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Abstract—there are many ways to solve problems using 

algorithms. Most of the algorithms are implemented through 

computer by making programs. By implementing through 

computers, we need to use the limited memory and processing 

speed that are provided by the computer system itself. Some 

algorithms could be well balanced between the use of memory 

and the processing speed but there are also some algorithms that 

require much time or memory to process. Because of that, we 

need to choose one between memory usage and execution time. 

Section 1 will talk about introduction explaining the title of 

this paper. Section 2 will talk about the basic theory needed to 

understand the content of this paper. Section 3 will talk about 

the facts of growth memory and processor performance. Section 

4 will talk about the choice and the consideration for the choice. 

Section 5 will talk about some problems that can be time 

optimized. Section 6 will talk about the conclusion of this paper.   

Index Terms—algorithms, limited, memory, time.  

1. INTRODUCTION 

In implementing algorithms through computer, we need 

to estimate the execution time and memory usage in 

running the algorithms as computer program since the 

memory and processing speed are limited. Some 

algorithms require much time or memory. In some of 

those, we need to choose between using a little memory 

or time in the processing. If we choose memory then it 

will cost a lot of time to process and if we choose time 

then it will cost a lot of memory to process. This kind of 

thing are the trade-offs that must be chosen especially in 

optimization. 

Optimization in program or software is the process of 

modifying a software system to make some aspect of it 

work more efficiently or use fewer resources. The 

optimization can be made at a number of levels such as 

design, source code, compile, assembly, and run time. 

Most of the optimization that programmers do is in the 

source code level because at source code level it is easy to 

control the memory usage and the execution time. 

An example of optimization is Fibonacci sequence. In 

finding the Fibonacci sequence through algorithms we 

can just make it naïve by finding it recursively. Here is 

the naïve function to find the n
th

 member. 

function fib(n) 

       if n = 0 return 0 

       if n = 1 return 1 

       return fib(n − 1) + fib(n − 2) 

Example if we call fib(5), it will produce a sequence 

such as: 

1. fib(4) 

2. fib(3) + fib(2) 

3. (fib(2) + fib(1)) + (fib(1) + 

fib(0)) 
4. (((fib(1) + fib(0)) + fib(1)) + 

(fib(1) + fib(0)))  

 

We see that by just calling fib(4), the program will call 

fib(1) 3 times and fib(0) 2 times. By calling fib(n) it will 

lead to an exponential time algorithm. There is also other 

way of finding Fibonacci sequence such as: 

   var m := map(0 → 0, 1 → 1) 

   function fib(n) 

       if map m does not contain key n 

           m[n] := fib(n − 1) + fib(n 

− 2) 

       return m[n] 

By using this algorithm we see that it only require O(n) 

execution time instead of exponential time but will 

consume O(n) space too. In a way to consume the same 

execution time but with less memory, there is also another 

way such as:  

   function fib(n) 

       var previousFib := 0, 

currentFib := 1 

       if n = 0 
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           return 0 

       else repeat n − 1 times  //loop 

is skipped if n=1 

           var newFib := previousFib + 

currentFib 

           previousFib := currentFib 

           currentFib  := newFib 

       return currentFib 

This one also require O(n) execution time and only 

consume O(1) space in memory. 

Each of these two algorithms has their own advantages 

and disadvantages that we will discuss it later. This kind 

of optimization is also called Dynamic Programming 

which is a method for solving complex problems by 

breaking them down into simpler sub problems. We will 

discuss more about Dynamic Programming later (section 

2.3). 

In this paper, we will see which one to choose between 

memory usage and execution time of a program. 

2. THEORY 

2.1. Complexity of Algorithm 

There are two kinds of complexity that has effect on 

complexity of algorithm. There are time complexity and 

space complexity. 

2.1.1 Time Complexity 

 Time complexity can be expressed in 

terms of the number of operation used by the 

algorithm when the input has a particular size. 

The time complexity of algorithm also depends 

on the case of the input size. Based on the case, 

there are best-case scenario, average-case 

scenario, and worst-case scenario. From those 

case scenarios, people usually focus on the 

worst-case scenario because if the algorithm 

works good performance on worst-case scenario 

then it will also works good on average-case 

and even best-case scenario. We use the big O 

notation to determine the worst-case scenario. 

 A description of an algorithm in terms of 

big O notation usually provides the upper bound 

on the growth rate of the function. Beside the 

big O notation, there are several other notations 

in term of describing the complexity of an 

algorithm using the symbol such as o, Ω, ω, and 

Θ to describe other kinds of bounds. The 

complexity of an algorithm using big O notation 

usually classified as some types. Here is the 

table and chart that describes some types of big 

O notation. 

 

 

 
 As in the picture above, you can see that 

each complexity has a different growing rate of 

execution time as the input size get bigger. The 

O(n!) and O(2
n
) are better than the others at 

small input (N<2) but become the worst at 

bigger input (N>2). 

2.1.2 Space Complexity 

 Space complexity can be expressed in 

terms of the total memory used by the 

algorithm. Space complexity depends on the 

data structures used to implement the algorithm. 

There are many kinds of data structures such as 

array, vector, linked list, matrix, record, and 

many others. 

2.2 Recursive Algorithm 

Recursive algorithm is an algorithm that solves a 

problem by reducing it to instance of the same problem 

with the same input. The example of a recursive 

algorithm is as described before in section 1 for solving 

Fibonacci problem. Recursive algorithm consists of two 

parts which is basis and recurrence. Basis is a part of 

recursive algorithm that stops the recursive if the 

conditions are met. Recurrence is another part of 

recursive algorithm that calls again the function itself to 

solve the reduced problem. In order to proving recursive 

algorithms, we need to prove that the basis step is correct 

and the recurrence/inductive step is correct for reduced 

problem.  
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2.3 Dynamic Programming 

As described in section 1, Dynamic Programming is a 

method for solving complex problems by breaking them 

down into simpler sub problems. Dynamic Programming 

itself can be achieved by using either of Top-down 

approach and Bottom-up approach. 

2.3.1 Top-down approach 

 Top-down approach is an approach in 

dynamic programing that use recursive 

formulation to solve the problem by using the 

solution of its sub problems. However, some 

sub problems can be overlapping. In order to 

avoid finding the solution of the same sub 

problems, we can memorize and store the 

solution of the sub problems. 

2.3.2 Bottom-up approach 

 Bottom-up approach can be done once we 

already know the formulation of the recursive 

solution so that we can build the solution by 

using bottom up approach. First, we find the 

solutions to its sub problems and then use those 

solutions to build on and arrive at the solutions 

of the bigger sub problems. 

3. FACTS 

Here are some facts about the growth of memory 

capacity and processor performance of a computer over 

time. 

3.1 Growth of memory capacity 

Memory capacity has approximately doubled every 1.5 

years since the early 1970s. The growth of memory is 

exponential over time. Here is a chart that shows the 

growth of memory over time.  

 

3.2 Growth of processor performance 

The growth of processor performance is about 1.414 

times per 1.5 years. The growth of processor performance 

is also exponential over time. Here is a chart that shows 

the growth of processor performance over times.  

 
In the chart above, it can be seen that the increase is 

1.54 times per year but that is only the raw increase. The 

real increase is 1.414 times every 1.5 years because the 

increase in processor performance also cost the 

performance to be used for some applications that cause 

the performance to increase itself. 

4. THE CHOICE AND CONSIDERATION 

From the data of facts (section 3), we can see that the 

facts support that the growth of memory capacity of 

computer is greater than the growth of processor 

performance over time. We also need to consider that the 

faster the processing speed, the hotter will the computer 

become and can cause damage to the computer part itself. 

If we consider it more, by using more memory for the 

algorithm we can make the algorithm works more 

efficient and consume less process using the method of 

Dynamic Programming. It is better if we choose time 

over memory because the efficiency is far better by using 

more memory and on nowadays program, the usage of 

memory is still minimum. Imagine if we use more 

memory for memorization, the process could become 

faster even more. 

As in the example on section 1, we also can see there 

are two methods of bottom-up solution for Fibonacci 

sequence problem. The difference is that by using 

memory, we can use the memory for many cases that are 

asked for user. This kind of thing is called pre-

computation.  By using pre-computation method, the user 

may ask which Fibonacci sequence as much as the user 

wants. But it will be different that if we use the solution 

without memory. If the user asks for Fibonacci sequence 

many times then the program must redo the process all 

along for the input from the user. 

Beside of that time is also an important part of our life 

because we can’t rewind the time. Like example there is 

no way for us to just wait one day for finding Fibonacci 

sequence up to 1 billion each time we want to find 

Fibonacci number 1 billion. But the case will become 

different if we pre-compute it for one day and then we can 

use the memory over and over. The complexity for time 

also become O(1). 

So we can say that optimization for time is better than 

for memory. Even though the trade-off is the consumption 

of memory become greater. 
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5. SOME PROBLEMS FOR TIME OPTIMIZATION 

5.1. Tower of Hanoi puzzle 

 
The tower of Hanoi is a mathematical game or puzzle 

that consists of three rods, and a number of disks of 

different sizes which can slide onto any rod. The puzzle 

starts with the disks in a neat stack in ascending order of 

size on one rod, the smallest at the top, thus making a 

conical shape. 

The objective of the puzzle is to move the entire stack 

to another rod, obeying the following rules: 

 Only one disk may be moved at a time. 

 Each move consists of taking the upper disk from 

one of the rods and sliding it onto another rod, on 

top of the other disks that may already be present 

on that rod. 

 No disk may be placed on top of a smaller disk. 

We can see that the functional equation of this recursive 

solution is such as this. 

                                             
               

n denotes the number of disks to be moved, h denotes 

the home rod, t denotes the target rod, not(h,t) denotes the 

third rod (neither h nor t), “;” denotes concatenation. 

S(n, h, t) is the solution to a problem consisting of n 

disks that are to be moved from rod h to rod t. 

The basis is that if n=1 then we just move the disk from 

rod to target. 

5.2. Factorial problem 

The factorial problem is a problem that counts the 

factorial sequence given input of an integer number. We 

can see that the functional equation of this recursive 

solution is such as this. 

              

n denotes the input of integer number given. 

5.3. Shortest Path problem 

Shortest path problem is a problem in finding the 

shortest path in a graph from a node to the target node. 

Normally we could just use recursive algorithms through 

all the nodes that have an adjacency to the initial node. 

But that would become too complex and go through all 

the combination of node available.  

There is an algorithm in finding the shortest path 

problem in a given graph called the Djikstra algorithm. 

Djikstra algorithm also uses an optimization to memorize 

the distance between the source node and all other nodes. 

The algorithm for shortest path using Djikstra is like this. 

 1  function Dijkstra(Graph, source): 

 2      for each vertex v in Graph:            // Initializations 

 3          dist[v] := infinity ;              // Unknown distance 

function from source to v 

 4          previous[v] := undefined ;         // Previous node 

in optimal path from source 

 5      end for ; 

 6      dist[source] := 0 ;                    // Distance from 

source to source 

 7      Q := the set of all nodes in Graph ;   // All nodes in 

the graph are unoptimized - thus are in Q 

 8      while Q is not empty:                  // The main loop 

 9          u := vertex in Q with smallest distance in dist[] ; 

10          if dist[u] = infinity: 

11              break ;                        // all remaining vertices 

are inaccessible from source 

12          end if ; 

13          remove u from Q ; 

14          for each neighbor v of u:          // where v has not 

yet been removed from Q. 

15              alt := dist[u] + dist_between(u, v) ; 

16              if alt < dist[v]:              // Relax (u,v,a) 

17                  dist[v] := alt ; 

18                  previous[v] := u ; 

19                  decrease-key v in Q;       // Reorder v in the 

Queue 

20              end if ; 

21          end for ; 

22      end while ; 

23      return dist[] ; 

24  end Dijkstra. 

If we are only interested in a shortest path between 

vertices source and target, we can terminate the search at 

line 13 if u = target. Now we can read the shortest path 

from source to target by iteration: 

1  S := empty sequence 

2  u := target 

3  while previous[u] is defined: 

4      insert u at the beginning of S 

5      u := previous[u] 

6  end while ; 

Here is the example sequence of finding the shortest path 

from node a to z given such graph. 
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6. CONCLUSION 

From the data-data on this paper, we can conclude tha 

optimization for time/process is better than optimization 

for memory/space.  
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