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Nowadays, a lot of data structures have been designed to 

solve problems which are faced in our reality. Complexity is 

considered as utmost priority in implementing data structure. 

In this paper, we will discuss a classical problem which is 

usually noted as Range Minimum Query (RMQ). In this 

problem, we want to find a minimum value between two 

specified indices in well-ordered set of array. There are a lot of 

techniques which can be used to solve this problem and all of 

them are having varied complexity. One of the most common 

way in implementing data structures is by using tree. An 

application of tree, called as segment tree, can be used as an 

effective approach to solve RMQ. Furthermore, we will 

compare the complexity of different approaches in solving 

Range Minimum Query. 

 

Index Terms: complexity, data structure, range minimum 

query, segment tree 

 

I.   INTRODUCTION 

Range Minimum Query Problems, denoted as RMQ, is 

defined as: 

 

Let A[0..n-1] be a linear array data structure 

containing n elements of well-ordered set.  

Let i,j be a positive integer such that 0 ≤ i ≤ j ≤ (n-

1). Let x be a positive integer. For each segment 

A[i..j], we want to find x (i ≤ x ≤ j) such that A[x] 

is position of the most minimum element in sub-

array A[i..j]. 

A query is denoted as a pair (i,j).  

 

 
Picture 1.1 Range Minimum Query Representation [7] 

 

Picture 1.1 is a representation of array A containing 10 

elements. We want to search position of the most 

minimum element between i = 2 and j = 7. A query (2,7) 

is applied at array A and resulting in RMQA (2,7) = x = 3. 

It can be easily seen that A[3] contains the most minimum 

element between A[2..7], that’s it, A[3] = 1. 

 We can also substitute the stated problem above with 

maximum one; yet, range minimum query has more 

applications in our life. This fundamental problem has 

several applications in database searching, string 

processing, text compression, text indexing, and 

computational biology [6]. In computational biology, 

Range Minimum Query is used in identifying patterns of 

RNA. By detecting such patterns, biologist can easily 

identify similarity between two local regions of RNA’s.  

Imagine that you’re given a task to design an 

application for storing national exam (Ujian Nasional in 

Indonesia) results. Your boss wants to perform thousand 

operations for searching minimum scores between two 

intervals. This kind of problem is related to Range 

Minimum Query Problems. Further explanation of 

multiple approaches to solve this problem will be 

discussed later in Section III. 

One of the most efficient approach is by using segment 

tree. There is precisely two steps which are needed in this 

method. First, we need to build a tree data structure for 

storing each segments. Lastly, we only need to perform 

searching by query. 

There’s also several different approaches such as brute 

force / trivial method, brute force with DP (Dynamic 

Programming), and sparse table data structure. On the 

other hand, different approaches will have different 

performance too. Several basic knowledge that are needed 

in this paper will be elaborated in Section II. Every 

algorithm, which are written in this paper, will be written 

in C language (as used in IF2030). 

 

II. RELATED THEORIES 

A. Tree 

Tree is defined as undirected graph and doesn’t have 

any circular vertex [3]. It is classified as a special kind of 

graph and well-known used to represent hierarchical data 

structure. Tree data structure also well-known for its 

recursive properties, as pointed in Picture 2.1 below. 

Element A is defined as the parent of three elements, 

that’s it, element B, C, and D as its child. 
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Picture 2.1 Tree Data Structure 

 

Let G = (V,E) is undirected graph and having n edges. 

 A tree will have following properties: 

- Each vertices in G have a singular path 

- G is connected and it has (n – 1) edges 

- If an edge is removed, graph will be separated into 

two different components 

- G has no cycles and any two particular vertices can 

be connected by using one simple path 

 

Several basic tree terminologies that will be used in this 

discussion are listed below: 

- Root node : the topmost node in the tree (A) 

- Leaf node : the most bottom node in the tree (E, F, 

G, H) 

- Height : the longest length from the topmost node 

to a leaf node  

 

B. Segment Tree 

One sub-application of tree data structure is segment 

tree. It allows querying which of the stored intervals 

contain a given value. The definition of segment tree is 

given below: 

 

Let pi be the list of distinct segment indices, 

defined as 1 ≤ pi ≤ n, for i = 1,2,3,… . A segment 

tree can be partitioned into several regions which 

intervals are defined with two consecutive 

endpoints pi and pi+1. 

 
Picture 2.2 Segment Tree Data Structure 1 

                                                           
1 Image Reference, December 17, 2012 (02.00 AM) 

<http://upload.wikimedia.org/wikipedia/commons/e/e5/Segment_tree_i

nstance.gif> 

Picture 2.2 shows an example of the structure of 

segment tree. Each nodes in segment tree are storing value 

between intervals. Hence, segment tree can be classified 

as interval tree. 

 

C. Complexity 

Complexity is used as an efficiency parameter in 

computational programming. Big-O notation is usually 

used to describe the behaviour of particular function, 

which is simplified in simpler terms. Let f, T be a positive 

non-decreasing function defined on positive integer. We 

can infer that T(N) = O(f(N)) if for some constant C and 

n0 holds: 

As stated above, we usually simplify this behaviour into 

simpler terms. Table 2.1 below is the classification of the 

following notation: 

Complexity (Notation) Name 

O(1) Constant 

O(log n) Logarithmic 

O(n) Linear 

O(n log n) Log-linear 

O(n2) Quadratic 

O(n3) Cubic 

O(2n) Exponential 

O(n!) Factorial 

Table 2.1 Order of Time Complexity in Big-O Notation 

 

Example II.C – 1 You’re given the following 

algorithm, written in C language. Determine its 

classification (using big-O notation). 
for(i=0;i<n;i++) 

  for(j=0;j<n;j++) 

    A[i,j] = 0; 

 

Running through j = 0 to j = n – 1 requires T(n) = n 

while running through i = 0 to i = n – 1 also requires T(n) 

= n. Hence, Example II.C – 1 can be classified as T(n) = 

O(n * n) = O(n2), which is running in quadratic time. 

A boundary of limited runtime and memory space is 

usually found in competitive programming. Not limited to 

such particular area, every programmers want to design 

faster algorithms which are using less memory space. An 

enormous differences occur when we’re comparing 

several optimized algorithms with un-optimized ones. 

  

Example II.C – 2 Suppose that you’re given one 

million elements within linear array data structure. 

You want to compute one million queries in searching 

unique element indices. 

 

In order to solve Example II.C-2, we’ll use two 

different approaches. Traverse-search requires Tmax(N) = 

106 * 106 = 1012 while binary-search requires Tmax(N) = 

106 * 2log(106) ≈ 2.107. Traverse-search is running in 

linear time T(n) = O(n) while binary-search is running in 

logarithmic time T(n) = O(log n). It can be easily seen that 

binary-search performs faster than traverse-search. 

))(()(   ;
0
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D. Dynamic Programming 

One of the most infamous technique in computer 

science is dynamic programming. It’s a method which is 

usually based on recurrence; hence, a problem can be 

break down into simpler sub-problems. The main 

principle of dynamic programming is by storing previous 

computation of a sub-problem, well-known as 

memoization. For better understanding, let’s take a look to 

Example II.D – 1. 

 

Example II.D – 1 Fibonacci Sequence, f (n) = f(n-1) 

+ f(n-2) for n > 2 ; f(1) = 1, f(2) = 1. Design an 

algorithm to compute f(10.000) ! 

 

Using trivial / brute force technique, f(10.000) will call 

the function f(9.999) and f(9.998). Repeatedly, f(9.999) 

will also call the function f(9.998), which is classified as 

redundant operation. This kind of technique leads into an 

exponential time O(2n). 

Using dynamic programming, it is possible to design 

such algorithm that running in linear time O(n) instead of 

exponential time O(2n). Let A[1..10.000] be a linear array 

containing 10.001 elements of positive integer. For each 

calculation, we’ll define: 

 

In this computation, we will use bottom-up approach. 

First, the function A[3] will call the function A[2] and 

A[1]. At the next step, A[4] will call the function A[3] 

and A[2], which is previously stored in A[3] and A[2]. 

This recursive-stored method only requires O(n) memory 

space and O(n) running time. In terms of complexity, one 

can infer that DP method is far more effective against 

brute force technique. 

Both segment tree data structure and sparse table data 

structure are related to dynamic programming. These 

technique compute RMQ at interval [i, j] by using two 

previous intervals ; i ≠ j. The following computation can 

be written as: 

The main difference between segment tree and sparse 

table is usage of memory space. Segment tree is using tree 

data structure, while sparse table is using 2-D array data 

structure. Otherwise, segment tree is considered more 

powerful than sparse table because of its flexibility. 

 

E. Sparse Table 

Sparse table data structure is created by two-

dimensional array, sized of [0..n-1, 0..log(n)] whereas n 

can be written as 2k. Let A[0..n-1, 0..log(n)] be a two-

dimensional array data structure containing n elements, 

denoted as A[i, 0] ; 0 ≤ i ≤ n. This technique is named as 

sparse table because its matrix is populated primarily with 

zeros as elements of the table. 

 

Example II.E – 1 You’re given 8 elements, 5, 10, 12, 

8, 4, 7, 2, and 10 consecutively. Implement sparse 

table data structure within these elements! 

 

 

Picture 2.3 Minimum Value Sparse Table 

 

For better understanding in implementing sparse table, 

see Example II.E – 1. Let A[0, 0] = 5, A[1, 0] = 10, … , 

A[7, 0] = 10. For each i, j positive integer, A[i, j] in 

Picture 2.2 is the minimum value between indices i and i + 

(2j – 1). For example, we want to know the minimum 

value between indices 2 and 6. We only need to compare 

minimum value between [2..5] and [3..6] ( O(1) ). It can 

be written as: 

The minimum value between indices 2 and 6 is 2 

(positioned as A[6]).  

 

III.   SOLVING RANGE MINIMUM QUERY  

A. Brute force / Trivial Approach 

One of the most trivial algorithm to solve range 

minimum query is by using brute force approach. For each 

pair of indices (i,j), we only need to store the position of 

every minimum value in matrices. This algorithm uses 

O(n2) memory space and O(n3) running time complexity. 

Let A[0..n-1, 0..n-1] be a matrices of integer. Let 

B[0..n-1] be a linear array data structure containing n 

elements of well-ordered set. RMQB(i,j) is denoted by 

A[i, j].  A[i, j] is defined by the position of minimum 

value between B[i] and B[j]. This computation of query 

searching requires O(1) running time complexity. 

Following implementation of brute force approach is 

written in C language: 
/* Main Algorithm */ 

for(i=0;i<n;i++) 

 //Initial state 

  A[i][i] = i; 

     for(i=0;i<n-1;i++) 

  for(j=i+1;j<n;j++) 

   //Initial state 

   temp = i; 

    A[i][j] = temp; 

    for(k=i+1;k<=j;k++) 

      //Searching for RMQ value 

        if (B[k] < B[temp]) 

          { 

            A[i][j] = k; 

            temp = k; 

          } 
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B. Trivial Approach Using Dynamic 

Programming 

As previously explained, implementation with brute 

force approach will have O(n3) running time complexity. 

It’s considered ineffective, especially for large cases (n > 

500). However, by using a dynamic programming 

approach, we can reduce the complexity from O(n3) to 

O(n2). Dynamic programming is a method to memoized 

previous computation, which will be used for next 

computation processes. This computation of query 

searching also requires O(1) running time complexity. 

Following is the implementation of trivial approach (using 

DP): 
/* Main Algorithm */ 

for(i=0;i<n;i++) 

 //Initial state 

  A[i][i] = i; 

     for(i=0;i<n-1;i++) 

  for(j=i+1;j<n;j++) 

   //Searching for RMQ value 

   //Dynamic programming approach 

   if (B[A[i][j-1]] < B[j]) 

       A[i][j] = A[i][j-1]; 

   Else 

       A[i][j] = j; 

 

C. Sparse Table Data Structure 

Another approach to solve range minimum query 

problem is by implementing sparse table. As explained in 

Section II, sparse table is created by matrices (two-

dimensional array). In this approach, we will combine 

sparse table data structure with dynamic programming 

technique. This algorithm uses O(n log n) memory space 

and O(n log n) running time complexity. For query 

searching, we only require O(1) running time complexity. 

Let A[0..n-1, 0..log(n)] be a two dimensional array 

where A[i, j] is the position of the minimum value 

between indices i and i + (2j – 1). In this manner, we can 

solve range minimum query problem with a simple 

comparison between two segments. The implementation 

of sparse table with C language can be written as: 
/* Main Algorithm */ 

for(i=0;i<n;i++) 

 //Initial state 

  A[i][0] = i; 

     for(j=1;1<<j<=n;i++) 

  for(i=0;i+(1 << j)-1<n;j++) 

   //Searching for RMQ value 

   //Sparse table data structure 

   if (B[A[i][j-1]] < B[A[i+ 1 << 

(j-1)][j-1]]) 

       A[i][j] = A[i][j-1]; 

   else 

       A[i][j] = A[i+(1 << (j-

1)][j-1]; 

 

Operator “<<” is defined as bitwise shift operators [11]. 

It is used to represent 2j in our algorithm. Further 

explanation of bitwise operator will not be discussed here. 

 

 

D. Segment Tree Data Structure 

One of the most powerful technique in solving range 

minimum query problem is by using segment tree data 

structure. In order to build a segment tree, we only need 

O(n log n) memory space and O(n log n) running time 

complexity. This is considered very effective because 

there isn’t any redundant memory space which is used in 

this technique. For comparison, sparse table requires 256 

MB (O(n2)) of memory while segment tree only requires 

64 MB (O(n log n)), which is far more effective for large 

cases. 

 
 

Picture 3.1 Illustration of Segment Tree 

 

For better understanding, let’s take a look at Picture 3.1. 

In order to construct its binary search tree, we will use a 

recursive, bottom-up method. For example, the process of 

interval [0,9] will use the result of interval [0,4] and [5,9].  

Let MaxI be a constant sized of 22log(n) + 2, defined as 

total elements in A[0..MaxI-1] and MaxN be a constant 

sized of n, defined as total elements in B[0..MaxN-1]. Let 

all elements in A[0..MaxI-1] are initialized with -1. 

Following is the implementation of segment tree data 

structure (using BuildTree function): 

 
void BuildTree (int node, int b, 

int e, int A[MaxI], int B[MaxN], int 

n) 

{ 

  /* Main Algorithm */ 

   if (b == e) 

     A[node] = b; 

   else 

   { 

  //Recursive subtrees 

     BuildTree (2 * node, b, 

(b+e)/2, A, B, n); //Left 

     BuildTree (2 * node + 1, b, 

(b+e)/2 +1, A, B, n); //Right 

 

     //Search for RMQ value 

     if (B[A[2 * node]] <= B[A[2 * 

node + 1]]) 

         A[node] = A[2 * node]; 

     else 

         A[node] = A[2 * node + 1]; 

   } 

} 
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We’ve already built the segment tree for our queries 

searching process. We can now start making queries. 

Every processes of query searching is done in O(log n) 

running time, which is practically fast enough. Segment 

tree can also be modified dynamically, which is 

practically better than segment tree for large cases. 

Following is the implementation of query searching 

function (using QuerySearch function): 

 
int QuerySearch (int node, int b, 

int e, int A[MaxI], int B[MaxN], int 

i, int j) //Interval (i,j) 

{ 

  /* Local Dictionary */ 

  int p1, p2; 

  /* Main Algorithm */ 

  //If doesn’t intersect 

  if ( i > e || j < b) 

    return -1; 

 

  //If included in current node 

  if ( b >= i && e <= j) 

    return A[node]; 

 

  //Recursive binary tree method 

  //Compute from left & right 

  p1 = QuerySearch (2 * node, b, 

(b+e)/2, A, B, i, j); 

  p2 = QuerySearch (2 * node + 1, 

b, (b+e)/2 + 2, A, B, i, j); 

 

  //Return position of indices 

  if (p1 == -1) 

    return A[node] = p2; 

  if (p2 == -1) 

    return A[node] = p1; 

  if (B[p1] <= B[p2]) 

    return A[node] = p1; 

  return A[node] = p2; 

 

} 

 

IV.   EXAMPLE AND SOLUTION 

In this section, we will use our newest tool, which is 

well-known as segment tree, to solve a range minimum 

query problem. 

 

Example IV – 1 One day, an economic crisis has 

risen and government has already took several steps 

to prevent this crisis. Consider Indonesia has M 

number of families (1 ≤ M ≤ 100.000). Each families 

have monthly income, denoted as Vp (0 ≤ p ≤ M-1). 

BLT (Bantuan Langsung Tunai) is distributed to N 

families (1 ≤ N ≤ 100.000) and each package of BLT 

can only be distributed into exactly one family 

between (i,j) interval (0 ≤ i ≤ j ≤ M-1). Determine all 

families that will receive these packages of BLT. 

 

For better understanding, we’ll take smaller dataset 

before solving this problem thoroughly. Assume that we 

have M = 4, and you’re given V0 = 7, V1 = 1, V2 = 4, and 

V3 = 3. Using BuildTree function, the intervals of segment 

tree are represented in Picture 4.1 below. 

 

Picture 4.1 Segment Tree Intervals for Sample Problem 

 

The value of each interval can be written as: 

- [0, 3] = 1 

- [0, 1] = 1 and [2, 3] = 3 

- [0] = 7, [1] = 1, [2] = 4, and [3] = 3 

For example, we want to search the minimum value 

between (i,j) = (2,3). We’ll use the QuerySearch function: 

 
QuerySearch(1, 0, M-1, A, B, 2, 3) 4.1 

 

At the function calls above, we are possible to derive its 

generalization function formula as: 

 
QuerySearch(1, 0, M-1, A, B, i, j) 4.2 

 

The function will give us an integer value between  0 ≤ 

i,  j ≤ M-1 if and only if i ≤ j. Otherwise, the QuerySearch 

function will return -1. 

 

After finishing our analysis for small dataset, we’ll 

solve this problem thoroughly. Following is the solution 

of Example IV – 1: 

- Declare MaxN as M (1 ≤ M ≤ 100.000) 

- Declare MaxI as 22log(M) + 2 

- Store each value of Vp in B[0..MaxN-1] 

- Initialize all elements in A[0..MaxI] with -1 

- Create its Segment Tree using BuildTree 

- For each query, we just simply call function 4.2 

 

We’ve simply finished solving this problem thoroughly. 

This algorithm works with O(n log n) running time for 

BuildTree function, O(n log n) memory space, and O(log 

n) running time for QuerySearch function. Within such 

limitation 1 ≤ M ≤ 100.000 and 1 ≤ N ≤ 100.000, it 

requires less than 1 second in newest processor 

technologies. 
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V.   CONCLUSION 

Tree data structure has widely applications in computer 

science because of its flexibility. Segment tree, which is 

classified as interval tree, has several applications in term 

of computational areas. One of them is to solve range 

minimum query (RMQ) problem. Range minimum query 

is used to find the position of minimum value between two 

local intervals.  

There are at least four techniques, which are broadly 

used in solving RMQ problem (Section III). One of the 

most important aspect in computational programming is 

complexity. Complexity is usually determined from the 

running time and memory space usage of an algorithm. 

One of the most flexible and efficient method is by using 

segment tree data structure. 

The usage of tree data structure is very broad; a lot 

areas of science use this kind of representation in order to 

solve scientific problems.  
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