
Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

Directed Graph for Finite-State Machine

Tito D. Kesumo Siregar (13511018)
1

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1
13511018@std.stei.itb.ac.id

Abstract–Finite-state machine is a widely used logic

abstraction for a system in which the output depends

on the current state of the machine. It turns out that a

subset of finite-state machine with certain state table is

conveniently expressed as simple state diagram, which

is a directed graph. The state diagram is able to be

recognized as input by various algorithms. One

commonly and quite important process is to simulate

the finite-state machine, whose speed is in linear

growth, but can be reduced to a constant time by pre-

computation and pre-analyze. From the paper, it is

deduced that it might be possible that all finite state

machine is expressed in a simple state diagram, thus

allowing a vast number of finite-state machine to be

simulated, analyzed, and processed using various

standard graph algorithms.

Index Terms–finite-state machine, directed graph,

state table, state diagram, simulation, circuit detection,

cycle-finding.

I. INTRODUCTION

Many kinds of machines, including computer

components, can be modeled using a structure called a

finite-state machine. Finite state machines are the basis

for programs for spell checking, grammar checking,

traffic lights, dictionary, and electronic devices.

A formal definition of a finite-state machine with

output is given in [1]. It basically states that a finite-state

machine is described by a finite set of states, an (optional)

input, output, a transition function, an output function,

and an initial state. Reference [2] states that a finite-state

machine is informally known as sequential circuits, which

is a class of circuits with the outputs depend on the past

behavior of the circuit, as well on the present values of

inputs.

Designing a finite-state machine takes several steps

and some time. Reference [2] summarizes part of the

steps involved in designing the logical part of finite-state

machine – more generally, a synchronous sequential

circuit:

1. Obtain the specification of the desired circuit.

2. Select a starting state and derive the states for the

machine.

3. Create a state table from the state diagram.

4. Minimize the number of states.

5. Decide on the number of state variables needed to

represent all states and perform the state

assignment.

Given a description of finite-state machine, it is

interesting if one is able to simulate it with a computer.

Simulations are useful to check whether a finite-state

machine works correctly or not.

Reference [2] uses various tables to describe a finite

state machine. These tables are interesting in order to

build a finite-state machine, but as we only interested to

simulating finite-state machines, we would prefer a

simpler and better method to look at the finite-state

machine logic. A simpler method would ease

programmers to create finite-state machine simulator

programs.

As it turns out, a directed graph is able to describe a

finite-state machine in an easier way for human – and

possibly computers, too. Furthermore, as we shall see,

there exists an algorithm to determine a loop in a finite-

state machine if the input is limited to determined

patterns. Determination of a circuit is important to reduce

the time complexity of finite-state machine simulator

with certain input down to ; given a finite-state

machine, one is able to compute the state (and possibly

the output if the machine is of Moore type, described in

[2]) in a short time.

II. BASIC THEORY

A. Basic Terminology of Graph

Mathematically, a graph is defined as a pair of set of

non-empty vertices set V and edges set E, with each

member of E connects a pair of vertices in V [3]. In this

paper, we shall focus on a type of graph called directed

graph, which edges connect a vertex v1 with v2 but not

backward (from v2 to v1) – formally, each member of

edge set E in a directed graph GD is an ordered pair [4].

We shall use a simple diagram to show a graph with

circles as vertices and arrows as edges. More information

will be added inside the circle or along the arrow. This is

also the same representation of graph used in [1]. An

example of this diagram is shown is Figure 1.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

Figure 1. A representation of directed graph using circles and arrows.

Later in this paper, we shall show how a graph

representation of a finite-state machine can be used to

find a circuit. A circuit is a path in the graph that starts

and ends in a same vertex. A path itself is an ordered set

of vertex v1, v2, v3, …, vn in which vi and vi+1 is connected

for all .

B. Finite-State Machine

A sequential circuit is a class of circuits in which the

outputs depend on the past behavior of the circuit, as well

on the present values of inputs. Furthermore, there are

two different kinds of sequential circuit, a Moore type and

a Mealy type. A Moore type sequential circuit, which

corresponds with the class of finite-state machines we

shall focus on, is described as a sequential circuit whose

outputs depend only on the state of the circuit.

According to [2], formal definition of a finite-state

machine consists of a finite set S of

states, a finite input alphabet I, a finite output alphabet O,

a transition function f that assigns to each state and input

pair a new state, an output function g that assigns to each

state and input pair an output, and an initial state s0. We

shall, however, not strictly follow this definition, and let I

and O be any type of input and output we can represent –

for example, binary digit 0 and 1 is a widely used input in

digital system, and “red”, “yellow”, and “green” is an

appropriate representation of output in a traffic light

system.

In this paper, we shall focus on finite-state machines

correspond with finite-state machines with outputs in [1]

and Moore type of sequential circuits in [2]. We focus on

Moore type since the state of the finite-state machine

directly determine the output, where Mealy type also

depend on the input. Hence, the output in Mealy type is

not unique with the state of the machine, making the

current state information of finite-state machine less

useful.

Sometimes, a state table is useful to determine the

next state, given a current state. A state table is a table

containing information of the next state of the finite-state

machine, given the current state and the input. This table

makes determination of the next state easy for human, and

if represented using two-dimensional array in computer,

makes determination of the next state for computer can be

done in .

An example of state table is shown in Figure 2. To use

the table, for example, consider that the current state of a

finite-state machine with state table of Figure 2 is A. From

the table, it is implied that the next state of A is A if w = 0

and B if w = 1. Furthermore, from the table, it is known

that the output of the finite-state machine is 0, since the

current state is A.

Figure 2. An example of state table.

To further show how the directed graph and the state

table are tied – we shall peek at what will be described in

this paper, consider Figure 3. Figure 3a shows a state

table and 3b shows a state diagram can be constructed

with the information in the state diagram. Please note that

the output is not unique with the state and is represented

in the graph as extra information along the edge. As it will

be shown below, it feels more natural to represent an

output directly by its state, and it is actually possible to

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

represent the Mealy type finite-state machine with an

equivalent Moore type finite-state machine.

(a)

(b)

Figure 3. (a) A state table, (b) A state diagram

corresponding with state table (a).

III. BUILDING A STATE DIAGRAM

A. Conversion of a State Table into a State

Diagram

Conversion of a state table into a state diagram is

actually a relatively easy problem. Consider the state table

in Figure 2. From the table, it is obvious that the state set

is {A, B, C}, so we draw three circles to represent this

states (Figure 4a). Then, to represent the transition, we

observe that the state A change into state A (a loop) and C.

We then draw all the possible transitions as edges from

the present state to all the next states (Figure 4b). Notice,

however, that each edge must be differentiable, since state

transition depends on certain values, so we add labels to

the edge to create a proper state diagram for Figure 2

(Figure 4c).

(a)

(b)

(c)

Figure 4. (a) A set of vertex, (b) A set of vertex and

edges, (c) The edges is labeled, making traversing the

graph easier.

B. Properties of a State Diagram

Observing Figure 4c, there are some differences with

the previous state diagrams in Figure 3b and Figure 1.

There is a value inside the diagram and the edges are

labeled with values 0 and 1 only (the label w is merely for

cosmetic looks, since the label can be dropped for the

reasons will be explained below). We take advantages on

our previous limitations to produce a simpler graph.

First, we limit the output of the finite-state machine to

be unique with the state. Thus, it is not possible for a state

to have two different outputs. So we can easily include

the output into the diagram. Second, we limit the

transition to be limited by one variable only. This makes

it possible to traverse the graph by keeping only one

variable at mind. These limitations actually will be proved

useful later, as it is possible to represent the state diagram

in two familiar graph representations: adjacency list and

adjacency matrix. We name the state diagram with these

limitations with simple state diagram – a simple name.

However, many real-world finite-state machines are

not limited to one variable and have multiple outputs for a

state. We try work around one of the limitation we have

imposed in order to represent a larger space of finite-state

machines.

In order to formalize the process, we introduce the

state diagram creation process below to create a simple

state diagram from a single-output state table.

A(0) B(0)

C(1)

A(0) B(0)

C(1)

A(0) B(0)

C(1)

w = 0

w = 0

w = 0

w = 1

w = 1

w = 1

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

State diagram creation process. Given a single-

output state table TS, do the following steps to produce a

state diagram GS from TS:

1. Create states S0, S1, S2, …, Sn as vertices.

2. Create edge e(Sp, Sq, wi) from Sp to Sq labeled wi if

there is a transition from Sp to Sq when the value of

variable w is wi.

3. Repeat (2) until all possible transitions in the state

table TS is covered.

C. Converting a Multi-Output State Table into a

State Diagram

Figure 5. A state table with multiple outputs per state.

Consider Figure 5, which is a Figure 2 state table with

an addition of output value depending on w, and the B

output is changed. It is actually possible to convert this

table into a similar state table whose finite state machine

will just work like this table. Observe that it is possible to

separate the state A into two state A0 and A1, and change

the table into a state table with only one output per state.

We can then apply the same procedure to convert the state

table into a simple state diagram. Figure 6a shows the

converted state table and 6b shows the corresponding

state diagram.

We are able to proof the following theorem with the

steps just described:

Theorem 1. It is possible to create a simple state

diagram from a multi-output state table whose outputs

depend on the same variable with the transition variable.

Proof: Assume a multi-output state table TS, whose

outputs depend on the same variable with the transition

variable. For each n possible value of w = w0, w1, w2, …,

wn, create additional states S0w0, S0w1, S0w2, …, S0wn, S1w0,

S1w1, S1w2, S1w3, …, S1wn, … Snwn. The resulting table TS*

is a single-output state table. To prove the lemma, convert

TS* into a state diagram DS* using the state diagram

creation process.

(a)

(b)

Figure 6. (a) A single-output state table coverted from

Figure 5, (b) A corresponding state diagram of (a).

Notice that we omitted the w label in the state

diagram. Also, notice that state A1 and B0 does not have

any incoming edge; the only time for the state to occur is

at the beginning of the state. These ‘lonely state’ can be

predicted from Figure 5; there are no present state whose

next state when w = 1 is A and w = 0 is B,

correspondingly.

IV. STATE DIAGRAM IN GRAPH REPRESENTATION

A. Graph Representation

In order to process the graph, computers need to have

a computable graph representation. The most important

process the graph representation must have is Next(S, w) –

given the current state S and the transition input w, return

the next state S’. This process is crucial in order to

traverse the graph. We also need Output(S) – given the

state S, output the value of the finite-state machine.

However, Output(S) can be implemented with a simple

lookup table, which, given the number of state n, the

space complexity is in order of O(n), and the time

complexity up to order of O(1) depending on the lookup

table implementation. We can safely ignore the process of

Present state
Next state Output

w=0 w=1 w=0 w=1

A A B 0 1

B C C 0 1

C A C 1 0

Present state
Next state

Output
w=0 w=1

A0 A0 B1 0

A1 A0 B1 1

B0 C0 C1 0

B1 C0 C1 1

C0 A0 C1 1

C1 A0 C1 0

A0(0)

A1(1)

B0(0)

B1(1)

C0(1) C1(0)

0 1

0 1

0
1

0 1

0

0

1 1

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

addition and deletion of vertices or edges, since it is

highly unlikely for a finite state machine to be modified

once it is specified (the process to do so is actually a fairly

complex process).

The first approach is using an adjacency matrix. We

can store the transition value w in the matrix element

A[S1,S2], with the column and row representing the states.

Values of empty Figure 7 shows state table in Figure 2 as

adjacency matrix, with -1 marking that there are no

connection. Notice that the matrix is not a triangle matrix.

Figure 7. An adjacency matrix representation of

Figure 2.

However, this approach is not efficient. For a state

diagram with n states, we need to create a n × n matrix.

To find Next(S, w), we also need to traverse the column

(or row, depending on implementation), which is in order

of O(n). In fact, if the number of possible transition value

is small compared to the amount of state, the matrix will

become a sparse matrix, which is space inefficient. For

example, imagine a state table similar with Figure 2,

which has only 2 possible value but suppose that the

number of state is now 10. There are 100 matrix elements,

in which only 2 × 10 = 20 (each row has only two

elements filled) is used.

Figure 8. An adjacency list representation of Figure 2.

Compressing the matrix into an adjacency list is

better, but not best. See Figure 8 for an adjacency list

representation of Figure 2, compressing the elements into

a tuple of next state and the transition value. Each

element’s list contains exactly the number of possible

transition value, reducing the space complexity in order of

O(mn), given the number of possible transition value is m.

However, we still need to traverse the row list in order to

find Next(S, w).

The best representation is an implicit representation

using the state table. For each state, we store an array

containing the next state with the key is the possible

transition value. Using a two-dimensional array and

Figure 2 as the example, the state table is reproduced in

Figure 9. The space complexity is still in order of O(mn),

but Next(S, w) can be produced in only O(1), since it

merely look up the matrix M[S, w].

As a side note, the state table representation can be

derived from the adjacency list. Observe from the

adjacency list there are exactly m elements in each row,

and in each row all the possible state is ensured to be

valued. We can then set the possible state as the key to

produce Figure 9.

Figure 9. A state table graph representation of Figure

2.

C. Circuit Detection

Figure 10. Redrawing of Figure 4c.

Given the computable graph representation, we can

now use various graph algorithms. One case study is to

check a circuit detection. Consider Figure 10, which is a

Figure 4c redrawn for the sake of simplicity. Suppose that

we simulate the usage of this finite-state machine with the

w looping in {1, 1, 0}, starting from A for a time of t,

which t denoting the number of state transition (including

looping, such as Next(A, 0) = A). We wish to produce the

sequence of outputs produced. In order to do this, we can

simply calling in Next and Output on each loop (note that

we introduce NextW(w) to return the next w in the loop):

state S = A {state initialized}

variable W = w {transition variable initialized}

repeat t times

 print(Output(S))

 S = Next(S, W)

 W = NextW(W)

The output produced is a continuous sequence of 001

(001001001001001001001001…). However, if the time t

A B C

A 0 1 -1

B 0 -1 1

C 0 -1 1

A <0, A> <1, B>

B <0, A> <1, C>

C <0, A> <1, C>

0 1

A A B

B A C

C A C

A(0) B(0)

C(1)

w = 0

w = 0

w = 0

w = 1

w = 1

w = 1

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

is a big number, for example, 10
9
, the loop will be run 10

9

times. Assuming the code runs on a computer running 10
6

processes per second, the code needs 10
3
 second (close to

15 minutes) to complete. The code itself is in order of

O(t), assuming the state is implemented using a state table

representation described above.

We can reduce the running time by analyzing the

partial output. Observe the output, which is a sequence of

001 starting from the first output. If we associates the

output with an integer number i starting from 0, we obtain

that the result of 0 is obtained at i = 0, 3, 6, 9, …, 0 is

obtained at i = 1, 4, 7, …, and 0 is obtained at i = 2, 5, 8,

…. We can then construct the following function f:

Once we have the function f, we can return the answer

of the output of a finite-state machine in one time, given

the initial state and the transition value loop in a constant

O(1) modulo calculation. Furthermore, if the output

analysis is included in the process of returning the value,

we can produce an algorithm to compute it in O(g(S,W))

with g(S, W) is the time needed to analyze the partial

output, instead of full simulation of the finite-state

machine, which is useful when n > g(S, W). Because the

algorithm speed depends on g(S, W), it is important to use

a fast algorithm in analyzing the output.

Fortunately, there exist some algorithms to detect

circuit in the graph [5].

Since the state diagram is a graph, one can use depth-

first search algorithm with constraint in only traversing

the vertices pointed by Next(S, W). This reduces to a

simple simulation of the finite-state machine until it hits a

circle in its evolution. If depth-first search is used as

circuit-finding algorithm, the time complexity is in order

of O(µ + λ), where µ is the largest index before the circuit

is recognized (in the previous example, µ = 0 because the

circuit is immediately started from the beginning of

simulation) and λ is the loop length (in the previous

example, λ = 3). The space complexity is kept to O(1) if

theHowever, depth-first search is useful to pre-analyze the

state diagram in O(d) space when d is the depth of depth-

first search calls (which is possibly the longest circuit in

the state diagram), making all subsequent calls to the

output is in order of O(1).

Figure 11. An illustration of Floyd’s cycle finding

algorithm, using tortoise and hare. [6]

Another useful algorithm is Floyd’s cycle-finding

algorithm [5]. We can use the algorithm, since the output

is a sequence, thus can be used as input for the algorithm.

Like depth-first search, it runs in order of O(µ + λ), but

with O(1) space. The hidden constant is also lower than

depth-first search, since the algorithm does not need a

stack call.

V. CONCLUSION

We have demonstrated that a finite-state machine with

a certain type of state table can be expressed in a simple

state diagram, which itself can be expressed in a graph

representation suitable for computation. However, the

number of finite-state machine currently proven to be

expressed in simple state diagram is limited to Moore

type, multi-output single-variable finite state machine,

whereas a vast number of finite state machines is a Mealy

type and many machines use many variables in the finite

state machine. However, one hint is shown in [2], which

states that a Mealy type machine can be turned into a

Moore type machine. Thus, it might be possible to find

workarounds in order to be able to convert all finite-state

machines into a simple state table, thus converting it into

state diagram and graph representation.

Furthermore, once a graph representation is obtained –

the fastest implementation is actually a trivial state table –

one can use various directed graph algorithms to achieve

something. In the paper, depth-first search approach is

used. Another algorithm, Floyd’s cycle-finding, while

itself not a graph algorithm, is usable to find circuit

because it follows a straight path (no branching). This

provides a clue that various graph algorithm might be able

to be used in order to solve certain problems in finite-state

machine design, simulation, or evaluation.

REFERENCE

[1] K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed.,

New York: McGraw-Hill, 2012, pp. 858-863

[2] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with

VHDL Design, 3rd ed., New York: McGraw-Hill, 2009, ch. 8.

[3] R. Munir, “Diktat Kuliah IF2091 Struktur Diskrit”, 4th ed.,

periodical style, 2012, ch. 8.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

[4] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and

Applications, 1st ed., digital copy,

http://www.cs.rhul.ac.uk/books/dbook/, 12/17/2012 22:49, pp. 2.

[5] S. Halim and F. Halim, Competitive Programming: Increasing

the Lower Bound of Programming Contest, School of Computing,

National University of Singapore, unpublished, 2010, ch. 4.

[6] Image courtesy of Wikipedia:

http://en.wikipedia.org/wiki/File:Tortoise_and_hare_algorithm.sv

g, 12/17/2012 23:15.

STATEMENT

I hereby claimed that I have wrote this work by myself,

and this work is not a copy, a translation from another

people’s work, or a plagiated work.

Bandung, 29 April 2010

Tito D. Kesumo Siregar

13511018

