
Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

Huffman Algorithm for Antivirus Quarantine

Sonny Lazuardi Hermawan 13511029

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13511029@std.stei.itb.ac.id

sonnylazuardi@gmail.com

Abstract— This paper is about using Huffman Algorithm

for Antivirus to secure malware from computer users. Since

system of software is becoming more and more sophisticated,

the malware will try to innovate to keep their existence in the

system. We need to secure the infected file so that user would

not be in danger. Quarantine is one solution to secure the

infected file. The best way of antivirus to do quarantine is by

encrypting the infected file. By using Huffman algorithm in

encrypting the infected file, we will get some benefits such as

data compression, safe encryption for the infected file, and a

small running time.

Index Terms— Huffman, algorithm, malware, quarantine,

compression, encryption.

I. INTRODUCTION

A. Computer and Malware

Computer has becoming a part of human life. Actually,

computer has taken role to help the people to get their

needs. Computerized inventory system manages the

supply chains for food we bought. Computer-controlled

water system dispenses the water. Computer manages

financial transactions to pay for it all. Students need a

computer for learning and doing their task. Those things

prove that computers is holding main role in society‟s

infrastructure. Have you ever imagined when computer

stop working and losing data? There will be a big loss if it

happens. As the computer system grows, malware will

never stop infecting computer system. They always come

with new way to spread themselves and avoiding the

antivirus detection. There are three characteristics of

malware [2].

1. Self-replicating malware actively attempts to

propagate by creating new copies, or instances, of

itself. Malware may also be propagated passively,

by a user copying it accidentally, for example, but

this isn't self-replication.

2. The population growth of malware describes the

overall change in the number of malware instances

due to self-replication. Malware that doesn't self-

replicate will always have a zero population growth,

but malware with a zero population growth may self-

replicate.

3. Parasitic malware requires some other executable

code in order to exist. "Executable" in this context

should be taken very broadly to include anything

that can be executed, such as boot block code on a

disk, binary code in applications, and interpreted

code. It also includes source code, like application

scripting languages, and code that may require

compilation before being executed.

Based on the characteristics, there are some types of

viruses that may harm your computer and your data. This

is the statistics for malware spreading based on the types.

http://en.wikipedia.org/wiki/File:Malware_statics_2011-03-16-en.svg

Fig. 1 Malware spreading by types

Since system of software is becoming more and more

sophisticated, the malware will try to innovate to keep

their existence in the system. The traditional method of

antivirus that uses virus definition database for scanning

viruses would have taken a lot of time to be updated.

Antivirus now has already had some heuristics method to

anticipate the threat of malware. Even they have

succeeded to suspect a virus; they have to ensure that the

file is really a malware and analyze the file so that the

virus file can be cleaned later. The problem is how to

secure the file that may not be a malware or may be a

system file so that it can be restored later? The answer is

quarantine.

mailto:13511029@std.stei.itb.ac.id
mailto:sonnylazuardi@gmail.com

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

II. QUARANTINE

After finding a suspected virus file, antivirus software

needs to quarantine the infected file. Quarantine is only a

temporary measure, and may only be done until the user

decides how to handle the file (e.g., giving approval to

disinfect it) [2]. In the other words, Antivirus software

may have generically detected a virus, but have no idea

how to clean it. Quarantine will be used until the antivirus

software has been updated and can deal with the virus that

was discovered.

Actually, Quarantine is a simple technique to secure the

suspected file by copying the file to the “quarantine”

directory, removing original infected file, and disallowing

user to access the infected file. But then come the

problem, user may have changed the permission to the

infected file and they can be executed even in a

quarantine. That means it is not solving the dangerous file,

it just move the danger from one place to another. The

user may have the virus back if they are not aware of what

the quarantine is. So, there come some solutions to secure

the infected file.

1. Renaming the infected file

The simplest solution to this problem is by renaming

the infected file, so it can‟t be directly executed. By

changing the extension name of a file, it will not be

executed as an executable (.exe). The weakness of this

solution is that the virus body is still there. Once the

infected file renamed back or executed by other program,

the virus would run again in the system. They just have a

little effort to be alive again.

2. Render files in Invisible directory

Another solution is to render the files in the quarantine

directory invisible - what can't be seen can't be copied.

Antivirus software can accomplish this feat using file-

hiding techniques like stealth viruses and rootkits use.

However, this may not be the best idea, as viruses may

then try to hide in the quarantine directory, letting the

anti-virus software cloak their presence. There could also

be issues with false positives produced by virus-like

behavior from anti-virus software [2].

3. Encrypt infected file

One solution is to encrypt quarantined files by some

trivial means, like an XOR with a constant. The virus is

thereby rendered inert, because an executable file

encrypted this way will no longer be runnable, and

copying the file does no harm. Also, an encrypted,

quarantined file is readily accessible for disinfection [2].

Based on three solutions above, we can conclude that

we must secure the infected file so that it can‟t be

accessed by user and can be easily cleaned after updating

antivirus. The best way to do this is in solution number 3.

We can secure the infected file by encrypting the file

itself. But is that XOR encryption is really the best

solution? Can we use other encoding method?

Fig. 2 Windows Defender Quarantine

III. HUFFMAN ALGORITHM

In data storage, file with big size will take a lot of space

of storage that we have. This problem can be solved with

the encoding of file content in concise way, so that the

space needed become smaller. This encoding method is

also called data compression. Data compression is done

by encoding each character in file content with shorter

code [3].

Huffman algorithm is a very popular way to represent

data with minimum memory needed to store the data.

Huffman algorithm was created to reduce data redundancy

in a file. Huffman algorithm was developed by David A.

Huffman while he was a Ph.D., student at MIT, and

published in the 1952 paper “A Method for the

Construction of Minimum-Redundancy Codes” [5].

A. Huffman Encoding

Coding system which is widely used is ASCII

encoding. With ASCII, each character will be coded in 8-

bit binary. These are some example of ASCII character.

DEC OCT HEX BIN Symbol

65 101 41 01000001 A

75 113 4B 01001011 K

84 124 54 01010100 T

85 125 55 01010101 U

Table I ASCII table

Based on the encoding rule above, string

„KAKAKTUA‟ can be represented by this sequence of

bit:

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

01001011010000010100101101000001010010

11010101000101010101000001

From the ASCII encoding, 8 characters need 8 x 8 = 64

bit (8 byte). To minimize the sum of bit, length of code

for each character must be shorten as short as possible,

especially for the character which has the biggest

frequency. This thought is the basic of the Huffman

encoding. These are the steps to get the Huffman code

.

1. Count the frequency of occurrence of each

character in the string;

2. Choose two symbols that has the fewest probability

3. Make a Huffman tree from the symbol from bottom

up using greedy algorithm;

4. Determine the Huffman code for each symbol

based on the convention bit;

5. Convert the string into new bit representation from

the Huffman code for each symbol.

 The first thing to get Huffman code is making the

probability table of each symbol. The process of making

Huffman code is by making binary tree which is called

Huffman tree.

Symbol Frequency Probability

K 3 3/8

A 3 3/8

T 1 1/8

U 1 1/8

Table II Probability Table and the Huffman Code for

string ‘KAKAKTUA’

Choose two symbols with the lowest probability. In the

example above we choose T and U). Those two symbols

is then combined to a node of symbol TU for the parent of

symbol T and U with probability of 1/8 + 1/8 = 2/8. This

new symbol is treated as new node and included for the

searching of the next symbol which has lowest

probability.

Choose the next two symbols (the new symbol

included) with the lowest probability. In this example the

next two symbols are TU (2/8) and K (3/8). Do the same

things as the step before. The result is the new symbol

TUK with the probability of 2/8 + 3/8 = 5/8.

Do the same procedure for the next two symbols which

have the lowest probability. The next two symbols are A

(3/8) and TUK (5/8). The combination of them is ATUK

with the probability of 3/8 + 5/8 = 8/8.

Fig. 3 Huffman tree for strings ‘KAKAKTUA’

Leaf in the Huffman tree represented the symbol which

is used in the strings. Each code for symbol give label 0

for the left branch and label 1 for the right branch. After

making the path from root to leaf, we can get the code for

each symbol. From the Huffman tree above, we get these

codes for each symbol.

Symbol
Huffman

Code

K 01

A 1

T 000

U 001

Table III Huffman code for each symbol

With the Huffman coding, the string „KAKAKTUA‟

can be represented with these sets of bit:

011011010000011

The symbols that often exist are represented with

shorter code than the other symbols. Code for every

symbol can‟t be the prefix of the other code because it

will cause the ambiguity in the decoding process. The

symbols that often exist have the code with the fewest sum

of bit. There is no symbol that has the prefix of other

symbols. Huffman code is not unique, this means code for

each characters is different on every strings depends on

the frequency of the character itself. Besides, the decision

whether the node in the Huffman tree is placed left or

right will also determine the final code but it‟s not

influenced the length of code.

With this Huffman coding, the sum of bits to make the

string „KAKAKTUA‟ is only 15 bit. If we compare with

the ASCII code, we get the difference of 64 – 15 = 49 bit.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

In this case, Huffman code save 49/64 * 100% = 76.56%

of space. Huffman code typically saves space from 20%

up to 90%.

B. Huffman Decoding

The preceding method is used to make Huffman code.

How to read the Huffman code and getting the strings

back? To recognize the information from Huffman code,

we need to reverse the process of encoding which is often

called decoding. The reverse process, i.e. to reconstruct

the sequence of symbols in the source, is called decoding

[4]. Huffman code is also a compression algorithm, so the

decoding is just like decompression. The decompression

algorithm involves the operations where the codeword for

a symbol is obtained by „walking; down from the root of

the Huffman tree to the leaf for each symbol.

Take the previous example for the decoding process.

We want to decode 011011010000011 to the original

string using the Huffman tree.

 (a) 011011010000011 (b) 011011010000011

Fig. 4 Decoding string from Huffman tree

Figure 4 shows the first two steps of decoding the

string. It shows symbol K and A. The decoder reads 0s or

1s bit by bit. Current bit is highlighted (yellow). In step

(a), starting from the root of the Huffman tree, we move

along the left branch one edge down to the left child since

a bit 0 is read. Then, we move along the right branch to

the right child since a bit 1 is read. When we reach a leaf,

the symbol K at the leaf is output. This process starts from

the root again until it reaches the leaf. In step (b) it will

move to the right child since a bit 1 is read and also it

reaches the leaf. Then, the process begins from the root

again. So, we can conclude the decoding process in this

three points (Algorithm) [4].

1. Read the coded string bit by bit. Starting from the

root, then traverse one edge down the tree to a

child according to the bit value. If the current bit

read 0 we move to the left child, otherwise, to the

right child.

2. Repeat this process until we reach a leaf. If we

reach a leaf, we will decode one character and

restart the traversal from the root.

3. Repeat this read-and-move procedure until the end

of the message.

IV. HUFFMAN FOR EXECUTABLE FILES

Many people say that Huffman algorithm is the best for

the text file compression. Huffman is not good for binary

file like executable files because they have their own

compression method. This is not a wrong statement, but

we will try how Huffman code works for binary file like

executable file.

A. Lossless compression

If we are talking about executable file, we are dealing

with sensitive data which means every single bit in the file

can‟t be removed. If it loses some data, it may not be

executed anymore. Lossless data compression is a class of

data compression algorithms that allows the exact original

data to be reconstructed from the compressed data. The

lossless compression only allows constructing an

approximation of the original data, in exchange for better

compression rates. The process of Huffman lossless

compression on executable is like text file Huffman

encoding. The different is we must split each binary code

from the executable file as a character and encode it with

Huffman method.

For the comparison of Huffman compression with other

compressor, we see Zhuff compression tool that uses

Huffman algorithm. Zhuff is compression software

designed for speed (especially decompression speed). It is

based around LZSS & Huffman mechanisms [7].

Pos.
Compressor

Name
Compressed Compress

Bits

per

 Size Ratio Byte

 (bytes) (%) (b/B)

027
WinRAR
4.1b3

1283777 66.83
2.653

3

167 WINZIP 8.0 1732476 55.24
3.580

6

203 Zhuff 0.2 1961239 49.33
4.053

4

http://www.maximumcompression.com/data/exe.php

Table IV Comparison of Huffman compression for

executable file with other compressor

The data above comes from the compression of an

executable file Acrobat Reader 5.0 executable

(acrord32.exe) with total file size of 3870784 bytes. If we

compare Huffman compression (Zhuff), it is below the

other popular compressor such as WinRAR and WinZip.

But, if we see the compression ratio, it‟s not very bad,

Huffman can save 49.33% spaces for executable file. It

proves that Huffman can be used for executable file that

we will use it for quarantining an executable virus file.

V. HUFFMAN FOR QUARANTINE

Now, we are trying to decode the virus file into the

Huffman code. In this case, we will not trying to detect a

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

virus file, but we assume that the file is a positive virus

file. Then, we will do quarantine for the virus file. The

Huffman code will be used for quarantine of antivirus.

A. Virus Experiment

The experiment needed to prove that Huffman can be

done in quarantining a virus. For example, we will try to

quarantine a Worm.Win32.VB.kz (Winamps.exe). It is an

Indonesian worm which has popular name of

„Amburadul‟. This worm can spread and duplicate itself to

the system and make self-defense by auto running at the

startup.

Firstly, we will use Zhuff compression tool to get

information of how much Huffman works for this

executable virus file.

Fig. 5 Compression of Worm.Win32.VB.kz file

From the figure above, we can see the Huffman

compression for this executable virus file. The actual size

of virus file is 63KB can be compressed into 12KB by

using Huffman compression. It can save 80.7% spaces.

The time needed for the encoding is 0.02 seconds in speed

of 3.8MB/s. But, Zhuff is not a pure Huffman algorithm.

Let‟s check about the compression of pure Huffman

encoding.

B. Huffman for Virus File

We can get the source of Huffman encoding and

decoding from planet-source-code.com by Fredrik

Qvarfort written in VB (Visual Basic) [8]. This is the pure

Huffman encoding for the file. We can use this source for

our antivirus with the credits to Fredrik. This Huffman

encoding process is the same with the process of Huffman

encoding explained above. The encoded file will have

prefix of “HE3”, and the Huffman tree will be saved in

the first part of the file. If the destination file is larger than

the source file, it will leave uncompressed and will give

“HE0” prefix. Meanwhile, the decoding process includes

the identification of the file, extracting Huffman tree, and

decode the actual data. The identification process checks

the prefix of file whether it is “HE3” or not. If it is “HE0”,

this will return the uncompressed data. Then, it will create

a Huffman tree and decode the data from the Huffman

tree. The usage of the Huffman encoding and decoding is

by filling the parameter for original file path and

compressed/decompressed file path.

Fig. 6 Huffman Encoding process of the virus file

The figure above shows the result of the Huffman

encoding of the virus file (Winamps.exe.bak). The

compression ratio is 34% from 64KB to 21KB. This pure

Huffman encoding can save 66% spaces. It means

Huffman encoding could be done for quarantining viruses.

The next procedure is decoding the file. In the decoding

process, it will identify whether the file is compressed

using Huffman encoding or not. Then it will create

Huffman tree and begin the decoding process using the

Huffman tree.

Fig. 7 Huffman Decoding process of the virus file

The decoding result is the same with the original file.

We can prove by the size and the content of the decoded

file and the original file. The time needed for decoding is

faster than the encoding process that is 0.014s. It means

that Huffman compression succeeds to convert the

quarantined file back to the original file without losing

any data (lossless compression).

C. Huffman Coding Benefits

Based on the experiment above, we can get three

important factors which is the benefits from Huffman

encoding for quarantine of antivirus.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

1. Encryption

The basic function of quarantine is to secure the

executable virus file to be executed by the user. One of

the ways to do this is by using encryption for the

executable file. The encryption will prevent the user by

directly access the original virus file. From the experiment

of virus quarantine above, we get the encrypted virus file

after encoding it using Huffman coding. Two figures

below show the original (after decoding) file and the

encrypted file (after encoding).

(a) Huffman Encoded File (b) Huffman Decoded File

Fig. 8 Encryption by Huffman Coding

2. Size

Viruses have various file size. There are some viruses

that have a big file size. When we want to do quarantine

for that files, we will lose a lot of space just for holding

the dangerous file in our disk. It means that we need

compression for quarantined virus file so that it doesn‟t

eat a lot of space in our disk. From the experiment above,

we get 66% saved space (compression ratio 34%). It

means we can save more spaces after doing quarantine

and use it for other purposes.

3. Speed

Doing encryption and compression need some times.

This Huffman coding, based on the experiment above,

shows a relatively small time to encode and decode

(±0.01s). The bigger the file being compressed, the slower

the compression will be. But, Huffman algorithm have a

fairly efficient running time, because it has complexity of

O(n log n).

VI. CONCLUSION

Huffman algorithm can be used for quarantine in

antivirus because of these three things.

1. Huffman algorithm can be used for encrypting the

virus file so that the file cannot be directly

executed by user.

2. Huffman algorithm can reduce the virus file size so

that it can save more spaces in the user‟s disk.

3. Huffman algorithm has a fairly efficient running

time so that it can quarantine some viruses in a

little time.

VII. ACKNOWLEDGMENT

I want to say thanks for lecturer of Discrete Structure,

Mrs. Harlili and Dr. Ir. Rinaldi for the patience to teach. I

also thanked my parents for the support to me. Thanks to

Mr. Hirin for sharing a lot about virus and antivirus with

me. Thanks to Fredrik Qvarfort for the Huffman encoding

and decoding in Visual Basic source code.

REFERENCES

[1] C. W. Ko. Method and apparatus for detecting a macro computer

virus using static analysis. United States Patent. February 2004.

[2] J. Aycock, Computer Viruses and Malware, Springer 2006.

[3] R. Munir. Diktat Kuliah IF 2091 Struktur Diskrit 4th ed. Program

Studi Teknik Informatika STEI ITB. 2008.

[4] M. I. Pu. Fundamental Data Compression. Elsevier 2006.

[5] http://www.huffmancoding.com/my-uncle

retrieved at 16 December 2012 14:48

[6] http://www.maximumcompression.com/data/exe.php

retrieved at 17 December 2012 07:00

[7] http://fastcompression.blogspot.com/p/zhuff.html

retrieved at 17 December 2012 07:10

[8] http://www.planet-source-

code.com/vb/scripts/ShowCode.asp?txtCodeId=11000&lngWId=1

retrieved at 17 December 2012 08:00

DECLARATION

I hereby declare that the paper is my own writing, not an

adaptation, nor translation from another person‟s paper,

and not a form of plagiarism.

Bandung, 18 Desember 2012

Sonny Lazuardi Hermawan

13511029

http://www.huffmancoding.com/my-uncle
http://www.maximumcompression.com/data/exe.php
http://fastcompression.blogspot.com/p/zhuff.html
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=11000&lngWId=1
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=11000&lngWId=1

