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Abstract—Graph as discrete structure has many 
implications in representing real life data and by using 
Prim’s algorithm to find minimum spanning tree, many 
kinds of optimization can be made. One possible  
optimization is by making priority in the graph such that 
edges with larger weight value will be given higher priority. 
In this paper, writer will use that priority in distributing 
bandwidth speed in communication links depending on their 
traffic. This paper will focus on looking for priority in a 
graph by using Prim’s algorithm to find maximum weighted 
tree thus being given higher priority. This method of 
searching for priority in a graph has many other implication 
besides the on discussed in this paper. 
 

Index Terms—Minimum spanning tree, Prim’s algorithm, 
Bandwidth, Graph 

 
 

I.   INTRODUCTION 
Graph is a type of discrete structure firstly introduced 

by Leonhard Euler on his paper, Seven Bridges of 
Königsberg. Graph has many kind of application both in 
mathematics and computer science. One application of the 
graph theory is its implementation as a method to 
dynamically distribute bandwidth by implementing a 
Prim’s algorithm to find the minimum spanning tree on a 
weighted graph which will be discussed in this paper. 

Nowadays, data network can be found almost anywhere 
we go and it is part of our life to be connected to a 
network whether it is by an email or a social media. 
Growing network traffic is a common thing nowadays and 
to compensate that needs of larger bandwidth on a 
network, one solution might lie in optimizing data 
bandwidth distribution across the network.  

Suppose for example we have a network connecting A 
to B and C connected to B, with the same static bandwidth 
distribution in the link connecting A to B and C to B, say 
100 Mbps. In this example, assume that node B is the root 
bridge. When traffics are equally distributed across two 
links or that the traffic are below the network link 
capacity, it might not be a problem and wouldn’t require 
any optimization. Now, consider a case where the traffic 
in the link connecting node A and B has a much higher 
traffic and that the traffic has exceed its link bandwidth 
capacity whereas link connecting node C and B has a 

lower traffic. In this case, network congestion will occur 
in the link connecting node A and B which can result in 
poor performance of the network and the deterioration of 
the quality of service. In many cases, we might see the 
result of this congestion as a delay in data queuing, data 
loss or even the rejection of a new connection. We can see 
from the above example that an equally distributed 
bandwidth speed may not always be the best solution in a 
data network. Such problem can be a huge disadvantage 
when referred to a large scale network connection say in a 
data network based company or any company with large 
data traffic on the customer service area. Addressing the 
above case, optimization can to be made by dynamically 
distributing bandwidth speed across the network based on 
the traffic which can be regarded as priority level by using 
an algorithm called Prim’s algorithm. So that a higher 
traffic will have a higher bandwidth speed whereas the 
lower traffic can have its link bandwidth speed lowered 
thus improving the efficiency of the limited bandwidth 
speed. Thus, this paper will discuss a way of 
implementing the minimum spanning tree using the Prim’s 
algorithm to make priority on the bandwidth distribution 
of links connecting nodes in a network.   

 
 

II. THEORIES 
2.1 Definition of Graph 

Graph is a discrete structure used to represent the 
connection of objects called vertices by links called edges. 
Graph has many implications in representing 
acquaintanceships between objects such as cities, power 
grid, computers in network, and even in biology using a 
specific structure of a graph called tree to represent a 
phylogenetic tree. Mathematically, graph is defined by a 
notation of G = (V, E) with V being the set of vertices and 
E being the set of edges of a graph. In a graph, set V has 
to be a nonempty set whereas the set E can be an empty 
set. An empty graph is defined as a graph having an empty 
set of E. There are several types of graph depending on 
the existence of direction on the edges, whether vertices 
can be connected by multiple edges, whether edges can 
form a loop, and whether the edges have a value. Graph 
with the edges having direction is called directed graph 
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whereas the opposite is called undirected graph. Graph 
with multiple edges connecting two vertices is called 
nonsimple graph whereas the opposite is called simple 
graph. The type of graph that will be considered in this 
paper is a simple graph with undirected edges.  

Consider the following example of a graph: 
 
 
 
 
 
 
 
 
 

Figure 2.1 Graph 
The above image is an example of a simple graph with 

undirected edges with six vertices and eight edges. Thus, 
we can write: 

V = {1, 2, 3, 4, 5, 6} 
E = {(1, 2), (1, 3), (3, 5), (2, 3), (2, 5), (2, 6), (5, 4),  
         (6, 4)} 
 

2.2 Weighted Graph 
A weighted graph is simply a graph with the edges 

being given a number as a value or weight of the edges. 
These values can represent many things, it can be a 
number representing distance between vertices, cost going 
from one vertex to another vertex, etc. We usually call 
these values as the weight of the edges.  

Here is a graph from figure 2.1 with values given to its 
edges as a weight. 

 
 
 
 
 
 
 
 
 

Figure 2.2 Weighted Graph 
In a graph these edges, vertices and weight can be used 

to represent many things, that is why graph as a data 
structure has many implications in representing real life 
data.  

 
2.3 Minimum Spanning Tree 

Spanning tree is a subgraph which contains all vertex of 
the graph and does not create a cycle. For every connected 
graph there will be a spanning tree. From the above 
example of weighted graph in figure 2.2, many spanning 
tree can be generated from such graph.  

 
Here are several example of spanning tree generated 

from the weighted graph in figure 2.2. 
 

 
 

 

 

 
(a)                                         (b)                     

 
Figure 2.3 (a) Spanning Tree One (b) Spanning Tree Two 
 

 The two examples above shows different kind of 
spanning tree generated from the same graph in figure 2.2. 
The difference between both spanning tree above can be 
distinguished by the total cost obtained by adding all the 
total weight of a tree. Spanning tree (a) has a total cost of 
72 whereas spanning tree (b) has a total cost of 73. Many 
other spanning trees can be generated from figure 2.2. 
From all of the spanning trees generated, the spanning tree 
with the least total cost is called the minimum spanning 
tree.  

  Here is the minimum spanning tree generated from the 
graph illustrated in figure 2.2. 

 
 

 
 
 
 
 
 

Figure 2.4 Minimum Spanning Tree 
 

  The above image is the minimum spanning tree 
generated using Prim’s algorithm, it has a total cost 48 
which is the lowest cost possible with all vertex 
connected. 
 
2.4 Prim’s Algorithm 

There are several algorithms that can be used for 
generating minimum spanning tree from a graph: 
Borůvka, Prim, and Kruskal algorithm. All three 
algorithms are a greedy algorithm meaning that the choice 
made at one stage does not affect decision on future 
stages. In this paper the writer uses the Prim’s algorithm 
to find the minimum spanning tree.  

Prim’s algorithm has several time complexity 
depending on the data structure being used: O (V2) by 
using adjacency matrix, O (E log(V)) by using binary 
heap and adjacency list, and O (E + V log(V)) by using 
fibonacci heap and adjacency list. The implementation 
using fibonnaci heap has the lowest time complexity but 
with a much more complicated algorithm than with 
adjacency matrix or binary heap.  

Here is the pseudo code for Prim’s algorithm.[4] 
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Figure 2.5 Prim’s Algorithm Pseudo Code 
 

The above pseudo code explains the steps of how 
Prim’s algorithm generated a minimum spanning tree. 
Lines 1 – 5 initialize the priority queue PQ with all 
vertices of a graph. All the vertices are then set to infinity 
(line 2) except for vertex r which is set to zero (line 3). 
The vertex r then becomes the starting vertex of the tree 
T. The tree T is then initialize with Nil (line 5) indicating 
an empty tree. Lines 8 – 9 then adds the closest vertex and 
edge to tree T.[4] Lines 10 – 13 works by getting all the 
adjacent vertices, then updates the D value for all adjacent 
vertex which has not been added to the tree, save the 
current minimum weight edge, then restore the heap 
property.[4] The iteration continues until the priority queue 
PQ which initially contains all vertices of the graph 
becomes an empty set, the minimum spanning tree T is 
then returned by the function.   

  By using the above code to generate a spanning tree, 
here is the example of the steps in generating minimum 
spanning tree from graph in figure 2.2. 

 

Steps Edges Weight Spanning Tree 

1 (2, 5) 5 

 

2 (5, 4) 6 

 

3 (4, 6) 9 

 

4 (3, 2) 13 

 

5 (1, 2) 15 

 

 
Table 1 Steps of Generating Minimum Spanning Tree 

 
From the above execution table, we can see that in 

every step we select a vertex which will contributes to 
giving the minimum edge weight. Going from step 1 to 
step 2 we can either choose vertex 1, 3, 6, or 4. By 
connecting vertex 5 and 4, we get the lowest edge weight 
of 6, thus we choose vertex 4 and edge (5, 4). The similar 
steps continue until the spanning tree contains all vertices 
from the graph. In the example above, we get a minimum 
spanning tree with total cost 48.  
 
2.5 Maximum Spanning Tree 

  In this paper, the writer uses Prim’s algorithm to 
generate a maximum spanning tree. This can be done in 
two ways: changing the Prim’s algorithm to pick the 
maximum edges weight or by negating the value of the 
edges weight. The writer uses the second option to 
maintain Prim’s algorithm as it is and still generating a 
minimum spanning tree. Thus by replacing the negated 
value with the original edges weight value after minimum 
spanning tree is generated; we generated the maximum 
spanning tree with the highest possible total cost.  

   
2.6 Computer Network 

  Today, internet being a specific computer network has 
become the largest system created by mankind, with 
hundreds of millions of connected computer, 
communication links, and switches; with billions of users 
connected to it through their laptop, desktop, 
smartphones, tablets, and other gadget devices.[3]  

Simply, a computer network is telecommunication 
network connecting computers or end systems in general 
that allow them to exchange data. In this paper, nodes of a 
graph will represent the network’s end system and the 
edges representing the network’s communication link. The 
absolute value of the edges weight will represent 
communication links traffic or priority, with priority level 
proportional to its traffic; higher traffic means higher 
priority level.  
 
 

III.   ANALYSIS AND IMPLEMENTATION 
In this paper, the writer uses a simple example of a 

network represented in the graph below and will use 
Prim’s algorithm to increase the effectiveness of 
bandwidth distribution throughout the network.  
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Figure 3.1 Simple Network Diagram 
 

From the above graph, let nodes a, b, c, and d represent 
regional offices of a certain company with e being the 
head office. Nodes j and h being the local and global isp 
respectively. The rest of the nodes represent home 
networks connected to the local isp. Now assume that 
bandwidth is equally distributed throughout the whole 
network with traffic capacity (representing bandwidth 
capacity) of 1000, meaning that each communication link 
can handle up to 1000 packet of data. 

 In the above case it can be seen that network 
congestion will occur on link (c, e), (c, d), (d, e), (e, j),   
(f, j), and (f, i). This congestion can result in data lost and 
poor network connection which has to be avoided. For 
this case, the writer suggest implementing Prim’s 
algorithm in order to find which communication link has 
to be given a higher bandwidth speed and which can have 
a lower bandwidth speed. Therefore, bandwidth does not 
have to be distributed equally but instead allocating it 
according to priority or traffic. In that way, 
communication links with higher traffic or priority will 
have higher bandwidth speed whereas lower priority 
communication links will have lower bandwidth speed. 

The method of finding the solution for this problem is 
straightforward due to the network diagram already 
represented as a graph. Therefore any kind of 
transformation into a graph is unnecessary. The edges 
weight in the given graph above are in positive value, 
therefore we can’t use Prim’s algorithm directly without 
any modification as it will generate spanning tree with the 
lowest traffic instead of the highest traffic. Thus, it is 
necessary to negate these values first.  

In this paper, the writer will find the solution for the 
above problem in three levels of bandwidth distribution: 
highest, second highest, and lowest bandwidth 
distribution. This is to differentiate bandwidth distribution 
in communication links with very low traffic such in 

communication link between node g and i with 
communication links with high traffic but below 
bandwidth capacity such as communication link 
connecting node i and j. By using three level of bandwidth 
distribution, each communication link will have 
bandwidth speed closest to their traffic and therefore more 
efficient.  

To find these three levels of bandwidth distribution, 
finding several minimum spanning trees is needed with 
different types of modification to the edges weight value. 
To find the first minimum spanning tree, values 
representing traffic have to be negated thus generating 
spanning tree with highest absolute value of the total cost. 
If values of exceeding traffic capacity still exist in 
remaining edges of the graph, the second minimum 
spanning tree from the same graph will have to be 
generated. To find spanning tree with the lowest traffic, 
original values of the graph edges will be used. 

Here is the network graph with the negated edges value 
to generate spanning tree with highest traffic, all edges 
have the same color which is black indicating same 
bandwidth distribution throughout the whole network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Network Graph with Negated Values 
 

To find the minimum spanning tree, start by selecting 
an edge with the lowest value. Thus, edge connecting 
node h and j is selected with its value -1371. In node j, 
node e, f, g, and i can be chosen. Edge (e, j) is selected 
due to having the lowest value of -1363. Then we 
continue this process by choosing edge (c, e), edge (f, j), 
edge (c, d), edge (a, c), edge (b, d), edge (f, g), and edge  
(f, i). All edge with the minimum possible values without 
creating any cycle. Thus we have generated the minimum 
spanning tree from the above graph.  

Here is the result of the minimum spanning tree 
generated from the above graph indicated by red colored 
edges with the steps given in the table below. 
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Figure 3.3 Links with Highest Traffic  
 

Steps Edges Weight 
1 (j, h) -1371 
2 (e, j) -1363 
3 (c, e) -1255 
4 (f, j) -1245 
5 (c, d) -1213 
6 (a, c) -999 
7 (b, d) -973 
8 (f, g) -854 
9 (f, i) -842 

Table 2 Execution of Prim’s Algorithm 
 
The above tree generated shows communication links 

with the highest amount of traffic and therefore have to be 
given highest priority in bandwidth distribution. But in 
above example of network, congestion will still occur on 
link connecting node d and e. Therefore edge (e, d) has to 
be included in the above graph with red colored edge. To 
do so, the algorithm to find the second minimum spanning 
tree can be used.  

Here is the algorithm to find the second minimum 
spanning tree.[7] 
 
Set Δ|T| = ∞ 
Set Enew = 0 and Eold = 0 
For every edge e not in tree, do: 
 Add edge e to the tree, thus creating a cycle 
 Find the maximum weight edge k in the cycle, k ≠ e 
 Remove k from the tree 
 Calculate the difference in tree weight δ  
 If δ < Δ|T| then  
  Set Δ|T| = δ 
  Set Enew = e 
  Set Eold  = k 
Replace edge k with edge e in the graph 
 

This algorithm works by trying all edge replacement 
and find the edge replacement with the least cost 

difference with the first minimum spanning tree. First and 
second minimum spanning tree will differ by exactly one 
edge and that new edge will indicate links with network 
congestion, in this case it should be edge (d, e). This 
process of searching second minimum spanning tree 
continues until no link with congestion exists in the graph.  

By using above algorithm, here is the table showing 
execution process on finding second minimum spanning 
tree of graph in figure 3.3. 

 
Steps e k δ Δ|T| Enew Eold 

1 (a, b) (b, d) 872 872 (a, b) (b, d) 
2 (b, c) (b, d) 836 836 (b, c) (b, d) 
3 (d, e) (c, d) 100  100 (d, e) (c, d) 
4 (g, j) (f, g) 755 100 (d, e) (c, d) 
5 (g, i) (f, i) 692 100 (d, e) (c, d) 
6 (i, j) (f, i) 153 100  (d, e) (c, d) 

Table 3 Steps in finding second minimum spanning tree 
 
As the iteration stops, edge (c, d) will be removed from 

the tree replacing it with edge (d, e) thus creating the 
second minimum spanning tree with total cost differ by 
100 with first minimum spanning tree. By overlapping the 
first and second minimum spanning tree in the graph, we 
will get edge (d, e) included in partition of links with 
highest traffic. This process continues until all edges with 
traffic exceeding traffic capacity are included in this 
partition, in this case finding the third and fourth 
minimum spanning tree is unnecessary.          

Here is the network graph with first and second 
minimum spanning tree overlapped.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 First and Second MST Overlapped 
 
From the above diagram, we can see that 

communication links (a, c), (b, c), (g, j), and (g, i) differ 
by significant amount of traffic with link (j, i), therefore it 
is necessary to find first minimum spanning tree from the 
graph with unnegated weight to highlight edges (a, b),   (b, 
c), (g, i), and (g, j). By using Prim’s algorithm to find 
minimum spanning tree from graph in figure 3.1, we will 
get minimum spanning tree with edges (j, h), (j, e), (d, e), 
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(b, d), (b, c), (a, b), (g, j), (g, i), and (g, f). We now have 
two sets of edges: edges highlighted in red in figure 3.4 
(E1) and edges of minimum spanning tree we just 
generated (E2).  

 
E1 = {(a, c), (b, d), (c, d), (c, e), (d, e), (e, j), (h, j),  

(f, j), (f, g), (f, i)} 
E2 = {(j, h), (j, e), (d, e), (b, d), (b, c), (a, b), (g, j), 

(g, i), (g, f)} 
 

By using set operation E2 – E1, we will get edges that 
are in E2 but not in E1. 

 
E2 – E1 = {(b, c), (a, b), (g, j), (g, i)} 
 
We now have set E2 – E1 which is a set of edges with 

lowest traffic. Remaining edge (i, j) can be obtained by 
subtracting set of all edges in the graph with set of 
highlighted edges and set E2 – E1. 

Here is the network graph with edges in set E2 – E1 
highlighted in green and edge (i, j) highlighted in yellow. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3.5 Completed Priority-Based Bandwidth 
distribution 

 
The graph above shows the network communication 

links highlighted in different color based on traffic. Links 
with highest traffic are highlighted in red, links with the 
lowest traffic highlighted in green, and the rest highlighted 
in yellow. These colors indicated a priority in bandwidth 
distribution; links in red have the highest priority in 
bandwidth distribution, links in yellow have the second 
highest priority, and links in green have the least priority.  

 
 

V.   CONCLUSION 
Prim’s algorithm as a method to find minimum 

spanning tree has many implication in real life such as one 
discussed in this paper in distributing bandwidth speed 
based on priority. This similar approach can as well be 

implemented in situation requiring priority such as in 
emergency situation, edge can be given a very high weight 
value. 
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