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Abstract–Finite-state machine is a widely used logic 

abstraction for a system in which the output depends 

on the current state of the machine. It turns out that a 

subset of finite-state machine with certain state table is 

conveniently expressed as simple state diagram, which 

is a directed graph. The state diagram is able to be 

recognized as input by various algorithms. One 

commonly and quite important process is to simulate 

the finite-state machine, whose speed is in linear 

growth, but can be reduced to a constant time by pre-

computation and pre-analyze. From the paper, it is 

deduced that it might be possible that all finite state 

machine is expressed in a simple state diagram, thus 

allowing a vast number of finite-state machine to be 

simulated, analyzed, and processed using various 

standard graph algorithms. 

Index Terms–finite-state machine, directed graph, 

state table, state diagram, simulation, circuit detection, 

cycle-finding. 

I. INTRODUCTION 

Many kinds of machines, including computer 

components, can be modeled using a structure called a 

finite-state machine. Finite state machines are the basis 

for programs for spell checking, grammar checking, 

traffic lights, dictionary, and electronic devices. 

A formal definition of a finite-state machine with 

output is given in [1]. It basically states that a finite-state 

machine is described by a finite set of states, an (optional) 

input, output, a transition function, an output function, 

and an initial state. Reference [2] states that a finite-state 

machine is informally known as sequential circuits, which 

is a class of circuits with the outputs depend on the past 

behavior of the circuit, as well on the present values of 

inputs. 

Designing a finite-state machine takes several steps 

and some time. Reference [2] summarizes part of the 

steps involved in designing the logical part of finite-state 

machine – more generally, a synchronous sequential 

circuit: 

1. Obtain the specification of the desired circuit. 

2. Select a starting state and derive the states for the 

machine. 

3. Create a state table from the state diagram. 

4. Minimize the number of states. 

5. Decide on the number of state variables needed to 

represent all states and perform the state 

assignment. 

Given a description of finite-state machine, it is 

interesting if one is able to simulate it with a computer. 

Simulations are useful to check whether a finite-state 

machine works correctly or not. 

Reference [2] uses various tables to describe a finite 

state machine. These tables are interesting in order to 

build a finite-state machine, but as we only interested to 

simulating finite-state machines, we would prefer a 

simpler and better method to look at the finite-state 

machine logic. A simpler method would ease 

programmers to create finite-state machine simulator 

programs. 

As it turns out, a directed graph is able to describe a 

finite-state machine in an easier way for human – and 

possibly computers, too. Furthermore, as we shall see, 

there exists an algorithm to determine a loop in a finite-

state machine if the input is limited to determined 

patterns. Determination of a circuit is important to reduce 

the time complexity of finite-state machine simulator  

with certain input down to     ; given a finite-state 

machine, one is able to compute the state (and possibly 

the output if the machine is of Moore type, described in 

[2]) in a short time. 

II. BASIC THEORY 

A. Basic Terminology of Graph 

Mathematically, a graph is defined as a pair of set of 

non-empty vertices set V and edges set E, with each 

member of E connects a pair of vertices in V [3]. In this 

paper, we shall focus on a type of graph called directed 

graph, which edges connect a vertex v1 with v2 but not 

backward (from v2 to v1) – formally, each member of 

edge set E in a directed graph GD is an ordered pair [4]. 

We shall use a simple diagram to show a graph with 

circles as vertices and arrows as edges. More information 

will be added inside the circle or along the arrow. This is 

also the same representation of graph used in [1]. An 

example of this diagram is shown is Figure 1. 



Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013 

 

Figure 1. A representation of directed graph using circles and arrows.

 

Later in this paper, we shall show how a graph 

representation of a finite-state machine can be used to 

find a circuit. A circuit is a path in the graph that starts 

and ends in a same vertex. A path itself is an ordered set 

of vertex v1, v2, v3, …, vn in which vi and vi+1 is connected 

for all          . 

B. Finite-State Machine 

A sequential circuit is a class of circuits in which the 

outputs depend on the past behavior of the circuit, as well 

on the present values of inputs. Furthermore, there are 

two different kinds of sequential circuit, a Moore type and 

a Mealy type. A Moore type sequential circuit, which 

corresponds with the class of finite-state machines we 

shall focus on, is described as a sequential circuit whose 

outputs depend only on the state of the circuit. 

According to [2], formal definition of a finite-state 

machine                  consists of a finite set S of 

states, a finite input alphabet I, a finite output alphabet O, 

a transition function f that assigns to each state and input 

pair a new state, an output function g that assigns to each 

state and input pair an output, and an initial state s0. We 

shall, however, not strictly follow this definition, and let I 

and O be any type of input and output we can represent – 

for example, binary digit 0 and 1 is a widely used input in 

digital system, and “red”, “yellow”, and “green” is an 

appropriate representation of output in a traffic light 

system. 

In this paper, we shall focus on finite-state machines 

correspond with finite-state machines with outputs in [1] 

and Moore type of sequential circuits in [2]. We focus on 

Moore type since the state of the finite-state machine 

directly determine the output, where Mealy type also 

depend on the input. Hence, the output in Mealy type is 

not unique with the state of the machine, making the 

current state information of finite-state machine less 

useful. 

Sometimes, a state table is useful to determine the 

next state, given a current state. A state table is a table 

containing information of the next state of the finite-state 

machine, given the current state and the input. This table 

makes determination of the next state easy for human, and 

if represented using two-dimensional array in computer, 

makes determination of the next state for computer can be 

done in     . 

An example of state table is shown in Figure 2. To use 

the table, for example, consider that the current state of a 

finite-state machine with state table of Figure 2 is A. From 

the table, it is implied that the next state of A is A if w = 0 

and B if w = 1. Furthermore, from the table, it is known 

that the output of the finite-state machine is 0, since the 

current state is A. 

 

Figure 2. An example of state table. 

To further show how the directed graph and the state 

table are tied – we shall peek at what will be described in 

this paper, consider Figure 3. Figure 3a shows a state 

table and 3b shows a state diagram can be constructed 

with the information in the state diagram. Please note that 

the output is not unique with the state and is represented 

in the graph as extra information along the edge. As it will 

be shown below, it feels more natural to represent an 

output directly by its state, and it is actually possible to 
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represent the Mealy type finite-state machine with an 

equivalent Moore type finite-state machine. 

 

(a) 

 

(b) 

Figure 3. (a) A state table, (b) A state diagram 

corresponding with state table (a). 

III. BUILDING A STATE DIAGRAM 

A. Conversion of a State Table into a State 

Diagram 

Conversion of a state table into a state diagram is 

actually a relatively easy problem. Consider the state table 

in Figure 2. From the table, it is obvious that the state set 

is {A, B, C}, so we draw three circles to represent this 

states (Figure 4a). Then, to represent the transition, we 

observe that the state A change into state A (a loop) and C. 

We then draw all the possible transitions as edges from 

the present state to all the next states (Figure 4b). Notice, 

however, that each edge must be differentiable, since state 

transition depends on certain values, so we add labels to 

the edge to create a proper state diagram for Figure 2 

(Figure 4c). 

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) A set of vertex, (b) A set of vertex and 

edges, (c) The edges is labeled, making traversing the 

graph easier. 

B. Properties of a State Diagram 

Observing Figure 4c, there are some differences with 

the previous state diagrams in Figure 3b and Figure 1. 

There is a value inside the diagram and the edges are 

labeled with values 0 and 1 only (the label w is merely for 

cosmetic looks, since the label can be dropped for the 

reasons will be explained below). We take advantages on 

our previous limitations to produce a simpler graph. 

First, we limit the output of the finite-state machine to 

be unique with the state. Thus, it is not possible for a state 

to have two different outputs. So we can easily include 

the output into the diagram. Second, we limit the 

transition to be limited by one variable only. This makes 

it possible to traverse the graph by keeping only one 

variable at mind. These limitations actually will be proved 

useful later, as it is possible to represent the state diagram 

in two familiar graph representations: adjacency list and 

adjacency matrix. We name the state diagram with these 

limitations with simple state diagram – a simple name. 

However, many real-world finite-state machines are 

not limited to one variable and have multiple outputs for a 

state. We try work around one of the limitation we have 

imposed in order to represent a larger space of finite-state 

machines. 

In order to formalize the process, we introduce the 

state diagram creation process below to create a simple 

state diagram from a single-output state table. 

A(0) B(0)

C(1)

A(0) B(0)

C(1)

A(0) B(0)

C(1)

w = 0

w = 0

w = 0

w = 1

w = 1

w = 1



Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013 

State diagram creation process. Given a single-

output state table TS, do the following steps to produce a 

state diagram GS from TS: 

1. Create states S0, S1, S2, …, Sn as vertices. 

2. Create edge e(Sp, Sq, wi) from Sp to Sq labeled wi if 

there is a transition from Sp to Sq when the value of 

variable w is wi. 

3. Repeat (2) until all possible transitions in the state 

table TS is covered. 

C. Converting a Multi-Output State Table into a 

State Diagram 

 

Figure 5. A state table with multiple outputs per state. 

Consider Figure 5, which is a Figure 2 state table with 

an addition of output value depending on w, and the B 

output is changed. It is actually possible to convert this 

table into a similar state table whose finite state machine 

will just work like this table.  Observe that it is possible to 

separate the state A into two state A0 and A1, and change 

the table into a state table with only one output per state. 

We can then apply the same procedure to convert the state 

table into a simple state diagram. Figure 6a shows the 

converted state table and 6b shows the corresponding 

state diagram. 

We are able to proof the following theorem with the 

steps just described: 

Theorem 1. It is possible to create a simple state 

diagram from a multi-output state table whose outputs 

depend on the same variable with the transition variable. 

Proof: Assume a multi-output state table TS, whose 

outputs depend on the same variable with the transition 

variable. For each n possible value of w = w0, w1, w2, …, 

wn, create additional states S0w0, S0w1, S0w2, …, S0wn, S1w0, 

S1w1, S1w2, S1w3, …, S1wn, … Snwn. The resulting table TS* 

is a single-output state table. To prove the lemma, convert 

TS* into a state diagram DS* using the state diagram 

creation process. 

 

(a) 

 

(b) 

Figure 6. (a) A single-output state table coverted from 

Figure 5, (b) A corresponding state diagram of (a). 

Notice that we omitted the w label in the state 

diagram. Also, notice that state A1 and B0 does not have 

any incoming edge; the only time for the state to occur is 

at the beginning of the state. These ‘lonely state’ can be 

predicted from Figure 5; there are no present state whose 

next state when w = 1 is A and w = 0 is B, 

correspondingly. 

IV. STATE DIAGRAM IN GRAPH REPRESENTATION 

A. Graph Representation 

In order to process the graph, computers need to have 

a computable graph representation. The most important 

process the graph representation must have is Next(S, w) – 

given the current state S and the transition input w, return 

the next state S’. This process is crucial in order to 

traverse the graph. We also need Output(S) – given the 

state S, output the value of the finite-state machine. 

However, Output(S) can be implemented with a simple 

lookup table, which, given the number of state n, the 

space complexity is in order of O(n), and the time 

complexity up to order of O(1) depending on the lookup 

table implementation. We can safely ignore the process of 

Present state
Next state Output

w=0 w=1 w=0 w=1

A A B 0 1

B C C 0 1

C A C 1 0

Present state
Next state

Output
w=0 w=1

A0 A0 B1 0

A1 A0 B1 1

B0 C0 C1 0

B1 C0 C1 1

C0 A0 C1 1

C1 A0 C1 0

A0(0)

A1(1)

B0(0)

B1(1)

C0(1) C1(0)

0 1

0 1

0
1

0 1

0

0

1 1
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addition and deletion of vertices or edges, since it is 

highly unlikely for a finite state machine to be modified 

once it is specified (the process to do so is actually a fairly 

complex process). 

The first approach is using an adjacency matrix. We 

can store the transition value w in the matrix element 

A[S1,S2], with the column and row representing the states. 

Values of empty Figure 7 shows state table in Figure 2 as 

adjacency matrix, with -1 marking that there are no 

connection. Notice that the matrix is not a triangle matrix. 

 

Figure 7. An adjacency matrix representation of 

Figure 2. 

However, this approach is not efficient. For a state 

diagram with n states, we need to create a n × n matrix. 

To find Next(S, w), we also need to traverse the column 

(or row, depending on implementation), which is in order 

of O(n). In fact, if the number of possible transition value 

is small compared to the amount of state, the matrix will 

become a sparse matrix, which is space inefficient. For 

example, imagine a state table similar with Figure 2, 

which has only 2 possible value but suppose that the 

number of state is now 10. There are 100 matrix elements, 

in which only 2 × 10 = 20 (each row has only two 

elements filled) is used. 

 

Figure 8. An adjacency list representation of Figure 2. 

Compressing the matrix into an adjacency list is 

better, but not best. See Figure 8 for an adjacency list 

representation of Figure 2, compressing the elements into 

a tuple of next state and the transition value. Each 

element’s list contains exactly the number of possible 

transition value, reducing the space complexity in order of 

O(mn), given the number of possible transition value is m. 

However, we still need to traverse the row list in order to 

find Next(S, w). 

The best representation is an implicit representation 

using the state table. For each state, we store an array 

containing the next state with the key is the possible 

transition value. Using a two-dimensional array and 

Figure 2 as the example, the state table is reproduced in 

Figure 9. The space complexity is still in order of O(mn), 

but Next(S, w) can be produced in only O(1), since it 

merely look up the matrix M[S, w]. 

As a side note, the state table representation can be 

derived from the adjacency list. Observe from the 

adjacency list there are exactly m elements in each row, 

and in each row all the possible state is ensured to be 

valued. We can then set the possible state as the key to 

produce Figure 9. 

 

Figure 9. A state table graph representation of Figure 

2. 

C. Circuit Detection 

  

Figure 10. Redrawing of Figure 4c. 

Given the computable graph representation, we can 

now use various graph algorithms. One case study is to 

check a circuit detection. Consider Figure 10, which is a 

Figure 4c redrawn for the sake of simplicity. Suppose that 

we simulate the usage of this finite-state machine with the 

w looping in {1, 1, 0}, starting from A for a time of t, 

which t denoting the number of state transition (including 

looping, such as Next(A, 0) = A). We wish to produce the 

sequence of outputs produced. In order to do this, we can 

simply calling in Next and Output on each loop (note that 

we introduce NextW(w) to return the next w in the loop): 

state S = A {state initialized} 

variable W = w {transition variable initialized} 

repeat t times 

 print(Output(S)) 

 S = Next(S, W) 

 W = NextW(W) 

The output produced is a continuous sequence of 001 

(001001001001001001001001…). However, if the time t 

A B C

A 0 1 -1

B 0 -1 1

C 0 -1 1

A <0, A> <1, B>

B <0, A> <1, C>

C <0, A> <1, C>

0 1

A A B

B A C

C A C

A(0) B(0)

C(1)

w = 0

w = 0

w = 0

w = 1

w = 1

w = 1
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is a big number, for example, 10
9
, the loop will be run 10

9
 

times. Assuming the code runs on a computer running 10
6
 

processes per second, the code needs 10
3
 second (close to 

15 minutes) to complete. The code itself is in order of 

O(t), assuming the state is implemented using a state table 

representation described above. 

We can reduce the running time by analyzing the 

partial output. Observe the output, which is a sequence of 

001 starting from the first output. If we associates the 

output with an integer number i starting from 0, we obtain 

that the result of 0 is obtained at i = 0, 3, 6, 9, …, 0 is 

obtained at i = 1, 4, 7, …, and 0 is obtained at i = 2, 5, 8, 

…. We can then construct the following function f: 

      

            
            

            

  

Once we have the function f, we can return the answer 

of the output of a finite-state machine in one time, given 

the initial state and the transition value loop in a constant 

O(1) modulo calculation. Furthermore, if the output 

analysis is included in the process of returning the value, 

we can produce an algorithm to compute it in O(g(S,W)) 

with g(S, W) is the time needed to analyze the partial 

output, instead of full simulation of the finite-state 

machine, which is useful when n > g(S, W). Because the 

algorithm speed depends on g(S, W), it is important to use 

a fast algorithm in analyzing the output. 

Fortunately, there exist some algorithms to detect 

circuit in the graph [5]. 

Since the state diagram is a graph, one can use depth-

first search algorithm with constraint in only traversing 

the vertices pointed by Next(S, W). This reduces to a 

simple simulation of the finite-state machine until it hits a 

circle in its evolution. If depth-first search is used as 

circuit-finding algorithm, the time complexity is in order 

of O(µ + λ), where µ is the largest index before the circuit 

is recognized (in the previous example, µ = 0 because the 

circuit is immediately started from the beginning of 

simulation) and λ is the loop length (in the previous 

example, λ = 3). The space complexity is kept to O(1) if 

theHowever, depth-first search is useful to pre-analyze the 

state diagram in O(d) space when d is the depth of depth-

first search calls (which is possibly the longest circuit in 

the state diagram), making all subsequent calls to the 

output is in order of O(1). 

 

Figure 11. An illustration of Floyd’s cycle finding 

algorithm, using tortoise and hare. [6] 

Another useful algorithm is Floyd’s cycle-finding 

algorithm [5]. We can use the algorithm, since the output 

is a sequence, thus can be used as input for the algorithm. 

Like depth-first search, it runs in order of O(µ + λ), but 

with O(1) space. The hidden constant is also lower than 

depth-first search, since the algorithm does not need a 

stack call. 

V. CONCLUSION 

We have demonstrated that a finite-state machine with 

a certain type of state table can be expressed in a simple 

state diagram, which itself can be expressed in a graph 

representation suitable for computation. However, the 

number of finite-state machine currently proven to be 

expressed in simple state diagram is limited to Moore 

type, multi-output single-variable finite state machine, 

whereas a vast number of finite state machines is a Mealy 

type and many machines use many variables in the finite 

state machine. However, one hint is shown in [2], which 

states that a Mealy type machine can be turned into a 

Moore type machine. Thus, it might be possible to find 

workarounds in order to be able to convert all finite-state 

machines into a simple state table, thus converting it into 

state diagram and graph representation. 

Furthermore, once a graph representation is obtained – 

the fastest implementation is actually a trivial state table – 

one can use various directed graph algorithms to achieve 

something. In the paper, depth-first search approach is 

used. Another algorithm, Floyd’s cycle-finding, while 

itself not a graph algorithm, is usable to find circuit 

because it follows a straight path (no branching). This 

provides a clue that various graph algorithm might be able 

to be used in order to solve certain problems in finite-state 

machine design, simulation, or evaluation. 
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