
Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

Scene Graph: Implementing Graph in Graphical Data

Processing

Hafizh Adi Prasetya - 13511092

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13511092@std.stei.itb.ac.id

Graph is a common data representation, commonly used in

mathematics. It is studied heavily in discrete mathematics. But

extensively, graph is also used in the field of informatics as a

data structure, covering a lot of application in different

contexts. This is because the versatile, unique, and flexible set of

quality it has. One of the more common application for graph

as a data structure nowadays is something called Scene Graph.

Scene graph are basically used in processing graphics, like in

vector-based graphical editor such as Adobe Illustrator, or in

3D model rendering. With the boom of 3D models in many

aspects of current industry, especially with animation and

gaming industry, Scene Graph become one of the more popular

and important application of the graph.

Index Terms—Graphs, Scene Graphs, Graphical Data

Structure, 3D.

I. INTRODUCTION

Graph is a classical data representation commonly used

in mathematics and computer science. Graph theory

originated back in 1736, when Leonhard Euler writes his

paper on the Seven Bridges of Konigsberg.
[1]

In his paper,

he addresses the problem about the ways to cross a certain

arrangement of bridges each once. He then models this

problem into a representation of points and lines, which

then he called a Graph.

A graph itself can most simply be defined as a

representation of a set of objects where some pairs of the

objects are connected by links. The interconnected objects

are represented by mathematical abstractions called

vertices, and the links that connect some pairs of vertices

are called edges.
[2]

 A valid graph contains at least one

vertex, which means that a graph doesn’t necessarily have

to have edges. It is possible that a graph consists solely of

vertices, with no edges. In this case, the graph may

represent a collection of objects with no relation

whatsoever.

Picture I.1 A simple graph with 6 vertices and 10 edges

In common practice, the vertices of the graph represent

objects, while the edges that connects them represents the

existence of a relation between two objects. For example

if vertices A and B is connected by an edge, it means that

in a certain way, A is connected with B. A more

contextual example is when a graph represents a website.

The vertices A and B represents page A and B in the

website, while an edge connecting A and B means that

there is a link from page A to page B, or the other way

around. But despite the common practice, this is not

always true. The representation of vertices and edges will

vary on the usage and the intention of the graph user.

Of course, graph theory spans wider than a simple

graph. A more advanced graph can have direction on the

edges, signifying a one-sided relationship vertices have.

Edges can also have values, that shows how significant a

certain relationship between vertices. Example is when

vertices A and B represents place, and the edge

connecting them represents the road. The value of edge A-

B could represent the distance between place A and place

B.

Graphical processing application, especially ones that

are vector-based, mostly process images or graphics in

discrete objects. For example, a face vector graphic may

consist of eyes, nose, lips, ears, hairs, and other objects.

Of course it is also possible to make the face into one

object, but doing so creates a more complex function (as

vector graphics represent objects in form of mathematical

http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

function), and sometimes will be harder to handle. That is

why, these little objects will most likely be easier to work

with. In this context, graph can provide a way to organize,

sort and modify those little objects, to create a bigger,

more complex object.

This is also true in the rendering of 3D objects, you can

divide big objects or scenery into smaller elements, for

example the lighting, the fog, the humidity, and other

stuffs. This makes it easier to render these elements

individually rather than as one big chunk of scenery. The

organization of these elements is where graph theory

comes in.

Picture I.2 An example of 3D graphics, with elements

such as units, shadows, fires, and other

 It is best to keep in mind that the word

‘graphical’ does not refer to the affinity of being a graph,

but rather the affinity of visual.

II. BASIC THEORIES

II.1 Graph Terminology

Vertices are the points in the graph, usually

representing the objects of the data. A vertex can be

connected to other vertices by lines. These lines are called

edges. An edge could have an arrow, representing the

direction of the relationship. Other than direction, an edge

could have a value attached to it. This value represents the

significance of the relationship. It is possible that an edge

connect a vertex to itself. In this case, the edge is referred

as a loop. It is also possible that two vertices are

connected by more than one edge. This case is referred as

them having multiple edges.

 Two vertices are called adjacent to each other if

they are connected directly by an edge, whether the edge

it directed, weighed, or neither. An edge could be caled

incident with a vertex if the edge connect the vertex and

any other vertex. In a case where a vertex has no incident

edge (and in consequence, no adjacent vertex), a special

name is given. These kinds of vertices is called isolated

vertex.

A B

C

Picture II.1 A graph with vertices A, B,and C

 In the picture above, we can see that three

vertices exist. Vertex A, vertex B, and an isolated vertex

C. A loop exists in vertex A, while multiple edges

connects vertex A and vertex B. By previous definitions,

we can call A and B adjacent, and B are incident with the

edge that connect it to A. A vertex is said to have a certain

degree. The degree of a vertex is equal to the number of

edges that are incident with the vertex. Naturally, an

isolated vertex has zero degree. Vertex A has a degree of

three, vertex B has a degree of two, and vertex C, being

an isolated vertex, has a degree of zero.

 The path from vertex A to vertex B is defined as

row alternating between a vertex and the edge that is

incident with it, from vertex A to vertex B. In the special

case when the path starts and ends at the same vertex, the

path is called a cycle. Lastly, when a path exist between

vertex A and vertex B, the two vertices can be called

connected.

A B

C

D

e1

e2e3

e4

Picture II.2 A simple undirected graph

 Picture II.2 shows an example of paths and

loops. The path from A to D can be written as A-e1-B-e4-

D. This however, is not a cycle, since it starts on vertex A

and ends on vertex D. A cycle is shown on the path A-e1-

B-e2-C-e3-A, since it starts and ends on vertex A.

 A subgraph is a graph which all vertices and

edges are member of a bigger graph. Thus, graph B is

called a subgraph of graph A if all vertices and edges in

graph B exists also in graph A.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

A B

C

D

e1

e3

Picture II.3 A subgraph of graph in picture II.2

II.2 Classification of Graphs

A graph can be classified in lot of ways. Based on the

existence of a loop or multiple edges, a graph can be

classified into two. A simple graph is a graph that

contains no mutiple edges or loop. A graph with either

one is called an unsimple graph.

Looking at the pictures, we can see that picture II.1

depicts an unsimple graph, because of the loop that exists

in vertex A, and also the multiple edges connecting it to

vertex B. On the other hand, Picture II.2 shows a simple

graph, where no loops and multiple edges exists.

Before, it is already explained how an edge of a graph

can have a direction. A graph with a directed edge is

called a directed graph, or digraph. When a directed

graph contains a multiple edge with different direction,

the graph is further differentiated by the name

multidirected graph.

As per se, we can conclude that the graph in picture II.1

is a multidirected graph, while the one in picture II.2 is a

regular graph.

II.3 Computer Graphics

III. SCENE GRAPH AS AN APPLICATION OF GRAPH IN

THE VISUAL GRAPHIC FIELD

III. 1 Scene Graph

According to the website Dr. Dobbs, “Scene graphs

are data structures used to hierarchically organize and

manage the contents of spatially oriented scene data.

Traditionally considered a high-level data management

facility for 3D content, scene graphs are becoming

popular as general-purpose mechanisms for managing a

variety of media types. MPEG-4, for instance, uses the

Virtual Reality Modeling Language (VRML) scene graph

programming model for multimedia scene composition,

regardless of whether 3D data is part of such content.
[3]”

Despite such definition, in reality, the definition of a

scene graph is somewhat hazy, since in the

implementation process, programmers tweak the

definition to adapt with the situation, taking only the very

basic principle of the scene graph. This means that there is

no such clear consensus on what a scene graph is.

Basically, a scene graph is a graph, a collection of

vertices and edges, creating a hierarchic relation between

the vertices. Although sometime the graph can take the

form of a tree, in most cases, the graph does not

necessarily fulfill the condition of a tree, thus for

convenience, it is referred as a graph (as a tree is always a

graph). A vertex in a scene graph usually have many

child, but often only one parent. When a process is

applied to the parent vertex, it will be also applied to all

the child of that vertex. This way, object processing can

somewhat be simplified.

III.2 Scene Graphs in Graphics Editing Tools

Graphic editing tools can mostly divided into two. The

first one are vector-based graphic editing tools, like

Adobe Illustrator or CorelDRAW. The second is raster-

based editing tools, like Adobe Photoshop. Despite their

differences in basic principle, scene graph can be applied

to both.

Firstly, in vector-based graphics, usually, a vertex of

the graph will represent a single unit or function in the

overall graphics. This function can represent a single

object, for example a triangle, a circle, or a bezier path.

Giving a process to a vertex the graph means giving a

process to the object.

What about the edges? Usually, in vector-based graphic

editing, objects can be manipulated in groups. You can

select a number of objects and group them. In the

principle of graphs, this is the same as connecting a

number of vertex. As a result, when a number of objects

are grouped, the process applied to one objects will be

applied to all other objects. The matter of ungrouping

them is simply removing the edges between these vertices

representing the objects.

Picture III.1 Grouping in CorelDRAW X5

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

Picture III.2 Resizing a group of object

The case would be different with raster-oriented

graphics editing tools. Most of the time, these tools would

not be dealing with objects of the grouping of them. But,

the concept that may ever-be-so familiar with raster

graphic editing is layer. A layer acts like a sheet of paper,

where you can put objects and edit it. On the graph

principle, this layer acts as a vertex. Selecting two layers

as one connects them with the edge, and so on.

Picture III.3 An example of layer usage in Adobe

Photoshop
[4]

Basically, the structural shape between groups and

layers are the same, but it may be sometimes useful to

divide them, when you’re making a tool that handle both

layer and groups. In this case, you can make a different

subclass, layers and groups from the class vertex.

III.3 Scene Graph in Games and 3D Application

Scene graph are greatly useful in the modelling of a 3D

scenery, especially in bigger scale where the number of

objects are very large, making it harder to apply process

to them one-by-one. In most 3D graphics application,

vertex in the scene graph generally represent an object or

an entitiy in the overall scenery.

For an example, a racing game with drivers and cars. In

this case, the vertices of the graph are ‘drivers’ and ‘cars’.

When the driver get into the car, the vertices are then

connected with an edge, and the driver would be treated

as an extension to the car. So, for example if the car

crashed and set aflame, the driver, who is an extension of

the car would be set aflame also.

Scene graphs is especially useful in modeling big 3D

environment, essentially in the rendering process. Now

let’s take a look at a simple scene graph, and the process

done to render it.

Picture III.4 An example of a scene graph depicting a

simple universe with a star at its center
[5]

The rendering process will start at the top vertex. The

star will be rendered as the center of the universe. The

vertex rotation below it consists of a rotation matrix that

will be applied to the star, and all things rendered after it.

After finishing the rotation rendering, Planet 1 will be

rendered (already having the rotation quality). Now more

than rotating with the star, the planet will have an extra

rotation on its own, around its own orbit. After the

rotation of the planet is rendered, Moon A and B are

drawn, having the rotation of the star and also Planet 1.

Finishing the subgraph of Planet 1, the iteration will

then move to Planet 2. The exact same process will

happen, only different in the way that the rotation of

Planet 2 is different with Planet 1, and the moons will be

Moon C and D. After the rendering of Moon D is

finished, the overall rendering is finished.

As we can see, the graph quickens the rendering

process significantly, if we compare it to singlehandedly

rendering every objects then applying process to that

object without managing them hierarchically.

III.4. Implementation of Scene Graphs

There can be a lot of variation on the data structure

used in implementing the scene graph on the source code.

The most simple being the linked list. Processing the

vertex basically consist of linearly iterating every cell in

the list. This can be convenient for a small scale scene

graph.

In bigger scale however, linear iterations can take a lot

of time, so a more complex data structure is needed. For

this need, usually the data structure used is a tree, where a

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

higher vertices is referred as group nodes, and the lowest

level vertices is referred as leaf nodes. Leaf nodes usually

represents objects that are being rendered (in the case of

3D rendering), while group nodes are the transformation

matrix that will be applied to the leaf nodes. When a leaf

node have more than one parent, the transformation that it

undergo will be the combination of all its parents.

IV. CONCLUSION

In conclusion, scene graph is one of the more popular

and practical usage of the graph theory nowadays. In

graphic editing, graphs can represent group of objects or

layer to further ease the editing of a graphical image.

Whereas in the field of 3D modelling, a good scene graph

design can significantly minimize the effort taken to

render a 3D scenery, especially large scale 3D sceneries.

REFERENCES

[1] Biggs, N.; Lloyd, E. and Wilson, R. (1986), Graph Theory, 1736-

1936, Oxford University Press

[2] Trudeau, Richard J. (1993). Introduction to Graph Theory

(Corrected, enlarged republication. ed.). New York: Dover Pub..

pp. 19. ISBN 978-0-486-67870-2. Retrieved 8 August 2012. "A

graph is an object consisting of two sets called its vertex set and

its edge set."

[3] Walsh, Aaron E. Understanding Scene Graph. December 17, 2012

(20.00) < http://www.drdobbs.com/jvm/understanding-scene-

graphs/184405094>

[4] December 17, 2012. (20.30) <http://dp.hightechhigh.org/~

mmctighe/photoshop4kids/layering.html>

[5] Foster, Garett. Understanding and Implementing Scene Graphs.

December 17, 2012 (21.00). < http://archive.gamedev.net/

archive/reference/programming/features/scenegraph/index.html>

[6] Munir, Rinaldi. 2008. Diktat Kuliah IF 2091 Struktur Diskrit 4th

ed. Program Studi Teknik Informatika STEI ITB.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2010

Ttd

Hafizh Adi Prasetya/13511092

http://store.doverpublications.com/0486678709.html
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-486-67870-2
http://archive.gamedev.net/

