
Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

Segment Tree for Solving

Range Minimum Query Problems

Iskandar Setiadi 13511073

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

iskandarsetiadi@students.itb.ac.id

Nowadays, a lot of data structures have been designed to

solve problems which are faced in our reality. Complexity is

considered as utmost priority in implementing data structure.

In this paper, we will discuss a classical problem which is

usually noted as Range Minimum Query (RMQ). In this

problem, we want to find a minimum value between two

specified indices in well-ordered set of array. There are a lot of

techniques which can be used to solve this problem and all of

them are having varied complexity. One of the most common

way in implementing data structures is by using tree. An

application of tree, called as segment tree, can be used as an

effective approach to solve RMQ. Furthermore, we will

compare the complexity of different approaches in solving

Range Minimum Query.

Index Terms: complexity, data structure, range minimum

query, segment tree

I. INTRODUCTION

Range Minimum Query Problems, denoted as RMQ, is

defined as:

Let A[0..n-1] be a linear array data structure

containing n elements of well-ordered set.

Let i,j be a positive integer such that 0 ≤ i ≤ j ≤ (n-

1). Let x be a positive integer. For each segment

A[i..j], we want to find x (i ≤ x ≤ j) such that A[x]

is position of the most minimum element in sub-

array A[i..j].

A query is denoted as a pair (i,j).

Picture 1.1 Range Minimum Query Representation [7]

Picture 1.1 is a representation of array A containing 10

elements. We want to search position of the most

minimum element between i = 2 and j = 7. A query (2,7)

is applied at array A and resulting in RMQA (2,7) = x = 3.

It can be easily seen that A[3] contains the most minimum

element between A[2..7], that’s it, A[3] = 1.

 We can also substitute the stated problem above with

maximum one; yet, range minimum query has more

applications in our life. This fundamental problem has

several applications in database searching, string

processing, text compression, text indexing, and

computational biology [6]. In computational biology,

Range Minimum Query is used in identifying patterns of

RNA. By detecting such patterns, biologist can easily

identify similarity between two local regions of RNA’s.

Imagine that you’re given a task to design an

application for storing national exam (Ujian Nasional in

Indonesia) results. Your boss wants to perform thousand

operations for searching minimum scores between two

intervals. This kind of problem is related to Range

Minimum Query Problems. Further explanation of

multiple approaches to solve this problem will be

discussed later in Section III.

One of the most efficient approach is by using segment

tree. There is precisely two steps which are needed in this

method. First, we need to build a tree data structure for

storing each segments. Lastly, we only need to perform

searching by query.

There’s also several different approaches such as brute

force / trivial method, brute force with DP (Dynamic

Programming), and sparse table data structure. On the

other hand, different approaches will have different

performance too. Several basic knowledge that are needed

in this paper will be elaborated in Section II. Every

algorithm, which are written in this paper, will be written

in C language (as used in IF2030).

II. RELATED THEORIES

A. Tree

Tree is defined as undirected graph and doesn’t have

any circular vertex [3]. It is classified as a special kind of

graph and well-known used to represent hierarchical data

structure. Tree data structure also well-known for its

recursive properties, as pointed in Picture 2.1 below.

Element A is defined as the parent of three elements,

that’s it, element B, C, and D as its child.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

Picture 2.1 Tree Data Structure

Let G = (V,E) is undirected graph and having n edges.

 A tree will have following properties:

- Each vertices in G have a singular path

- G is connected and it has (n – 1) edges

- If an edge is removed, graph will be separated into

two different components

- G has no cycles and any two particular vertices can

be connected by using one simple path

Several basic tree terminologies that will be used in this

discussion are listed below:

- Root node : the topmost node in the tree (A)

- Leaf node : the most bottom node in the tree (E, F,

G, H)

- Height : the longest length from the topmost node

to a leaf node

B. Segment Tree

One sub-application of tree data structure is segment

tree. It allows querying which of the stored intervals

contain a given value. The definition of segment tree is

given below:

Let pi be the list of distinct segment indices,

defined as 1 ≤ pi ≤ n, for i = 1,2,3,… . A segment

tree can be partitioned into several regions which

intervals are defined with two consecutive

endpoints pi and pi+1.

Picture 2.2 Segment Tree Data Structure 1

1 Image Reference, December 17, 2012 (02.00 AM)

<http://upload.wikimedia.org/wikipedia/commons/e/e5/Segment_tree_i

nstance.gif>

Picture 2.2 shows an example of the structure of

segment tree. Each nodes in segment tree are storing value

between intervals. Hence, segment tree can be classified

as interval tree.

C. Complexity

Complexity is used as an efficiency parameter in

computational programming. Big-O notation is usually

used to describe the behaviour of particular function,

which is simplified in simpler terms. Let f, T be a positive

non-decreasing function defined on positive integer. We

can infer that T(N) = O(f(N)) if for some constant C and

n0 holds:

As stated above, we usually simplify this behaviour into

simpler terms. Table 2.1 below is the classification of the

following notation:

Complexity (Notation) Name

O(1) Constant

O(log n) Logarithmic

O(n) Linear

O(n log n) Log-linear

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential

O(n!) Factorial

Table 2.1 Order of Time Complexity in Big-O Notation

Example II.C – 1 You’re given the following

algorithm, written in C language. Determine its

classification (using big-O notation).
for(i=0;i<n;i++)

 for(j=0;j<n;j++)

 A[i,j] = 0;

Running through j = 0 to j = n – 1 requires T(n) = n

while running through i = 0 to i = n – 1 also requires T(n)

= n. Hence, Example II.C – 1 can be classified as T(n) =

O(n * n) = O(n2), which is running in quadratic time.

A boundary of limited runtime and memory space is

usually found in competitive programming. Not limited to

such particular area, every programmers want to design

faster algorithms which are using less memory space. An

enormous differences occur when we’re comparing

several optimized algorithms with un-optimized ones.

Example II.C – 2 Suppose that you’re given one

million elements within linear array data structure.

You want to compute one million queries in searching

unique element indices.

In order to solve Example II.C-2, we’ll use two

different approaches. Traverse-search requires Tmax(N) =

106 * 106 = 1012 while binary-search requires Tmax(N) =

106 * 2log(106) ≈ 2.107. Traverse-search is running in

linear time T(n) = O(n) while binary-search is running in

logarithmic time T(n) = O(log n). It can be easily seen that

binary-search performs faster than traverse-search.

))(()(;
0

NfONTNN 

http://upload.wikimedia.org/wikipedia/commons/e/e5/Segment_tree_instance.gif
http://upload.wikimedia.org/wikipedia/commons/e/e5/Segment_tree_instance.gif

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

D. Dynamic Programming

One of the most infamous technique in computer

science is dynamic programming. It’s a method which is

usually based on recurrence; hence, a problem can be

break down into simpler sub-problems. The main

principle of dynamic programming is by storing previous

computation of a sub-problem, well-known as

memoization. For better understanding, let’s take a look to

Example II.D – 1.

Example II.D – 1 Fibonacci Sequence, f (n) = f(n-1)

+ f(n-2) for n > 2 ; f(1) = 1, f(2) = 1. Design an

algorithm to compute f(10.000) !

Using trivial / brute force technique, f(10.000) will call

the function f(9.999) and f(9.998). Repeatedly, f(9.999)

will also call the function f(9.998), which is classified as

redundant operation. This kind of technique leads into an

exponential time O(2n).

Using dynamic programming, it is possible to design

such algorithm that running in linear time O(n) instead of

exponential time O(2n). Let A[1..10.000] be a linear array

containing 10.001 elements of positive integer. For each

calculation, we’ll define:

In this computation, we will use bottom-up approach.

First, the function A[3] will call the function A[2] and

A[1]. At the next step, A[4] will call the function A[3]

and A[2], which is previously stored in A[3] and A[2].

This recursive-stored method only requires O(n) memory

space and O(n) running time. In terms of complexity, one

can infer that DP method is far more effective against

brute force technique.

Both segment tree data structure and sparse table data

structure are related to dynamic programming. These

technique compute RMQ at interval [i, j] by using two

previous intervals ; i ≠ j. The following computation can

be written as:

The main difference between segment tree and sparse

table is usage of memory space. Segment tree is using tree

data structure, while sparse table is using 2-D array data

structure. Otherwise, segment tree is considered more

powerful than sparse table because of its flexibility.

E. Sparse Table

Sparse table data structure is created by two-

dimensional array, sized of [0..n-1, 0..log(n)] whereas n

can be written as 2k. Let A[0..n-1, 0..log(n)] be a two-

dimensional array data structure containing n elements,

denoted as A[i, 0] ; 0 ≤ i ≤ n. This technique is named as

sparse table because its matrix is populated primarily with

zeros as elements of the table.

Example II.E – 1 You’re given 8 elements, 5, 10, 12,

8, 4, 7, 2, and 10 consecutively. Implement sparse

table data structure within these elements!

Picture 2.3 Minimum Value Sparse Table

For better understanding in implementing sparse table,

see Example II.E – 1. Let A[0, 0] = 5, A[1, 0] = 10, … ,

A[7, 0] = 10. For each i, j positive integer, A[i, j] in

Picture 2.2 is the minimum value between indices i and i +

(2j – 1). For example, we want to know the minimum

value between indices 2 and 6. We only need to compare

minimum value between [2..5] and [3..6] (O(1)). It can

be written as:

The minimum value between indices 2 and 6 is 2

(positioned as A[6]).

III. SOLVING RANGE MINIMUM QUERY

A. Brute force / Trivial Approach

One of the most trivial algorithm to solve range

minimum query is by using brute force approach. For each

pair of indices (i,j), we only need to store the position of

every minimum value in matrices. This algorithm uses

O(n2) memory space and O(n3) running time complexity.

Let A[0..n-1, 0..n-1] be a matrices of integer. Let

B[0..n-1] be a linear array data structure containing n

elements of well-ordered set. RMQB(i,j) is denoted by

A[i, j]. A[i, j] is defined by the position of minimum

value between B[i] and B[j]. This computation of query

searching requires O(1) running time complexity.

Following implementation of brute force approach is

written in C language:
/* Main Algorithm */

for(i=0;i<n;i++)

 //Initial state

 A[i][i] = i;

 for(i=0;i<n-1;i++)

 for(j=i+1;j<n;j++)

 //Initial state

 temp = i;

 A[i][j] = temp;

 for(k=i+1;k<=j;k++)

 //Searching for RMQ value

 if (B[k] < B[temp])

 {

 A[i][j] = k;

 temp = k;

 }

1 A[2] 1, A[1] ,2 ;]2[]1[][ nnAnAnA

 ) ,1
2

 ,
2

 ,min(, 















 
















 
 j

ij
i

ij
iiji

2) 2 4, (min) 2] A[3, 2], A[2, (min]6..2min[

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

B. Trivial Approach Using Dynamic

Programming

As previously explained, implementation with brute

force approach will have O(n3) running time complexity.

It’s considered ineffective, especially for large cases (n >

500). However, by using a dynamic programming

approach, we can reduce the complexity from O(n3) to

O(n2). Dynamic programming is a method to memoized

previous computation, which will be used for next

computation processes. This computation of query

searching also requires O(1) running time complexity.

Following is the implementation of trivial approach (using

DP):
/* Main Algorithm */

for(i=0;i<n;i++)

 //Initial state

 A[i][i] = i;

 for(i=0;i<n-1;i++)

 for(j=i+1;j<n;j++)

 //Searching for RMQ value

 //Dynamic programming approach

 if (B[A[i][j-1]] < B[j])

 A[i][j] = A[i][j-1];

 Else

 A[i][j] = j;

C. Sparse Table Data Structure

Another approach to solve range minimum query

problem is by implementing sparse table. As explained in

Section II, sparse table is created by matrices (two-

dimensional array). In this approach, we will combine

sparse table data structure with dynamic programming

technique. This algorithm uses O(n log n) memory space

and O(n log n) running time complexity. For query

searching, we only require O(1) running time complexity.

Let A[0..n-1, 0..log(n)] be a two dimensional array

where A[i, j] is the position of the minimum value

between indices i and i + (2j – 1). In this manner, we can

solve range minimum query problem with a simple

comparison between two segments. The implementation

of sparse table with C language can be written as:
/* Main Algorithm */

for(i=0;i<n;i++)

 //Initial state

 A[i][0] = i;

 for(j=1;1<<j<=n;i++)

 for(i=0;i+(1 << j)-1<n;j++)

 //Searching for RMQ value

 //Sparse table data structure

 if (B[A[i][j-1]] < B[A[i+ 1 <<

(j-1)][j-1]])

 A[i][j] = A[i][j-1];

 else

 A[i][j] = A[i+(1 << (j-

1)][j-1];

Operator “<<” is defined as bitwise shift operators [11].

It is used to represent 2j in our algorithm. Further

explanation of bitwise operator will not be discussed here.

D. Segment Tree Data Structure

One of the most powerful technique in solving range

minimum query problem is by using segment tree data

structure. In order to build a segment tree, we only need

O(n log n) memory space and O(n log n) running time

complexity. This is considered very effective because

there isn’t any redundant memory space which is used in

this technique. For comparison, sparse table requires 256

MB (O(n2)) of memory while segment tree only requires

64 MB (O(n log n)), which is far more effective for large

cases.

Picture 3.1 Illustration of Segment Tree

For better understanding, let’s take a look at Picture 3.1.

In order to construct its binary search tree, we will use a

recursive, bottom-up method. For example, the process of

interval [0,9] will use the result of interval [0,4] and [5,9].

Let MaxI be a constant sized of 22log(n) + 2, defined as

total elements in A[0..MaxI-1] and MaxN be a constant

sized of n, defined as total elements in B[0..MaxN-1]. Let

all elements in A[0..MaxI-1] are initialized with -1.

Following is the implementation of segment tree data

structure (using BuildTree function):

void BuildTree (int node, int b,

int e, int A[MaxI], int B[MaxN], int

n)

{

 /* Main Algorithm */

 if (b == e)

 A[node] = b;

 else

 {

 //Recursive subtrees

 BuildTree (2 * node, b,

(b+e)/2, A, B, n); //Left

 BuildTree (2 * node + 1, b,

(b+e)/2 +1, A, B, n); //Right

 //Search for RMQ value

 if (B[A[2 * node]] <= B[A[2 *

node + 1]])

 A[node] = A[2 * node];

 else

 A[node] = A[2 * node + 1];

 }

}

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

We’ve already built the segment tree for our queries

searching process. We can now start making queries.

Every processes of query searching is done in O(log n)

running time, which is practically fast enough. Segment

tree can also be modified dynamically, which is

practically better than segment tree for large cases.

Following is the implementation of query searching

function (using QuerySearch function):

int QuerySearch (int node, int b,

int e, int A[MaxI], int B[MaxN], int

i, int j) //Interval (i,j)

{

 /* Local Dictionary */

 int p1, p2;

 /* Main Algorithm */

 //If doesn’t intersect

 if (i > e || j < b)

 return -1;

 //If included in current node

 if (b >= i && e <= j)

 return A[node];

 //Recursive binary tree method

 //Compute from left & right

 p1 = QuerySearch (2 * node, b,

(b+e)/2, A, B, i, j);

 p2 = QuerySearch (2 * node + 1,

b, (b+e)/2 + 2, A, B, i, j);

 //Return position of indices

 if (p1 == -1)

 return A[node] = p2;

 if (p2 == -1)

 return A[node] = p1;

 if (B[p1] <= B[p2])

 return A[node] = p1;

 return A[node] = p2;

}

IV. EXAMPLE AND SOLUTION

In this section, we will use our newest tool, which is

well-known as segment tree, to solve a range minimum

query problem.

Example IV – 1 One day, an economic crisis has

risen and government has already took several steps

to prevent this crisis. Consider Indonesia has M

number of families (1 ≤ M ≤ 100.000). Each families

have monthly income, denoted as Vp (0 ≤ p ≤ M-1).

BLT (Bantuan Langsung Tunai) is distributed to N

families (1 ≤ N ≤ 100.000) and each package of BLT

can only be distributed into exactly one family

between (i,j) interval (0 ≤ i ≤ j ≤ M-1). Determine all

families that will receive these packages of BLT.

For better understanding, we’ll take smaller dataset

before solving this problem thoroughly. Assume that we

have M = 4, and you’re given V0 = 7, V1 = 1, V2 = 4, and

V3 = 3. Using BuildTree function, the intervals of segment

tree are represented in Picture 4.1 below.

Picture 4.1 Segment Tree Intervals for Sample Problem

The value of each interval can be written as:

- [0, 3] = 1

- [0, 1] = 1 and [2, 3] = 3

- [0] = 7, [1] = 1, [2] = 4, and [3] = 3

For example, we want to search the minimum value

between (i,j) = (2,3). We’ll use the QuerySearch function:

QuerySearch(1, 0, M-1, A, B, 2, 3) 4.1

At the function calls above, we are possible to derive its

generalization function formula as:

QuerySearch(1, 0, M-1, A, B, i, j) 4.2

The function will give us an integer value between 0 ≤

i, j ≤ M-1 if and only if i ≤ j. Otherwise, the QuerySearch

function will return -1.

After finishing our analysis for small dataset, we’ll

solve this problem thoroughly. Following is the solution

of Example IV – 1:

- Declare MaxN as M (1 ≤ M ≤ 100.000)

- Declare MaxI as 22log(M) + 2

- Store each value of Vp in B[0..MaxN-1]

- Initialize all elements in A[0..MaxI] with -1

- Create its Segment Tree using BuildTree

- For each query, we just simply call function 4.2

We’ve simply finished solving this problem thoroughly.

This algorithm works with O(n log n) running time for

BuildTree function, O(n log n) memory space, and O(log

n) running time for QuerySearch function. Within such

limitation 1 ≤ M ≤ 100.000 and 1 ≤ N ≤ 100.000, it

requires less than 1 second in newest processor

technologies.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2012/2013

V. CONCLUSION

Tree data structure has widely applications in computer

science because of its flexibility. Segment tree, which is

classified as interval tree, has several applications in term

of computational areas. One of them is to solve range

minimum query (RMQ) problem. Range minimum query

is used to find the position of minimum value between two

local intervals.

There are at least four techniques, which are broadly

used in solving RMQ problem (Section III). One of the

most important aspect in computational programming is

complexity. Complexity is usually determined from the

running time and memory space usage of an algorithm.

One of the most flexible and efficient method is by using

segment tree data structure.

The usage of tree data structure is very broad; a lot

areas of science use this kind of representation in order to

solve scientific problems.

VI. ACKNOWLEDGMENT

Iskandar Setiadi, as the author of this paper, want to

express his deepest gratitude to Dra Harlili, M.Sc and Dr.

Ir. Rinaldi Munir, M.T. as the lecturers of IF 2091 –

“Struktur Diskrit”. Special thanks to my family and all my

friends of Informatics 2011.

REFERENCES

[1] Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L.,

Stein, Clifford. 2009. Introduction to Algorithms 3rd ed. MIT Press

and Mc Graw-Hill.

[2] Halim, Steven & Felix Halim. 2010. Competitive Programming 1st

ed. Lulu Publisher.

[3] Munir, Rinaldi. 2008. Diktat Kuliah IF 2091 Struktur Diskrit 4th

ed. Program Studi Teknik Informatika STEI ITB.

[4] de Berg, Mark; van Kreveld, Marc; Overmars, Mark;

Schwarzkopf, Otfried. 2000. Computational Geometry:

algorithms and application 2nd ed. Springer-Verlag Publisher.

[5] Rosen, Kenneth H. 2003. Discrete Mathematics and Its

Application 5th ed. Mc Graw-Hill.

[6] Fischer, Johannes. 2008. Range Minimum Queries: Simple and

Optimal, at Last! December 16, 2012 (03.00 AM).

< http://www.bio.ifi.lmu.de/~fischer/fischer09range.pdf>

[7] Topcoder. Range Minimum Query and Lowest Common Ancestor.

December 15, 2012 (05.00 PM).

<http://community.topcoder.com/tc?module=Static&d1=tutorials

&d2=lowestCommonAncestor>

[8] Topcoder. Computational Complexity: Section One. December 15,

2012 (11.00 PM).

<http://community.topcoder.com/tc?module=Static&d1=tutorials

&d2=complexity1>

[9] NTHU. Interval Tree and Related Problems. December 17, 2012

(01.40 AM).

< http://www.cs.nthu.edu.tw/~wkhon/ds/ds10/tutorial/tutorial6.pdf>

[10] Fredman, Michael L., Janos Komlos. 1984. Storing a Sparse

Table with O(1). December 16, 2012 (01.00 PM).

<http://www.cs.princeton.edu/courses/archive/fall09/cos521/Hand

outs/storingasparse.pdf>

[11] PJ Arends. An Introduction to Bitwise Operators. December 17,

2012 (04.50 PM).

<http://www.codeproject.com/Articles/2247/An-introduction-to-

bitwise-operators>

STATEMENT

I hereby stated that this paper is copyrighted to myself,

neither a copy from other’s paper nor a translation of

similar paper.

Bandung, December 18, 2012

Iskandar Setiadi 13511073

http://www.bio.ifi.lmu.de/~fischer/fischer09range.pdf
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=complexity1
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=complexity1
http://www.cs.nthu.edu.tw/~wkhon/ds/ds10/tutorial/tutorial6.pdf
http://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/storingasparse.pdf
http://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/storingasparse.pdf
http://www.codeproject.com/Articles/2247/An-introduction-to-bitwise-operators
http://www.codeproject.com/Articles/2247/An-introduction-to-bitwise-operators

