation, edge can be given a very high weight
value.

VII. ACKNOWLEDGMENT
First of all, I would like to thank God for His guidance

in writing this paper. I wish to express my sincere thanks
to Dr. Ir. Rinaldi Munir and Mrs. Harlili for teaching us. I
would also like to thank my parents for their support and
courage.

REFERENCES

[1] Rinaldi Munir, Diktat Kuliah Matematika Diskrit, Bandung:
Program Studi Teknik Informatika ITB, 2006

[2] K. H. Rosen, Discrete Mathematics and Its Applications 7th, New
York: McGraw-Hill, 2012

[3] James F. Kurose and Keith W. Ross, Computer Networking: A
Top-Down Approach 6th edition, New York: Pearson, 2013

[4] www.cs.helsinki.fi/u/ejunttil/opetus/tiraharjoitus/prim.ppt
retrieved on 13 December 2013

[5] http://www2.hawaii.edu/~suthers/courses/ics311f13/Notes/Topic-
17.html
retrieved on 13 December 2013

[6] http://www.cs.auckland.ac.nz/software/AlgAnim/prim.html
retrieved on 14 December 2013

[7] http://web.mit.edu/6.263/www/quiz1-f05-sol.pdf
retrieved on 15 December 2013

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 16 Desember 2013

Mario Filino
13512055

a

b

c

d

e

f
g

h

i

j

-137

-1213

-1113
-1363

-888

-973

-842

-101

-1255

-689

-1245 -99

-150

-854

-1371

http://www2.hawaii.edu/~suthers/courses/ics311f13/Notes/Topic-17.html
http://www2.hawaii.edu/~suthers/courses/ics311f13/Notes/Topic-17.html
http://www.cs.auckland.ac.nz/software/AlgAnim/prim.html
http://web.mit.edu/6.263/www/quiz1-f05-sol.pdf

	I. Introduction
	II. Theories
	III. Analysis and Implementation
	V. Conclusion
	VII. Acknowledgment
	References
	PeRNYATAAN

