
Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

Graph Searching Implementation in Game Programming

Cases Using BFS and DFS Algorithms

Faiz Ilham Muhammad 13511080

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

faizilham@itb.ac.id

Abstract—Graphs are heavily used in video games; hence,

it is not surprising that graph searching become an essential

topic in game programming. This paper will show the

implementation of the most basic graph searching

algorithms, the Depth-First Search (DFS) and Breadth-First

Search (BFS), in some game programming cases:

minesweeper, turn-based tactics, and maze games.

Index Terms—Graph Searching, Depth-First Search,

Breadth-First Search, Game Programming.

I. INTRODUCTION

Graphs, one of prime subject in discrete mathematics,

have many applications and implementations in computer

science world [1]. Graphs can be used to model relation,

network, position, adjacency and many else. In game

programming, graphs are extensively used, for example to

model tiles, object position and image representation.

Since video games heavily rely on graphs, graph search

algorithms are necessarily needed. There are numerous

graph search algorithms; the most basic ones are DFS

(Depth-First Search) and BFS (Breadth-First Search)

algorithm [2]. This paper will present how to implement

DFS and BFS algorithm in some game programming

cases: opening empty cells in minesweeper, creating turn

based tactics’ character movement area, calculating area

damage, and solving and generating maze in maze games.

II. THEORIES AND TERMINOLOGIES

2.1. Graph Theory

[3] In discrete mathematics, graphs are collections of

discrete objects and their relations. Graph can be visually

represented by symbolizing its objects as vertexes / nodes

and relations as edges / lines.

Figure 2.1. A Graph Example [4]

Mathematically, graph is defined as a pair of two sets V

and E where:

V: a non-empty set of vertex/nodes = {v1, v2, …, vn}

E: a set of edges/lines connecting pairs of nodes = {e1,

e2, …, en}

In short, G = (V, E).

A directed graph is a graph which its edges are given

directions. In mathematical definition, directed edge is a

set of ordered pairs of vertexes, or

E = {(va,vb)}; va, vb ∋ V.

Figure 2.2. A Directed Graph Example [4]

Some terminology in graph theory:

1. Adjacent

A pair of vertexes in undirected graph G is

adjacent if there is an edge connecting both

vertexes. All adjacent vertexes of vertex u are

called neighbors of u.

2. Incident

An edge e in undirected graph G is incident with

vertex u and v if e connects u and v.

3. Isolated Vertex

A vertex v is isolated if there is no edge in graph

that incident with v. Isolated vertex can also be

defined as a vertex which is not adjacent to any

other vertexes in the graph.

4. Degree

Degree of a vertex v in undirected graph G is the

number of vertex adjacent to v.

5. Path

A path of length n from vertex v0 to vn in graph G

is a sequence of n edges e1, e2, …, en so that e1 =

(v0, v1), e2 = (v1, v2), en = (vn-1, vn) are edges in

graph G. In other words, a path is a sequence of

edges that begins at a vertex of a graph and travels

from vertex to vertex along edges of the graph [4].

6. Circuit or Cycle

A circuit or cycle is a path that starts and ends at

the same vertex.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

7. Connected

An undirected graph G is called connected graph if

for each pair of vertexes u and v in graph G there is

a path connecting u and v.

2.2 Stack and Queue Data Structure

2.2.1. Stack

[5] A stack is a container of data that are added or

deleted with last-in-first-out (LIFO) principle, which

means an element can only be added to the top of the

stack, and can only be deleted if it is the top-most element

in the stack. Because of this characteristic, only the top of

the stack that can be accessed; the others can only be

accessed if the top one is removed. Stack can also be

defined in recursive way:

1. A stack is empty, or

2. A top element and a stack below the top element.

Figure 2.3 Visual Representation of Stack

There are four primitive functions for stack [2][5]:

1. Push

Adds an element on the top of the stack

2. Pop

Removes the top-most element of the stack

3. Top

Returns the top-most element of the stack

4. Empty

Checks whether the stack is empty or not

Stack can be used for implementing recursion,

backtracking, and evaluating arithmetic expressions [6].

In graph searching, stacks are used in depth-first search

[2].

2.2.2 Queue

[5] A queue is a container of data that are added or

deleted with first-in-first-out (FIFO) principle, which

means an element can only be added to the rear of the

queue, and can only be deleted if it is the front-most

element in the queue.

Figure 2.4. Visual Representation of Queue

There are four primitives function for queue [2][5]:

1. Enqueue

Adds an element to the rear of the queue

2. Dequeue

Removes the front-most element of the queue

3. Front

Returns the front-most element of the queue

4. Empty

Checks whether the queue is empty or not

Queues can be used for implementing operating system

task [6]. In graph searching, queues are used in breadth-

first search [2].

2.3 DFS and BFS Algorithm

2.3.1. Depth-First Search (DFS) Algorithm

[2] Depth-First Search algorithm works by pushing all

adjacent nodes to a stack, and then processed by popping

them. In other words, the process will visit the deepest

node from a branch before visit the other branch. Since

DFS uses stacks, it can simulate backtracking and can be

defined in recursive way. DFS node-visiting process can

be visualized as in Figure 2.5

Figure 2.5. Depth-First Search Node-Visiting Process

Suppose the process starts from node a. Then, it will

respectively visit b, d, h, e, i, j, c, f, k, and g.

DFS can be defined as follows:

DFS can also be defined recursively as follows:

2.3.2 Breadth-First Search (BFS) Algorithm

[2] Breadth-First Search (BFS) algorithm works by

visiting a node, enqueue all adjacent nodes to a queue,

and process them by dequeueing them. In other words, the

process will visit every node in the same depth; let’s say

DFS(u):

 if u fulfills the search condition

 //some expression

 //stop function

 mark u as visited

 for each v neighbor of u

 if v is unvisited

 DFS(v)

 mark u as unvisited

create empty stack S

u starting node

push u to S

mark u as visited

while S is not empty

 top pop(S)

 if top fulfills the search condition

 //some expression

 //stop function

 for each v neighbor of u

 if v is unvisited

 mark v as visited

 push v to S

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

depth n, before visit nodes in depth n+1. BFS node-

visiting process can be visualized as in Figure 2.6

Figure 2.6. Breadth-First Search Node-Visiting Process

Suppose the process starts from node a. Then, it will

respectively visit b, c, d, e, f, g, h, i, j, and k.

BFS can be defined as follows:

III. IMPLEMENTING DFS AND BFS IN GAMES

3.1. Case 1: Minesweeper Empty Tile Click

In minesweeper, if player clicks an empty tile (tile that

do not have number or bomb on it) all other empty tiles

adjacent to it will also be opened.

Figure 3.1 Opening an Empty Tile in Minesweeper

So how does the opening algorithm works? The main

objective of the algorithm is to visit all empty tiles and

open it. If it encounters a numbered tile, it opens the tile

but not looks further. Since the main objective is to visit

all tiles (or, in graph theory term, nodes), both DFS and

BFS can be implemented in this problem.

3.1.1. Implementation

Suppose there are these functions and variables in the

game code:

- Tiles (variable)

A matrix that resembles minesweeper game board.

It may has three kind of value : bomb, number and

empty. Tiles[i,j] means tiles at column i row j.

- Mark (procedure) : marks Tiles[i,j] as visited /

unvisited

- Open (procedure) : opens Tiles[i,j]

DFS implementation is defined as follows:

- Create empty stack

- Mark all tiles as unvisited

- Push starting tile <i,j> to stack

- Mark <i,j> as visited

- While stack not empty

o Pop top element to <k,l>

o Open <k,l>

o If tile[k,l] is empty tile then

Check for every valid index neighboring

<k,l>. If it is unvisited, push it to stack

and mark it as visited.

In minesweeper, there are 8 neighbors of <i,j> = {<i-

1,j>, <i+1,j>, <i,j-1>, <i,j+1>, {<i-1,j-1>, <i+1,j-1>, <i-

1,j-1>, <i+1,j+1>}, in simple, all 8 tiles surrounding it. A

valid neighbor is defined as a neighbor that its index is

within the index bound of the matrix, i.e. if matrix’s index

is [1...100, 1...100], then <x, y> is valid if and only if 1 <

x < 100 and 1 < y < 100.

BFS implementation is almost exactly same as DFS

one, but one needs to use queue instead of stack.

 3.2 Case 2: Turn Based Tactics / Strategy Games

3.2.1 Movement Area

In turn based tactics / strategy games, characters can

move for a certain distance of tiles. If player selects a

character, the game shows which tiles that are available to

be set on. Tiles that are outside of character’s maximum

distance, or have obstacle or other character on will not be

shown as available. Notice that in Figure 3.2. available

tiles are shown as blue tiles. Far tiles and tiles that have

characters or obstacles on are not colored blue.

Figure 3.2 Available Tiles Shown as Blue Tiles.

So how does the coloring algorithm works? The main

objective of the coloring algorithm is to visit all tiles that

are available and in range, and color them. Tiles that are

not in range or unavailable will not be visited.

At the first sight, both DFS and BFS seem can be

implemented in this problem by limiting its range of

checking. However, because of the range limitation, BFS

is more suitable to be implemented than DFS as BFS

visits all nodes in the same depth before visiting any

create empty queue Q

u starting node

enqueue u to Q

mark u as visited

while Q is not empty

 top dequeue(Q)

 if top fulfills the search condition

 //some expression

 //stop function

 for each v neighbor of u

 if v is unvisited

 mark v as visited

 enqueue v to Q

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

nodes in the next depth. DFS, on the other hand, may

produce incorrect results because of the range limitation.

Figure 3.3 Incorrect Results in Limiting DFS Range

In Figure 3.3., DFS visiting process is shown running

clock wise; respectively visits top, right, bottom and

finally left neighbor. DFS visiting directions are shown

as arrows, the colors represent depth / range; red means

depth 1, blue 2, and green 3. Since DFS look to the depth

first, it may result a non-optimum solution of node depth /

range [8]; Tile[4,3] range from “start” is should be 1, but

it is counted as 3. Because DFS searching range is limited

to a number, in this case 3, there are some nodes that are

never visited, but actually they should be visited. In

Figure 3.3., such node is shown in Tile[5,3]. Tile[5,3]

never visited because all neighboring tiles are regarded as

ranged 3. There are methods to use DFS in a limited

range called Depth-First Iteration Deepening [7], but it

won’t be discussed in this paper.

3.2.1.1. Implementation

Suppose there are these functions and variables in the

game code:

- Tiles (variable)

Matrix that represent game tiles. Tiles[i,j] means

tiles at column i row j.

- Color (procedure) : colors tile at column i row j.

BFS implementation is defined as follows:

- Create a queue

- Set m with number of maximum movement

- Initialize all tiles as uncolored

- Enqueue starting tile <i,j>

- Color <i,j>

- While queue is not empty and m > 0

o Dequeue front element to <k,l>

o Decrease m by 1

o Check for every valid index neighboring

<k,l>. If it is not colored and available,

enqueue it and color it.

In many turn base tactics games, there are 4 neighbors

of <i,j> = {<i-1,j>, <i+1,j>, <i,j-1>, <i,j+1>}, in simple,

the top, bottom, left, and right tiles surrounding it. A valid

neighbor is defined as a neighbor that its index is within

the index bound of the matrix, i.e. if matrix’s index is

[1...100, 1...100], then <x, y> is valid if and only if 1 < x

< 100 and 1 < y < 100.

In this BFS implementation, colored is used instead of

mark. This is done because coloring the tiles can be

represented as marking the tiles; tiles that already colored

will not be visited again.

3.2.2. Area Damage

In turn based tactics / strategy games, some attacks

may affect a range of area, i.e. bombs, missiles, or

explosions. This kind of attacks is called area damage or

splash damage. As the name suggest, area damage affects

all characters in the area; a character will get more

damage if it closer to the center of the area.

Figure 3.4 A Simple Area Damage Representation

Notice in Figure 3.4. the farther to the center (Tile[3,3])

the lower the damage. The blue line denotes the bound of

tile searching (in this example, the area radius is 2), while

tile searching starts from the center. A simple damage

percentage calculation as shown in Figure 3.4. can be

done by using formula as follows:

% 𝐷𝑎𝑚𝑎𝑔𝑒 =
𝑟𝑎𝑑𝑖𝑢𝑠 − 𝑡𝑖𝑙𝑒_𝑟𝑎𝑛𝑔𝑒 + 1

𝑟𝑎𝑑𝑖𝑢𝑠 + 1

Note that this formula only calculates damage within

the area radius; tiles outside of it will simply take no

damage.

Area damage algorithm works like movement area; it

checks every tile in range. The difference is the area

damage algorithm still visits tiles that have obstacle or

character, and checks if there is a character in a tile it

visits, calculate and inflict damage to the character.

Because it works like movement area algorithm, area

damage algorithm also employs BFS algorithm.

3.2.2.1. Implementation

Suppose there are these functions, data types, and

variables in the game code:

- Tiles (variable)

Matrix that represent game tiles. Tiles[i,j] means

tiles at column i row j.

- Mark (procedure) : marks Tiles[i,j] as visited /

unvisited

- damage(procedure) : inflict damage to character by

value

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

BFS implementation is defined as follows:

- create a queue

- set m with radius

- mark all tiles as unvisited

- Enqueue starting tile <i,j>

- Mark <i,j> as visited

- While queue is not empty and m > 0

o Dequeue front element to <k,l>

o if there is character on <k,l>, damage it

by (m + 1) / (radius + 1) * damage power

o m m - 1

o Check for every valid index neighboring

<k,l>. if it is not visited, enqueue it and

mark it as visited.

3.3. Case 3: Maze Games

3.3.1 Maze Solver

Maze games can be solved using both DFS and BFS. In

multi-solution maze games, DFS will always generate a

solution, but it won’t be guaranteed as the optimal one

[9]. BFS, on the other hand, will always generate the

optimal solution –the shortest one [9].

A maze can be represented in an m x n matrix of

boolean. Maze[x,y] will be evaluated as true if it is

passable (a path); otherwise, it will be false (a wall).

Figure 3.5. Visual Representation of Maze Matrix;

White: True (path), Black: False (wall)

3.3.1.1. DFS Implementation

To implement the maze solving algorithm using DFS,

the recursive approach is easier to implement. A global

stack called path is also required to keep track the

observed path.

Suppose there is an empty global stack variable called

PATH. DFS implementation is defined as follows:

- Push current_tile to the stack PATH

- Mark current_tile as visited

- If current tile is the destination, then return true

- For each next_tile as valid neighbors of

current_tile

o If next_tile unvisited

 Recursively call DFS with next_tile as its

parameter

 If it returns true, then return true

- Pop(PATH)

- return false

The solution will be recorded in stack PATH, with the

bottom-most element as the starting tile and the top-most

one as the destination.

3.3.1.2. BFS Implementation

To implement the maze solving algorithm using BFS,

some modifications are needed. Since BFS don’t

automatically backtrack like DFS [10], a list called

directions will be added. Every directions list’s member

consists of two elements: tile coordinate <x,y> and

direction value of its “parent” tile <dx,dy>. The direction

value is obtained as follows: if <x,y> is the child of <x, y

+ 1>, then its direction is <0,1>; if it is the child of <x -

1,y>, then its direction is <-1, 0>.

Suppose there is a list of (<x,y>, <dx, dy>) called

DIRECTION. BFS implementation is defined as follows:

- create a queue

- mark all tiles as unvisited

- enqueue starting tile <i,j>

- mark <i,j> as visited

- while queue is not empty and destination not found

o dequeue front element to <k,l>

o for each <x,y> valid neighbors of <k,l>

 if <x,y> is unvisited

 mark <x,y> as visited

 enqueue <x,y>

 add <x,y> to DIRECTION. set its

direction value as <k - x, l - y>

 if <x,y> is the destination, then

found and break the loop.

The BFS implementation above doesn’t generate the

path; it only generates optimal backward directions from

destination to the starting tile. Generating the path can

simply be done by tracing the directions from destination

to starting tile like this:

- <x,y> destination tile

- Push <x,y> to stack PATH

- while <x,y> is not the starting tile

o find <x,y> in DIRECTION. Get its

direction value as <dx, dy>

o <x,y> <x+dx, y+dy>

o Push <x,y> to stack PATH

This algorithm will generate the path solution in stack

PATH, with the bottom-most element as the destination

tile and the top-most one as the starting tile. Notice that

the stack PATH generated by this algorithm is reversed to

the DFS one.

3.3.2. Maze Generator

Mazes can also be generated by directly using DFS

[11] or using its working principle, recursive backtracking

[10]. The general idea of generating mazes by using DFS

is to “carve” the walls into maze [10][11].

The general algorithm runs as follow:

- Suppose there is a maze matrix as defined in

Section 3.3.1. Maze Solver. Let the maze matrix

size be N x N with N is an odd number. Let the

index of maze matrix be [0...N-1, 0...N-1].

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

- Set all cells in the matrix be false (wall).

- Choose a starting cell <i,j> with i and j be odd

numbers

- Starts a DFS procedure from <i,j>.

- After the DFS finishes making the maze, choose

two carved cells (may be random or not) as the

start point and the finish point of the maze.

3.3.2.1. Implementation

DFS implementation is defined as follows:

- Create a stack

- Set <i,j> as path

- Push <i,j> to stack

- While stack is not empty

o Pop the stack to <k,l>

o While <k,l> still has valid “wall” neighbors
(*)

 <x,y> Randomly selects one of the

valid “wall” neighbors
(*)

 of <k,l>

 Set <x,y> as path

 Set the cell between <k,l> and <x,y> as

path
(**)

 Push <x,y> to stack

Notes:

(*) In this implementation, neighboring cells is defined

two cells up, right, down and left of the current cell; that

is <i,j-2>, <i+2,j>, <i,j+2> and <i-2,j>.

(**) The cell between <k,l> and <x,y> can be

calculated as <k + (k – x)/2, l + (y – l)/2>

In this implementation, odd numbers are chosen to

make sure that every tunnel branch will be separated at

least by one-block thick of walls. This algorithm can also

be implemented with BFS by using queue instead of

stack.

IV. CONCLUSION

Graph searching is one of the most essential algorithms

in game programming. By implementing the Depth-First

Search and Breadth First Search, two basic graph

searching algorithms, some game programming cases like

opening empty cells in minesweeper, making character

movement area and calculating area damage in turn based

tactics and strategy games, and solving and generating

mazes. Since DFS and BFS are the simplest graph

searching algorithms, both can be replaced with a more

advanced graph searching algorithm to increase its

efficiency.

V. ACKNOWLEDGMENT

Faiz Ilham Muhammad as the author expresses his

deepest gratitude to Allah SWT, the only God of the

Universe, for His everlasting mercy He gave during the

writing process of this paper. The author also expresses

his sincere thanks to Mr Rinaldi Munir and Mrs. Harlili as

the lecturers of Discrete Structure Course, to his beloved

family, and to his entire comrade in Axivic

Lunarismosinerati and ASCII 2011.

REFERENCES

[1] Shariefuddin Pirsada and Ashay Dharwadker, “Applications

of Graphs Theory” in Journal of The Korean Society for
Industrial and Applied Mathematics. vol. 11 no. 4. 2007.

[2] Introduction to Graphs and Their Data Structures: Section 2.

http://community.topcoder.com/tc?module=Static&d1=tutori
als&d2=graphsDataStrucs2. Accessed at December 16th 2012

2.51 p.m.

[3] Rinaldi Munir, Diktat Kuliah IF2091: Struktur Diskrit. 4th
edition. Bandung: Program Studi Teknik Informatika STEI,

2008, ch. 10.

[4] Kenneth H Rosen, Discrete Mathematics and Its Application
7th. New York: McGraw-Hill Companies Inc., 2012, ch 10.

[5] Stacks and Queues. http://www.cs.cmu.edu/~adamchik/15-
121/lectures/Stacks%20and%20Queues/Stacks%20and%20Q

ueues.html. Accessed at December 16th 2012 5.42 p.m.

[6] Inggriani Liem. Diktat Struktur Data. Bandung: Program
Studi Teknik Informatika STEI, 2008, pp 41-60.

[7] Depth-First Iterative Deepening.

http://intelligence.worldofcomputing.net/ai-search/depth-
first-iterative-deepening.html. Accessed at December 17th

9.30 a.m.

[8] Game Trees. http://www.cs.cmu.edu/~./adamchik/15-
121/lectures/Game%20Trees/Game%20Trees.html. Accessed

at December 17th 9.30 a.m.

[9] Maze Algorithms.
http://www.astrolog.org/labyrnth/algrithm.htm. Accessed at

December 18th 10.00 a.m.

[10] BFS, DFS and SCC Algorithm.
http://www.cs.bgu.ac.il/~visproj/romanr/bfs_dfs_scc.html.

December 18th 10.00 a.m.

[11] Depth First Search, Maze Algorithm.
http://www.migapro.com/depth-first-search/. Accessed at

December 18th 10.00 a.m

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 18 Desember 2011

Faiz Ilham Muhammad

13511080

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=graphsDataStrucs2
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=graphsDataStrucs2
http://www.cs.cmu.edu/~adamchik/15-121/lectures/Stacks%20and%20Queues/Stacks%20and%20Queues.html
http://www.cs.cmu.edu/~adamchik/15-121/lectures/Stacks%20and%20Queues/Stacks%20and%20Queues.html
http://www.cs.cmu.edu/~adamchik/15-121/lectures/Stacks%20and%20Queues/Stacks%20and%20Queues.html
http://intelligence.worldofcomputing.net/ai-search/depth-first-iterative-deepening.html
http://intelligence.worldofcomputing.net/ai-search/depth-first-iterative-deepening.html
http://www.cs.cmu.edu/~./adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html
http://www.cs.cmu.edu/~./adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html
http://www.astrolog.org/labyrnth/algrithm.htm
http://www.cs.bgu.ac.il/~visproj/romanr/bfs_dfs_scc.html
http://www.migapro.com/depth-first-search/

