
Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

Memory or Time

Jordan Fernando / 13510069

Informatics Engineering

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132, Indonesia

jordan.fernando@students.itb.ac.id

Abstract—there are many ways to solve problems using

algorithms. Most of the algorithms are implemented through

computer by making programs. By implementing through

computers, we need to use the limited memory and processing

speed that are provided by the computer system itself. Some

algorithms could be well balanced between the use of memory

and the processing speed but there are also some algorithms that

require much time or memory to process. Because of that, we

need to choose one between memory usage and execution time.

Section 1 will talk about introduction explaining the title of

this paper. Section 2 will talk about the basic theory needed to

understand the content of this paper. Section 3 will talk about

the facts of growth memory and processor performance. Section

4 will talk about the choice and the consideration for the choice.

Section 5 will talk about some problems that can be time

optimized. Section 6 will talk about the conclusion of this paper.

Index Terms—algorithms, limited, memory, time.

1. INTRODUCTION

In implementing algorithms through computer, we need

to estimate the execution time and memory usage in

running the algorithms as computer program since the

memory and processing speed are limited. Some

algorithms require much time or memory. In some of

those, we need to choose between using a little memory

or time in the processing. If we choose memory then it

will cost a lot of time to process and if we choose time

then it will cost a lot of memory to process. This kind of

thing are the trade-offs that must be chosen especially in

optimization.

Optimization in program or software is the process of

modifying a software system to make some aspect of it

work more efficiently or use fewer resources. The

optimization can be made at a number of levels such as

design, source code, compile, assembly, and run time.

Most of the optimization that programmers do is in the

source code level because at source code level it is easy to

control the memory usage and the execution time.

An example of optimization is Fibonacci sequence. In

finding the Fibonacci sequence through algorithms we

can just make it naïve by finding it recursively. Here is

the naïve function to find the n
th

 member.

function fib(n)

 if n = 0 return 0

 if n = 1 return 1

 return fib(n − 1) + fib(n − 2)

Example if we call fib(5), it will produce a sequence

such as:

1. fib(4)

2. fib(3) + fib(2)

3. (fib(2) + fib(1)) + (fib(1) +

fib(0))
4. (((fib(1) + fib(0)) + fib(1)) +

(fib(1) + fib(0)))

We see that by just calling fib(4), the program will call

fib(1) 3 times and fib(0) 2 times. By calling fib(n) it will

lead to an exponential time algorithm. There is also other

way of finding Fibonacci sequence such as:

 var m := map(0 → 0, 1 → 1)

 function fib(n)

 if map m does not contain key n

 m[n] := fib(n − 1) + fib(n

− 2)

 return m[n]

By using this algorithm we see that it only require O(n)

execution time instead of exponential time but will

consume O(n) space too. In a way to consume the same

execution time but with less memory, there is also another

way such as:

 function fib(n)

 var previousFib := 0,

currentFib := 1

 if n = 0

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

 return 0

 else repeat n − 1 times //loop

is skipped if n=1

 var newFib := previousFib +

currentFib

 previousFib := currentFib

 currentFib := newFib

 return currentFib

This one also require O(n) execution time and only

consume O(1) space in memory.

Each of these two algorithms has their own advantages

and disadvantages that we will discuss it later. This kind

of optimization is also called Dynamic Programming

which is a method for solving complex problems by

breaking them down into simpler sub problems. We will

discuss more about Dynamic Programming later (section

2.3).

In this paper, we will see which one to choose between

memory usage and execution time of a program.

2. THEORY

2.1. Complexity of Algorithm

There are two kinds of complexity that has effect on

complexity of algorithm. There are time complexity and

space complexity.

2.1.1 Time Complexity

 Time complexity can be expressed in

terms of the number of operation used by the

algorithm when the input has a particular size.

The time complexity of algorithm also depends

on the case of the input size. Based on the case,

there are best-case scenario, average-case

scenario, and worst-case scenario. From those

case scenarios, people usually focus on the

worst-case scenario because if the algorithm

works good performance on worst-case scenario

then it will also works good on average-case

and even best-case scenario. We use the big O

notation to determine the worst-case scenario.

 A description of an algorithm in terms of

big O notation usually provides the upper bound

on the growth rate of the function. Beside the

big O notation, there are several other notations

in term of describing the complexity of an

algorithm using the symbol such as o, Ω, ω, and

Θ to describe other kinds of bounds. The

complexity of an algorithm using big O notation

usually classified as some types. Here is the

table and chart that describes some types of big

O notation.

 As in the picture above, you can see that

each complexity has a different growing rate of

execution time as the input size get bigger. The

O(n!) and O(2
n
) are better than the others at

small input (N<2) but become the worst at

bigger input (N>2).

2.1.2 Space Complexity

 Space complexity can be expressed in

terms of the total memory used by the

algorithm. Space complexity depends on the

data structures used to implement the algorithm.

There are many kinds of data structures such as

array, vector, linked list, matrix, record, and

many others.

2.2 Recursive Algorithm

Recursive algorithm is an algorithm that solves a

problem by reducing it to instance of the same problem

with the same input. The example of a recursive

algorithm is as described before in section 1 for solving

Fibonacci problem. Recursive algorithm consists of two

parts which is basis and recurrence. Basis is a part of

recursive algorithm that stops the recursive if the

conditions are met. Recurrence is another part of

recursive algorithm that calls again the function itself to

solve the reduced problem. In order to proving recursive

algorithms, we need to prove that the basis step is correct

and the recurrence/inductive step is correct for reduced

problem.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

2.3 Dynamic Programming

As described in section 1, Dynamic Programming is a

method for solving complex problems by breaking them

down into simpler sub problems. Dynamic Programming

itself can be achieved by using either of Top-down

approach and Bottom-up approach.

2.3.1 Top-down approach

 Top-down approach is an approach in

dynamic programing that use recursive

formulation to solve the problem by using the

solution of its sub problems. However, some

sub problems can be overlapping. In order to

avoid finding the solution of the same sub

problems, we can memorize and store the

solution of the sub problems.

2.3.2 Bottom-up approach

 Bottom-up approach can be done once we

already know the formulation of the recursive

solution so that we can build the solution by

using bottom up approach. First, we find the

solutions to its sub problems and then use those

solutions to build on and arrive at the solutions

of the bigger sub problems.

3. FACTS

Here are some facts about the growth of memory

capacity and processor performance of a computer over

time.

3.1 Growth of memory capacity

Memory capacity has approximately doubled every 1.5

years since the early 1970s. The growth of memory is

exponential over time. Here is a chart that shows the

growth of memory over time.

3.2 Growth of processor performance

The growth of processor performance is about 1.414

times per 1.5 years. The growth of processor performance

is also exponential over time. Here is a chart that shows

the growth of processor performance over times.

In the chart above, it can be seen that the increase is

1.54 times per year but that is only the raw increase. The

real increase is 1.414 times every 1.5 years because the

increase in processor performance also cost the

performance to be used for some applications that cause

the performance to increase itself.

4. THE CHOICE AND CONSIDERATION

From the data of facts (section 3), we can see that the

facts support that the growth of memory capacity of

computer is greater than the growth of processor

performance over time. We also need to consider that the

faster the processing speed, the hotter will the computer

become and can cause damage to the computer part itself.

If we consider it more, by using more memory for the

algorithm we can make the algorithm works more

efficient and consume less process using the method of

Dynamic Programming. It is better if we choose time

over memory because the efficiency is far better by using

more memory and on nowadays program, the usage of

memory is still minimum. Imagine if we use more

memory for memorization, the process could become

faster even more.

As in the example on section 1, we also can see there

are two methods of bottom-up solution for Fibonacci

sequence problem. The difference is that by using

memory, we can use the memory for many cases that are

asked for user. This kind of thing is called pre-

computation. By using pre-computation method, the user

may ask which Fibonacci sequence as much as the user

wants. But it will be different that if we use the solution

without memory. If the user asks for Fibonacci sequence

many times then the program must redo the process all

along for the input from the user.

Beside of that time is also an important part of our life

because we can’t rewind the time. Like example there is

no way for us to just wait one day for finding Fibonacci

sequence up to 1 billion each time we want to find

Fibonacci number 1 billion. But the case will become

different if we pre-compute it for one day and then we can

use the memory over and over. The complexity for time

also become O(1).

So we can say that optimization for time is better than

for memory. Even though the trade-off is the consumption

of memory become greater.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

5. SOME PROBLEMS FOR TIME OPTIMIZATION

5.1. Tower of Hanoi puzzle

The tower of Hanoi is a mathematical game or puzzle

that consists of three rods, and a number of disks of

different sizes which can slide onto any rod. The puzzle

starts with the disks in a neat stack in ascending order of

size on one rod, the smallest at the top, thus making a

conical shape.

The objective of the puzzle is to move the entire stack

to another rod, obeying the following rules:

 Only one disk may be moved at a time.

 Each move consists of taking the upper disk from

one of the rods and sliding it onto another rod, on

top of the other disks that may already be present

on that rod.

 No disk may be placed on top of a smaller disk.

We can see that the functional equation of this recursive

solution is such as this.

n denotes the number of disks to be moved, h denotes

the home rod, t denotes the target rod, not(h,t) denotes the

third rod (neither h nor t), “;” denotes concatenation.

S(n, h, t) is the solution to a problem consisting of n

disks that are to be moved from rod h to rod t.

The basis is that if n=1 then we just move the disk from

rod to target.

5.2. Factorial problem

The factorial problem is a problem that counts the

factorial sequence given input of an integer number. We

can see that the functional equation of this recursive

solution is such as this.

n denotes the input of integer number given.

5.3. Shortest Path problem

Shortest path problem is a problem in finding the

shortest path in a graph from a node to the target node.

Normally we could just use recursive algorithms through

all the nodes that have an adjacency to the initial node.

But that would become too complex and go through all

the combination of node available.

There is an algorithm in finding the shortest path

problem in a given graph called the Djikstra algorithm.

Djikstra algorithm also uses an optimization to memorize

the distance between the source node and all other nodes.

The algorithm for shortest path using Djikstra is like this.

 1 function Dijkstra(Graph, source):

 2 for each vertex v in Graph: // Initializations

 3 dist[v] := infinity ; // Unknown distance

function from source to v

 4 previous[v] := undefined ; // Previous node

in optimal path from source

 5 end for ;

 6 dist[source] := 0 ; // Distance from

source to source

 7 Q := the set of all nodes in Graph ; // All nodes in

the graph are unoptimized - thus are in Q

 8 while Q is not empty: // The main loop

 9 u := vertex in Q with smallest distance in dist[] ;

10 if dist[u] = infinity:

11 break ; // all remaining vertices

are inaccessible from source

12 end if ;

13 remove u from Q ;

14 for each neighbor v of u: // where v has not

yet been removed from Q.

15 alt := dist[u] + dist_between(u, v) ;

16 if alt < dist[v]: // Relax (u,v,a)

17 dist[v] := alt ;

18 previous[v] := u ;

19 decrease-key v in Q; // Reorder v in the

Queue

20 end if ;

21 end for ;

22 end while ;

23 return dist[] ;

24 end Dijkstra.

If we are only interested in a shortest path between

vertices source and target, we can terminate the search at

line 13 if u = target. Now we can read the shortest path

from source to target by iteration:

1 S := empty sequence

2 u := target

3 while previous[u] is defined:

4 insert u at the beginning of S

5 u := previous[u]

6 end while ;

Here is the example sequence of finding the shortest path

from node a to z given such graph.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

6. CONCLUSION

From the data-data on this paper, we can conclude tha

optimization for time/process is better than optimization

for memory/space.

REFERENCES

[1] Rosen, Kenneth H. “Discrete Mathematics and Its Applications

Sixth Edition.” 2007. McGraw-Hill.
[2] http://en.wikipedia.org/wiki/Big_O_notation

[3] http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

[4] http://en.wikipedia.org/wiki/Dynamic_programming
[5] http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 11 Desember 2011

Jordan Fernando (13510069)

