
Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

Preventing Deadlock with The Banker’s Algorithm

Atika Yusuf 13510055

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13510055@std.stei.itb.ac.id

Abstract—Deadlock is a paradox in which two or more

actions are each waiting for the other to finish and neither

ever does. In this context, the writer will focus on avoiding

deadlocks with the banker’s algorithm. Deadlock is a very

common issue in multiprocessing systems.

Index Terms—deadlock, banker’s algorithm, resource

allocation

I. INTRODUCTION

A recent development in operating systems involving

multiprogramming, multiprocessing, etc – has been to

improve the utilization of system resources and therefore

would reduce the cost. In any type of operating system a

deadlock condition must be considered and anticipated.

Requests by separate tasks for resources may possibly be

granted in a sequence that a group of two or more task is

unable to continue, each task holds resources solely on its

self and waits for the release of resources currently held

by others in the system, which will never happen. This is

called a deadlock.

A deadlock is a paradox, once a deadlock occurs, a

system performance will be degraded and the only way to

end it is to avoid a deadlock in the first place. Basically,

it’s a condition where two or more process request a

resource that it used by another process thus such request

will never be satisfied. Deadlocks are particularly

complicated and troubling because there is no general

solution to avoid one. However there are three algorithms

with certain constraints that help to avoid deadlocks, one

of them is the banker’s algorithm.

The banker’s algorithm was developed by a Dutch

computer scientist, Edsger Dijkstra that tests for safety by

simulating the allocation of pre-determination maximum

possible amounts of all resources and then makes a safe

state check to test for possible deadlock for all other

pending activities before deciding whether allocation

should be allowed to continue. The algorithm was

developed in the design process for the THE (Technische

Hogeschool Eindhoven) operating system and originally

described in Dutch in EWD108. The name is an analogy

for the way that bankers account for liquidity constraints,

as in market liquidity is an asset’s ability to be sold

without causing a significant movement in the price and

with minimum loss of value.

II. DEADLOCK

Deadlock is a situation in which two or more

action are each waiting for the other to finish and neither

ever does. Deadlock is common in multiprocessing where

processes share a specific type of mutually exclusive

resource.

 In computer science, Coffman deadlock refers to

a specific condition when two or more process are each

waiting for the other to release a resource or more than

two process are waiting for resources in a circular chain.

There are four necessary conditions for a Coffman

deadlock to occur: 1) Mutual Exclusion: a resource that

cannot be used by more than one process at a time, 2)

Hold and Wait/wait-for: processes already holding

resources may request new resources held by other

processes, 3) No Preemption: no resource can be forcibly

removed from a process holding it, resources can be

released only by the explicit action of the process, 4)

Circular Wait: two or more process form a circular chain

where each process waits for a resource that the next

process in the chain holds.

Basically, to prevent deadlock one of Coffman

conditions (also known as the necessary conditions) must

be eliminated:

 No mutual elimination: there’s no deadlock if

mutual exclusion is not needed. Sometimes

resources can be partitioned to avoid mutual

exclusion.

 No hold and wait/wait-for: by not letting a

process wait for one resource while holding

another, either by requiring each process to hold

only one resource at a time or to request all of

the resources it needs simultaneously.

 Allow preemption: the reason preemption should

be allowed is because a lockout (no preemption)

condition may be difficult or impossible to avoid

as a process to be able to have a resource for a

specific amount of time, or the processing

outcome may be inconsistent.

 Eliminate cycles: circular wait could be

eliminated by disabling interrupts during critical

sections and use a hierarchy to determine a

partial ordering of resources.

 A resource allocation graph represents which

processes are waiting for or holding each resource.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

Each node in the graph represents either a process or

a resource. A directed edge is drawn from process T1

to resource T2 if T1 is waiting for T2, and from T2 to

T1 if T1 holds T2.

Consider two processes T1 and T2 each requiring the

exclusive use of two different resources R1 and R2. The

combined process can be represented in the following

way. For each process, the number of instructions

executed subsequent to some selected initial time is used

as a measure of its progress and a pair of those values

define a point in two dimensional progress space. The

joint progress of T1 and T2 is then represented by a

sequence of discrete points in this space. Sub-sequences

in which only one coordinate increases correspond to time

intervals in which one task is in control of the CPU, while

simultaneously increases both coordinates can only occur

in multiple processor system. It is obvious that such

trajectory can never decrease either coordinate and the

progress is irreversible.

Because the sequences of resource are used by T1 and

T2, then if the trajectory is allowed to enter the state of a

deadlock is unavoidable. T1 holds resource R1 and T2

holds resource R2 and the subsequent requests from each

process for its second resource must be denied. Other

processes in the system may be able to continue if they do

not require there resources but the performance may be

degraded due to R1 and R2 unavailability.

According to Coffman, deadlock situation has arisen

only because all of the following general conditions were

operative:

1. Processes claim exclusive control of the

resources they require which is called mutual

exclusive condition

2. Process hold resources that are already

allocated to them while waiting for additional

resource, this is called hold and wait

condition.

3. Resources cannot be forcibly removed from

tasks holding them until the resources are used

to completion, this is called the no preemption

condition

4. A circular chain of process exists, where each

process holds one or more resources that are

being requested by the next process in the

chain, this is called the circular wait.

Deadlock detection is pretty simple. First we have

threads that own locks, then threads that wait for lock to

acquire. Think of a directed graph with locks and threads

being nodes and each lock ownership and lock wait is a

vertex that connects those nodes. If you can traverse the

directed graph starting from a certain node and reach that

node again, then we have a deadlock. This is because a

thread waits for itself to release a lock to finally acquire a

desired lock which obviously will never happen unless

there’s an action to release the block for one thread telling

it that there was a deadlock and the thread should resolve

it now it is able to perform actions.

By undertaking the design of a system in which the

possibility of deadlock is to be excluded, we must be sure

that at every point in time at least one of the necessary

conditions is not met. It results in certain constraints in

the way a request for resources may be granted.

Some approaches could be done for example each

process must request all its required resources and cannot

proceed until all have been granted. When a process is

holding a certain resources and denied for another

request, that process must release its original resources

and if necessary request them again along with the

additional resources. If a process has been allocated

resources of certain type, it may subsequently request

only the same type of resources.

Deadlock can be avoided if certain information about

processes is available prior to resource allocation. One

Pi Rj

A process

A resource with 2 instances

Pi requests Rj instances

Pi

One of Rj’s instances is allocated to Pi

Rj

T1 T2 T3

A deadlock

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

known algorithm that is used to avoid deadlock is the

Banker’s algorithm which requires the resource usage

limit number to be known in advance. Two other

algorithms are wait/die and wound/wait. Both these

algorithms have and older process and a younger process.

Process age can be determined by timestamp at a process

creation time. The smaller the time stamps the older the

process.

III. THE BANKER’S ALGORITHM

The banker’s algorithm is a resource allocation and

deadlock prevention algorithm that tests for safety by

simulating the allocation. This algorithm is not widely

used in the real world because to use it the operating

system must know the maximum amount of resources that

every process is going to need at all times. That is why

the banker’s algorithm has some limitations when

implemented. Specifically it needs to know how much of

resource a process could possibly request. In most

systems, this is information is could not be obtained,

making it impossible to implement the banker’s

algorithm. Assuming that the number of process is static

is also unrealistic since in most systems the number of

process varies dynamically.

The banker’s algorithm prevents deadlock by becoming

involved in the granting and denying of system resources.

Each time that a process needs a particular resource that

is not shared, the request must go through the banker’s

approval.

Let us use real life bank as a metaphor. Think of the

banker as a loaner. Every time a process makes a request

for a resource (proposes for a loan), the banker takes a

thorough look at the bank book and attempts to determine

whether a deadlock situation could possibly arise in the

future if the request is granted. The determination is made

by simulating the process ad if the request is granted and

then looking at the resulting post-granted request system

state. After granting a resource there will be an amount of

that resource left free in the system. As of the other

processes in the system, the banker demand that each of

these other processes state the maximum amount of all

system resources they needed to terminate so the banker

know how much of each resource every process is

holding.

If the banker has enough free resource to guarantee that

one process can terminate, then it would be able to take

the resource held by that process and add it to the list. At

this point the banker can look at the larger free list and

attempt to guarantee that another process will terminate

by checking whether the condition can be met. If the

banker can guarantee that all process in the system will

terminate, it grants the request.

However if the banker cannot guarantee any process

will terminate because there is not enough free resource to

meet the requirements, a deadlock may occur. This is

called an unsafe state. In this case the loan request in

question is denied and the requesting process is blocked.

The efficiency if the banker’s algorithm lies on how it

is implemented, for example if the bank books are kept

sorted by process claim size, adding new process

information to the table is O(n) but reducing the table is

simplified. However is the table is kept in no order,

adding new entry is O(1).

Here is an example of a safe state. Let n be the number

of process running in the system and m be the number of

resources types. Then the following data structures is

required:

 A vector length of m represents the number of

available resources of each type. Denotes

available[j] = k, means there are k instances of

resources type Rj available.

 An nxm matrix defines the maximum demand

of each process. Max[i,j] = k then Pi may

request at most k instances of resource type

Rj.

 An nxm matrix defines the number of

resources of each type currently allocated to

each process. Allocation[i,j] = k then process

Pi is currently allocated k instance of resource

type Rj.

 An nxm matrix indicates the remaining

resource need of each process. If need[i,j] = k

then Pi may need k more instances of resource

type Rj to completion.

 Need = max – allocation

Let there be four types of resources A, B, C and D.

Total resources in system:

A B C D

6 5 7 6

Available system resources are:

A B C D

3 1 1 2

Processes (currently allocated

resources):

 A B C D

P1 1 2 2 1

P2 1 0 3 3

P3 1 2 1 0

Processes (maximum resources):

 A B C D

P1 3 3 2 2

P2 1 2 3 4

P3 1 3 5 0

Need= maximum resources - currently

allocated resources

Processes (need resources):

 A B C D

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

P1 2 1 0 1

P2 0 2 0 1

P3 0 1 4 0

A state is considered safe if it is possible for all process

to terminate. Since the system cannot know when a

process will terminate or how many resources it will have

requested by then, the system assumes that all processes

will eventually acquire their stated maximum resources

and terminate afterward. This is reasonable in most cases

because the system is not concerned with how long each

process run. And if in the end a process terminates

without acquiring its maximum resources, it won’t matter.

The banker determines a safe state by trying to find a

set of requests by the process that would allow each to

acquire its maximum resources and then terminate. And

when such set does not exists, it is an unsafe state.

Here is a portion of the banker’s algorithm in C that

checks whether a state is safe:

#include<stdio.h>

//global variables.

int Pcurr[3][3]; //max of 3 processes and 3

resources

int Pmax[3][3];

int avl[]={6,4,7};

int avltemp[]={6,4,7};

int maxres[]={6,4,7};

int running[3]; //determines which

processes are running

int i,j, safe=0,count=0;;

main()

{

 for(i=0;i<3;i++)

 running[i]=1; //set all the

processes to "running" = true (1)

 int ch;

 initresources();

 while(1) //loop forever

 {

 system("clear");

 count=0;

 {

 if(running[i])

 count++;

 }

 if(count==0)

 {

 printf("\n\n\n\n\nCongratulations!

We have completed execution of all

processes successfully without any

deadlock!");

 getchar();

 break;

 }

 //The following is a menu for

the user to see what is going one at each

iteration.

 else

 {

 printf("\nDeadlock

Prevention using Banker's Algorithm:\n");

 viewresources();

 printf("\n1. Request

resource(s) for a process\n");

 printf("\n2. View

Allocated Resources\n");

 printf("\n3. Exit\n");

 printf("\nEnter your

choice:\n");

 scanf("%d",&ch);

 if(ch==1)

 {

 requestresource();

 getchar();

 }

 else if(ch==2)

 {

 viewresources();

 getchar();

 }

 else if(ch==3)

 break;

 else

 printf("\nInvalid Choice, please try

again!\n");

 }

 }

}

//initialization routine, this defines the

current "problem" to be tested.

initresources()

{

 //for each process, get curr.

requirement and max. requirement->check if

max. req....

 Pmax[0][0]=3; Pcurr[0][0]=1;

avl[0]=3;

 Pmax[0][1]=3; Pcurr[0][1]=2;

avl[1]=1;

 Pmax[0][2]=2; Pcurr[0][2]=2;

avl[2]=1;

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

 Pmax[1][0]=1; Pcurr[1][0]=1;

 Pmax[1][1]=2; Pcurr[1][1]=0;

 Pmax[1][2]=3; Pcurr[1][2]=3;

 Pmax[2][0]=1; Pcurr[2][0]=1;

 Pmax[2][1]=1; Pcurr[2][1]=1;

 Pmax[2][2]=5; Pcurr[2][2]=1;

}

requestresource()

{

 //check if it is allocated, whether

it will go to deadlock or not

 int proc, res[3];

 printf("\nFor which Process, you

need resources?(1-3):\n");

 scanf("%d",&proc);

 proc--;

 if(running[proc])

 {

 printf("\nCurrently this

process needs the foll. resources:\n");

 printf("R1\tR2\tR3\n");

 for(i=0;i<3;i++)

 printf("%d\t",Pmax[proc][i]-

Pcurr[proc][i]);

 for(i=0;i<3;i++)

 {

 loop_3:

 printf("\nEnter no. of

Resource %d to Allocate to Process

%d:\n",i+1,proc+1);

 scanf("%d",&res[i]);

 if((res[i]>(Pmax[proc][i]-

Pcurr[proc][i]))||(res[i]>avl[i]))

 {

 printf("\nInvalid Value!, try

again!");

 goto loop_3;

 }

 }

 getchar();

 if(allocate(proc,res))

 {

 printf("\nResources

successfully allocated.\n");

 if(checkcompletion(proc))

 printf("\nProcess %d

has completed its execution and its

resources have been released.\n",proc+1);

 }

 else

 printf("\nResouces

cannot be allocated as it may lead to

Deadlock!\n");

 }

 else

 {

 printf("\nInvalid Process

no.\n");

 getchar();

 }

}

///allocate a resource to a process

int allocate(int proc, int res[3])

{

 for(i=0;i<3;i++)

 {

 Pcurr[proc][i]+=res[i];

 avl[i]-=res[i];

 }

 if(!checksafe())

 {

 for(i=0;i<3;i++)

 {

 Pcurr[proc][i]-=res[i];

 avl[i]+=res[i];

 }

 return 0;

 }

 return 1;

}

int checkcompletion(int proc)

{

 if((Pcurr[proc][0]==Pmax[proc][0])&&

(Pcurr[proc][1]==Pmax[proc][1])&&(Pcurr[pro

c][2]==Pmax[proc][2]))

 {

 for(i=0;i<3;i++)

 {

 avl[i]+=Pmax[proc][i];

 }

 running[proc]=0;

 return 1;

 }

 return 0;

}

//print the state of the resources for the

user

viewresources()

{

 printf("\n----Current Snapshot of

the system----\n");

 printf("\nMax. resources in the

system:\n");

 printf("R1\tR2\tR3\n");

 for(i=0;i<3;i++)

 printf("%d\t",maxres[i]);

 printf("\nCurrent resources

available in the system:\n");

 printf("R1\tR2\tR3\n");

 for(i=0;i<3;i++)

 printf("%d\t",avl[i]);

 printf("\n\nMax. resources required

for Completion of each process:\n");

 printf("\tR1\tR2\tR3\n");

 for(i=0;i<3;i++)

 {

 if(running[i])

 {

 printf("P%d\t",i+1);

 for(j=0;j<3;j++)

 printf("%d\t",Pmax[i][j]);

 printf("\n");

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

 }

 }

 printf("\n\nCurr. resources

allocated for each process:\n");

 printf("\tR1\tR2\tR3\n");

 for(i=0;i<3;i++)

 {

 if(running[i])

 {

 printf("P%d\t",i+1);

 for(j=0;j<3;j++)

 printf("%d\t",Pcurr[i][j]);

 printf("\n");

 }

 }

}

//the bankers algorithm portion of the code

that uses the algorithm to generate a safe

or unsafe value in boolean

int checksafe()

{

 //Check if at least one process can

get all resources it needs

 safe=0;

 for(i=0;i<3;i++)

 {

 avltemp[i]=avl[i];

 }

 for(i=0;i<3;i++)

 {

 if(running[i])

 {

 if((Pmax[i][0]-

Pcurr[i][0]<=avltemp[0])&&(Pmax[i][1]-

Pcurr[i][1]<=avltemp[1])&&(Pmax[i][2]-

Pcurr[i][2]<=avltemp[2]))

 {

 for(j=0;j<3;j++)

 avltemp[j]+=Pcurr[i][j];

 safe=1;

 }

 }

 }

 return safe;

}

IV. CONCLUSION

The banker’s algorithm has one limitation that is

critical, it cannot be implemented in a system that is

unable to obtain certain information such as how much of

each resource a process could get. Nevertheless, it is a

good algorithm for deadlock avoidance since it checks the

request before granting it.

REFERENCES

[1] http://en.wikipedia.org/wiki/Banker's_algorithm

Sunday, December 11, 2011

[2] http://en.wikipedia.org/wiki/Deadlock

 Sunday, December 11, 2011
[3] http://www.fearme.com/misc/alg/node149.html

 Sunday, December 11, 2011

[4] http://forums.devx.com/showthread.php?t=169397
Sunday, December 11, 2011

[5] Rinaldi Munir, Matematika Distrit. Bandung: Informatika, 2005.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Desember 2011

Atika Yusuf 13510055

http://en.wikipedia.org/wiki/Banker's_algorithm
http://en.wikipedia.org/wiki/Deadlock
http://www.fearme.com/misc/alg/node149.html
http://forums.devx.com/showthread.php?t=169397

