
Paper for IF2120 Matematika Diskrit – Sem. I Year 2013/2014

Implementation of Graph in

 Artificial Intelligence Path Finding

Dariel Valdano - 13512079

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

dariel.valdano@students.itb.ac.id

Abstract—Computer games has been around for many

decades that contains various kinds of Artificial Intelligence.

These Artificial Intelligence system is often very sophisticated,

even for games. This paper will be focused on the problem of

adjusting Artificial Intelligence (AI) Path Finding on a Game

Space for real world applications using some sample

implementation of Graph and Tree that is used to calculate the

path. An imaginary hypothetical machine will be used to

explain the problems and implementation algorithm-wise,

including some illustrations to illustrate the problems. The

real world implementation may include autonomous

transportation system and security patrol robots.

Index Terms—Artificial Intelligence Path Finding in

Three Dimensional Space, Using Graph for Artificial

Intelligence Path Finding, Real World implementation of

Artificial Intelligence Path Finding

I. INTRODUCTION

Computer games has been around for many decades.

Almost all of them has implemented some sort of

Artificial Intelligence system to give Non-Player

Character (NPC) a reasonable, human-like actions to their

decision making, including –but not limited to- path

finding. Whether it be a turn-based strategy game to

Role-Playing (RPG) games, Artificial Intelligence

implementation is as old as the first computer game itself.

Even though there are numerous examples of games with

excellent artificial intelligence, there is much less real

world implementations of such artificial intelligence

algorithms. There are many reasons why artificial

intelligence algorithms were rarely used in real world,

one of which is because of hardware limitations and the

fact that most game path finding algorithm is for 2

dimensional space. For example, in game all of the NPC’s

location and status were explicitly given and stored in

memory, such as altitude, speed, heading and status such

as threat level, focus level and much more. In the real

world however, physical properties such as these are

quite hard to obtain in real time, requiring precision

instruments and expensive hardware. Setting aside

hardware difficulties as they are outside the scope of this

paper, the algorithm behind Real Life artificial

intelligence is quite similar with game artificial

intelligence.

There were already quite a numerous amounts of

graph-based path finding algorithm, perhaps some of the

most famous examples being Dijkstra’s algorithm and its

extension, the A* (A-Star) search algorithm. Both of

these algorithm calculates the shortest route possible from

a specific vertex in a graph to another vertex. For

implementations that require all vertex to be visited, such

as a security patrol robot, Hamilton circuit of a graph can

be calculated and used, or alternatively, an Euler Circuit

can be calculated and used if the patrol requires all edges

(routes) to be visited in each loop.

II. GRAPH THEORY

Graphs are a way of representing discrete structures

and their relations using multiple vertices and edges that

connects them. It is a representation that is often used in

various areas of science, such as the IT field for computer

network interconnection, the civil engineering field for

intercity roadways, in biology for ecological food mesh,

even in arts for 3d modelling and computer sculpting.

Graph allows arbitrary data to be represented in a more

understandable manner that can be easily computed by

humans and machines alike.

A. Definition of Graph

A graph G = (V, E) consists of V, a nonempty set of

vertices (or nodes) and E, a set of edges. Each edge has

either one or two vertices associated with it, called its

endpoints. An edge is said to connect its endpoints. [1]

B. Categories of Graph

Seen from the existence of double edge in a graph, a

graph can be categorized as Simple Graph – where a

graph does not contain a loop or dual edge, and Unsimple

Graph – where a graph contains either a loop or a dual

edge.

Seen from the amount of vertices, a graph can be

categorized as a Limited Graph – where vertices inside a

graph is not infinity, and Unlimited Graph – where

vertices inside a graph is infinite.

Paper for IF2120 Matematika Diskrit – Sem. I Year 2013/2014

Seen from the directionality of edges, a graph can be

categorized as an Undirected Graph – where there is no

directed node present in a graph, and Directed Graph –

where directed nodes are present.

The types of graph is listed on table 1

Type Edges Multiple

Edges

Allowed?

Loops

Allowed?

Simple Graph Undirected No No

Multigraph Undirected Yes No

Pseudograph Undirected Yes Yes

Simple

Directed

Graph

Directed No Yes

Directed

Multigraph

Directed Yes Yes

Mixed Graph Directed and

Undirected

Yes Yes

TABLE 2.1 – Types of Graph [1]

C. Euler and Hamilton Path

Euler and Hamilton path is a way to define a unique set

of path or circuit that will be very useful in path finding.

An Euler circuit in a graph G is a simple circuit

containing every edge of G [1]. An Euler circuit will

travel each edge in graph G exactly once and ends back at

the first vertex, and is a very efficient way to “patrol” a

pre-defined route graph. In the other hand, An Euler path

in G is a simple path containing every edge of G [1].and

does not have to be a closed circuit, the final vertex does

not have to be the first one. This is less efficient, but a

good alternative. A connected multigraph with at least

two vertices has an Euler circuit if and only if each of its

vertices has even degree [1].

A simple path in a graph G that passes through every

vertex exactly once is called a Hamilton path, and a

simple circuit in a graph G that passes through every

vertex exactly once is called a Hamilton circuit [1]. A

Hamilton path and circuit can also be used as an

alternative to patrolling a building, with each room

represented as a node.

D. Dijkstra’s Algorithm

Dijkstra’s Algorithm is a way to calculate the shortest

route or path from node to node in a graph. It is invented

by computer scientist Edsger Dijkstra in the 1959. The

pseudo code algorithm of this algorithm is included in

Appendix A.

 III. ARTIFICIAL INTELLIGENCE

Artificial Intelligence, or AI for short, is a computer-

based intelligence system. Currently most AIs were

constructed with specific tasks in mind. This allows an

easier algorithms, since they only need to focus to one job

they are specifically made for. Human-Equivalent AI

system that can think and learn exactly like a human is

still the forefront of current technology.

There are currently a lot of applications of Artificial

Intelligence; Expert Systems, Conputer Vision, Heuristics

Classification, Speech Regocnition, Game Playing, and

many more.

AIs were generally a set of programs in an operating

system that is run on-demand, or it can also be a

dedicated computer platform specifically constructed for

the AI. Perhaps a very popular example of a platform

created specifically for an AI is the IBM’s Deep Blue

chess computer. In 1997, Deep Blue, using raw brute

force power of its 11.38 GFLOPS1 processor, won a six-

game match against world champion Garry Kasparov.

IV. PATH FINDING IMPLEMENTATIONS

A. Building Room-to-Room Patrol

First, we will see how a graph can be used to find a

route for an automated machine to patrol a multi-story

building with multiple rooms. For an example, imagine

the following building and its graph equivalent; a two-

story building with multiple rooms in it that must be

patrolled. Here is the first floor:

Figure 3.1 – The First Floor

Then, the second floor:

Figure 3.2 – The Second Floor

1 FLOPS – Floating Point Operations per Second, a measure of

computer performance that counts maximum floating point calculations

per second (GFLOPS – Giga-FLOPS)

Paper for IF2120 Matematika Diskrit – Sem. I Year 2013/2014

Both floor is linked with a staircase in the northwest

corner of each floor. This example did not weigh the

edges, because the current example emphasizes on

visiting each room at least once, and at most twice. With

the graph system laid out that points out the connection

between rooms, we can merge both room into a single

graph, illustrated below:

Figure 3.3 – graph of the first floor and second floor merged

Here, each room is represented by a vertex, with vertex

A being the staircase, while the doors between rooms is

represented by an edge between the vertices. After

merging both graph, then we can find a route where each

room is only visited once.

Looking at the graph, and referring to the definition of

Hamilton circuit or path, we can conclude that it does not

have a Hamilton circuit or path, since Vertex Q is a

Vertex of degree one. Furthermore, even if Q is does not

exist, a Hamilton circuit is still impossible to obtain. Look

at the vertices I, J and K. vertices J and K is a degree two

vertex, which means to have a Hamilton circuit both must

be connected to another vertex of degree two, which is

not the fact, since vertex I is a degree three vertex.

Because a Hamilton circuit or path is impossible to

obtain, we now try to find an Euler circuit or path.

Unfortunately, finding an Euler circuit is also impossible

for this graph, because there exist vertex Q that is a

degree one vector. Furthermore, even if Q did not exist,

according to the a Theorem of Euler Circuit that states “A

connected undirected graph G have an Euler Path if and

only if there exist two odd-degree vertex in G [3]”, there

is 6 odd-degree vertex in the graph. In conclusion, an

Euler Path is also an impossibility.

When neither Hamilton path nor Euler path can be

used to find a route to patrol the room, the algorithm falls

back to the last resort, brute-forcing the routes to list

every possible route that travels every room, then find

one that travels each room the least, hence most efficient.

Hence, the algorithms that can be used for patrolling

the building is as follows, listed from most preferred to

less preferred:

1. Hamilton Circuit

2. Hamilton Path

3. Euler Circuit

4. Euler Path

5. Brute-Force Listing

B. Building Target Intercept

The second example will explain the method to

intercept a target in a specific room from any other room

using the fastest way possible. Consider the following

figure:

Figure 3.4 – The first floor, now weighted

This is the first floor of the same building, now

weighted with the time needed to travel from each rom to

the one connected to it. Now for example the security bot

is currently in position A, just at the base of the stairs,

while an intruder is found at room K. To find the most

efficient path from A to K, Dijkstra’s Algorithm is used.

First the algorithm marks A as solved, then find the

length of vertices connected to the solved vertex. First the

algorithm checks A-B, and puts the value 4 to B. then it

checks A-C, and puts the value 5 to C. it then chooses the

least value between the two, A-B. it then adds edge A-B

to a set of solution edge. Then it iterates again, finding the

length of vertices connected to each solved vertex and

repeating the process all over, until it founds a solution,

which will result in the most optimum path, A-C-F-I-K.

(The Dijkstra’s Algorithm Pseudocode is shown in

Appendix A)

Optimizations to the Dijkstra’s Algorithm such as

using min-priority queue implemented by a Fibonacci

heap could further decrease the time needed to compute a

fastest path. Originally Dijkstra’s Algorithm runs in

O(|V|²) where V is the number of vertices, while the

optimized Dijkstra could run in O(|E|+|V| \log|V|)

Paper for IF2120 Matematika Diskrit – Sem. I Year 2013/2014

V. CONCLUSION

It can be concluded that finding a suitable route for

building patrol can be found using some checks. First,

check for Hamilton Circuit, as it is the most efficient

patrolling method. If the shape of the building does not

allow Hamilton circuit, try finding Hamilton path. If it

still does not allow Hamilton path, check for Euler circuit,

if still impossible, Euler path, and if still impossible,

check using brute-force technique to list all the possible

ways, then find one that least visits the same node.

Other than games, all of the aforementioned algorithms

can be used in real life, especially in the field of security,

due to the fact that it will find the optimum way to either

patrol a building or intercept a room in the quickest way

possible. Other than security, many fields can still benefit

from the use of AI Path Finding. For example, automated

delivery vehicles that delivers products to locations

around a city, can benefit with this path finding with the

vertex being street intersections and edges as roads. Other

field of implementation might be in personal transport,

with graph representation similar as with the automated

delivery systems. Other than Artificial Intelligence, it

even find its way in even more applications. It can even

be applied for recreation. For example, when one wants

to have some sightseeing on a mountain he/she can first

plot the most direct route to reach all sightseeing

locations in minimum time using this path finding

algorithm

VII. APPENDIX

A. Dijkstra’s Algorithm Pseudocode

The Dijkstra’s Algorithm Pseudocode, taken from [3]

Procedure Dijkstra (input m: matrix, a: first node)

{ To find the shortest distance from first vertex a to all other vertices.

 Input: adjacency matrix (m) from a weighted graph G and first vertex a

 Output: shortest route from a to all other vertices

}

DICTIONARY

 S1, S2, ..., Sn : integer {Array of Integer}

 D1, D2, ..., Dn : integer {Array of Integer}

ALGORITHM

 {Initialization}

 For i←1 to n do

 Si ← 0

 Di ← Mai

 {Step 1}

 Sa ← 1 {for the first step, the initial vertex must be the shortest}

 Da ← ∞ {there is no shortest route from vertex a to a}

 {Step 2, 3, ..., n-1}

 For i←2 to n-1 do

 Find j so that Sj = 0 and Dj = min(D1, D2, ..., Dn)

 Sj ← 1 {j chosen as the shortest route}

 Renew Di, for i=1, 2, 3, ..., n with Di(new)=min { di(old), dj + mij }

Paper for IF2120 Matematika Diskrit – Sem. I Year 2013/2014

VIII. ACKNOWLEDGMENT

First, the author would like to express his highest

praise to God Almighty for the grace and enlightenment

that allows me to complete this paper. Author would also

like to give his biggest thanks to his parents, who’s

without their guidance, the author might not be able to

have a chance in studying this high. Author would also

like to express his thanks to Mr. Rinaldi Munir, for his

teachings allows the author to understand the concepts

behind Discrete Mathematics, including the theory of

Graph, which this paper is based on.

REFERENCES

[1] K. H. Rosen, “Discrete Mathematics and its Applications” 6th ed.

New York: McGraw-Hill, 2007, pp. 589-682

[2] http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

retrieved on 2013-12-16 10.35PM

[3] R. Munir, Diktat Kuliah Struktur Diskrit. Bandung: Program

Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, 2008 Ch. 8

[4] Leyzorek, M.; Gray, R. S.; Johnson, A. A.; Ladew, W. C.; Meaker,

Jr., S. R.; Petry, R. M.; Seitz, R. N. (1957). Investigation of Model

Techniques — First Annual Report — 6 June 1956 — 1 July 1957

— A Study of Model Techniques for Communication Systems.

Cleveland, Ohio: Case Institute of Technology.

[5] Fredman, Michael Lawrence; Tarjan, Robert E. (1984). "Fibonacci

heaps and their uses in improved network optimization algorithms"

IEEE. pp. 338–346.

STATEMENT

I hereby declare that I wrote this paper with my own

writing, not adaptation, or translation of someone else’s

paper, and not plagiarism.

Bandung, 16 Desember 2013

Dariel Valdano - 13512079

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

	I. Introduction
	II. Graph Theory
	A. Definition of Graph
	B. Categories of Graph
	C. Euler and Hamilton Path
	D. Dijkstra’s Algorithm

	III. Artificial Intelligence
	IV. Path Finding Implementations
	A. Building Room-to-Room Patrol
	B. Building Target Intercept

	V. Conclusion
	VII. Appendix
	A. Dijkstra’s Algorithm Pseudocode

	VIII. Acknowledgment
	References
	Statement

