
Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

Application of Huffman Coding in Lossless Video
Compression

Mahessa Ramadhana - 13511077

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
mahessaramadhana@itb.ac.id

Abstract—Lossless video compression can reduce the file
size of video while keeping the video exactly the same as the
uncompressed video. This paper will explain the use of
Huffman coding in lossless video compression using
HuffYUV video codec.

Index Terms—compression, Huffman, video, lossless

I. INTRODUCTION
Video is one media that people often use to record their

important moments. Not only that, video is also widely
used in the entertainment business, namely in television,
theatres, and even in video games.

Decades ago, all videos are taken and stored in analog
format. People use film reels to take and store movies. For
home video, there are several different video tape formats
available, such as Beta tape and VHS. Film reels work
similar to single-shot camera films, only that they take
sequence of images instead of single-shots, while video
tapes work similar to cassettes, storing electrical
information using magnetic tapes.

Nowadays, videos are also often taken and stored in
digital format. Digital camera videos are now widely used,
and videos can now be stored using digital media such as
DVDs, Blu-rays, or even a computer hard disk.

The problem in digital videos, however, is the amount
of storage they require. A minute of uncompressed
standard definition video can take more than 1 gigabytes
of storage. Imagine how much space it would take for a
full-length movie, which usually take 90 minutes and
more.

People then invented ways to reduce the file sizes of
digital videos. These methods is calles video compression,
and there are many kinds of them, each for differing uses.

II. THEORIES

A. Lossless and Lossy Compression
Compression can be roughly divided into two types:

lossless and lossy compression. Each have their own
strengths and weakness, one is better suited to certain uses
than the other.

Lossless compression is a type of compression where
there are no loss of data during the encoding process. This

means that once you decode a compressed file, you will
get exactly the same file as the original file. However,
such compression method have relatively poor
compression rate compared to lossy compression.

Lossy compression on the other hand, is a type of
compression where some data are discarded during the
encoding process to further reduce the file size. Better
compression methods usually have priorities in which data
to discard, with less important data having higher priority
to be discarded. Such compression method can yield much
smaller file size than lossless compression, but the
decoded file will not be exactly the same as the source.

Which one is better depends on the situation. For
compressing text files and programs, it is mandatory that
there is absolutely no loss of data during the encoding
process, otherwise, in the case of text files, some
information may be rendered illegible, while for program
files, the program may not work as it should be.

For music, pictures, and videos, lossy compression is
the better option. Often, some information stored in
music, pictures, and videos may be difficult, or even
impossible, to be perceived by human senses. Such
information may be discarded, which will make the
decoded file different from the source, but to human
senses, such difference may be hard to notice. Of course,
there are cases where extreme compression can distort the
music/picture/video badly that the difference starts to
become clear.

B. Lossless Video Compression
While it’s been mentioned that lossy compression is

better suited for video, lossless compression also has its
use for video compression. In video editing, a video file
can go through many compression processes. Using lossy
compression, every compression process will result in a
loss of data. The more compression process the video
underwent, the more data is lost. This is where lossless
video comes in. Using lossless compression, one can keep
the video file relatively small compared to uncompressed
video while making sure nothing gets lost during the
editing process. There are a few lossless video codecs
available, one such codec is HuffYUV, which employs the
Huffman coding method during the encoding process.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

C. Basic Digital Video Theories
Digital videos are simply a sequence of digital images.

A certain number of images are shown each second, which
is called the frame rate. Each frame is constructed from a
number of pixels. The number of horizontal pixel lines is
called the vertical resolution, and the number of vertical
pixel lines is called the horizontal resolution. Each pixel
have their own color. The color of each pixel can be
represented using several different colorspace, e.g. RGB,
CMYK, and YUV. Video generally use YUV colorspace,
which represents color using three 8-bit integers based on
how human perceive color. These 8-bit integers (called
channels, or color planes from now on) are the Y channel,
which represents luminance (black and white color), U
channel which represents blue chrominance (blue and
yellow color), and V channel which represents red
chrominance (red and green color).

Since videos are basically a sequence of images, the
compression technique for images can be used to
compress video. In HuffYUV’s case, the compression
technique is the same as Lossless JPEG, so in this paper
we will use the information from how Lossless JPEG
works.

D. Huffman Coding
Huffman coding is a technique that can be used to

reduce the space required to store files. Huffman coding is
a based on statistical coding, which means the more
frequent a symbol occurs, the shorter its bit-representation
will be. In other words, Huffman coding uses variable-
length coding system as opposed to the standard fixed-
length coding system. Fixed-length coding system uses the
same length of bit-representation for all symbols, while
variable-length coding system will use shorter
representations for more frequent symbols, and longer
representations for less frequent symbols, which will
result in a reduction of the total length of bit-
representation of data.

To assign bits to each symbol in, for example, a string,
we must build a binary tree follow these steps:

1. Count the frequency of each characters.
2. Make a forest trees. All trees are one node, with

the weight of a tree equal to the weight of the
character in the node.

3. Choose two trees with lowest weight, call these
trees T1 and T2. Make a new tree whose weight
equals T1+T2 and whose left sub-tree is T1 and
right sub-tree is T2.

4. Repeat step 3 until there is only one tree. This tree
is the optimal encoding tree.

5. Assign bits to each symbol by traversing from the
root until you find the symbol. Assign ‘0’ to left
sub-trees and ‘1’ to right sub-trees.

For example, we will make a Huffman encoding tree
from the string ‘go go gophers’. First, we count the
frequency of each characters.

character frequency

‘g’ 3
‘o’ 3
‘ ‘ 2
‘p’ 1
‘h’ 1
‘e’ 1
‘r’ 1
‘s’ 1
Table 2.1 Frequency table

Then, we make a forest of trees from the table.

Figure 2.1 Forest of one-node trees.

Pick two nodes with the least weight, and make a new

tree with weight equals the sum of the two trees.

Figure 2.2 First step.

Continue this step until you only have one tree.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

Figure 2.3 The optimal Huffman tree.

After we obtain the optimal Huffman tree, we assign

bit-representations to the characters, by assigning ‘0’ to
left sub-tree and ‘1’ to right sub-tree. We now get:

character representation

‘g’ 00
‘o’ 01
‘ ‘ 100
‘p’ 1110
‘h’ 1101
‘e’ 101
‘r’ 1111
‘s’ 1100

Table 2.2 Bit-representation for characters.

Now, using this table, if we convert the string ‘go go

gophers’, we would have 000110000011000001
1110110110111111100. That is 37 bits of data. Using
ASCII fixed-length coding, the string would end up as 104
bits of data. This shows how Huffman coding can
significantly reduce the length of bit-representation, which

means a reduction in file size as well.
 To decode a Huffman code, we need to traverse through
the bit stream and the Huffman tree, going to the left sub-
tree when we find ‘0’ in the bit stream, going to the right
sub-tree when we find ‘1’ in the bit stream, and back to
the root when we find a leaf and outputs said character.
Using the example above, first we find ‘0’, so we go left
in the tree. Next, we find ‘0’ again, so we go left again.
We find ‘g’ in the tree, so we go back to the root and
outputs ‘g’. Next we find another ‘0’, we go left again in
the tree. Next is ‘1’, so we go right, and find ‘o’. Go back
to the root and output ‘o’. Repeat this step until the code
is fully decoded. A code of 0001100000110000
011110110110111111100, using the tree from our
previous example, will be decoded as ‘go go gophers’.
This decoding algorithm is very simple, and it runs very
fast as well.

III. HUFFYUV
As mentioned above, lossless video compression is

useful in video editing environments where people would
like to make sure that no loss of data occurs during the
countless editing processes. One popular lossless video
compression to use is HuffYUV.

HuffYUV works in these steps:
1. Separate the color planes into Y, U, and V planes.
2. Use prediction function to predict each sample.
3. Use Huffman encoding to compress the predicted

values.

“Prediction function” here refers to a method to further

increase the efficiency of Huffman encoding. While
Huffman coding can achieve great compression
efficiency, its efficiency drops as the number of unique
data rises. For example, if we only have two unique data,
then we only need one bit representation for each data, ‘0’
and ‘1’. But if we have three unique data, we need up to
two bits representations for each data, ‘0’, ‘10’, and ‘11’.
As the number of unique data rises, the number of
maximum bit-representation rises as well. In video, each
channel is represented by an 8-bit integer, which means
each channel has the possibility of having up to 255
unique data. This will highly impact the efficiency of
Huffman encoding. To mitigate this problem, HuffYUV
uses the predictor function, to reduce the amount of
possible unique data.

Predictor works by comparing current sample with its
neighbors, then predicts the value for the current sample.
HuffYUV has three choices for predictor methods:

1. Left predictor, which predicts from the sample left
of the current sample.

2. Gradient predictor, which predicts from the sample
left of current + sample above current – sample
above-left of current.

3. Median predictor, which predicts from the median
of the sample left of current, sample above current,

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

and the gradient predictor.

For example, using median predictor, if the current
sample, say X, is 197, left sample, say A, is 193, above
sample, say B, is 198, and above-left sample, say C, is
195. Then the gradient predictor is A+B-C = 196. The
median of A, B, and the gradient predictor is 196, so the
median predictor is 196. The predicted value for the
current sample is X – median predictor = 1. For real-life
footage, where most of the time, the difference of a
neighboring pixels is usually very small, this effectively
reduces the range of possible data to be Huffman-
encoded, increasing compression efficiency.

The predicted values are then Huffman-encoded. While
normal Huffman encoding creates a table for every data
compressed, HuffYUV uses built-in tables for each
channel in order to save time. These built-in tables are
made from various experiments to find the table that
works well with most common videos. While these tables
may work quite well in most cases, they are not the
optimal Huffman tables. However, some application
allows the user to specify custom Huffman tabled to
increase efficiency.

After the file has been encoded, the Huffman table is
attached to the encoded file. This table is used to later
decode the file. By attaching the Huffman table, in case
that future HuffYUV encoder uses different table, the old
files can still be decoded perfectly without having to
explicitly support old tables.

It should be noted that HuffYUV decoding algorithm is
really fast. This means that for video editing, HuffYUV
encoded videos can be decoded quickly, thus speeding up
the editing process. This makes HuffYUV a very suitable
choice of video compression codec in video editing
environments.

IV. CONCLUSION

Huffman coding is used in many compression
algorithms. One of them is the HUffYUV video codec,
which is a lossless video compression. Lossless video
compression is useful in video editing environments
where people need to avoid any data loss caused by lossy
video compression. Huffman encoding efficiency for
video and image compression can be further improved
using predictor functions, with the assumption that in
video and images, most of the time a sample’s value is
very close to its neighbors.

REFERENCES
[1] http://www.animemusicvideos.org/guides/avtech/video3.htm

Date of access: December 18th, 2012. 10:36 PM

[2] http://www.cs.duke.edu/csed/poop/huff/info/
Date of access: December 18th, 2012, 11:13 PM

[3] http://neuron2.net/www.math.berkeley.edu/benrg/huffyuv.html
Date of access: December 19th, 2012 00:23 AM

[4] http://en.nerdaholyc.com/huffman-coding-on-a-string/
Date of access: December 19th, 2012, 01:20 AM

[5] XIL Programmer’s Guide August 1994. California: Sun
Microsystems, 1994 , ch. 17.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Desember 2012

Mahessa Ramadhana

http://www.cs.duke.edu/csed/poop/huff/info/�
http://neuron2.net/www.math.berkeley.edu/benrg/huffyuv.html�
http://en.nerdaholyc.com/huffman-coding-on-a-string/�

	I. Introduction
	II. Theories
	III. HuffYUV
	IV. Conclusion
	References
	PeRNYATAAN

