
Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

Pathfinding through urban traffic
using Dijkstra’s Algorithm

Tubagus Andhika Nugraha (13510007)

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
andhika.nugraha@students.itb.ac.id; andhika.nugraha@gmail.com

Abstract—Getting from place to place is a problem for
citizens of urban cities that worsens every day due to the
inevitable increase in vehicle ownership leading to more
traffic on roads and the impending traffic jams that come
with them. Efficient urban travel requires a route that is not
only short in terms of distance, but also takes less time by
avoiding the worst traffic. This paper discusses how
Dijkstra’s algorithm can be used to find the optimal path for
travelling inside a city.

Index Terms—Dijkstra’s algorithm, graph theory,

pathfinding, traffic

I. INTRODUCTION

Citizens of Jakarta, the populous, metropolitan capital
of Indonesia would describe living in the city as “getting
old on the road”. Traffic jams have become an increasing
problem for the citizens of not only Jakarta, but also other
metropolitan cities in the world. As an example, analysts
have predicted that by the year 2050, traffic in Jakarta
will be congested up to the point of freezing entirely.

The traffic jam problem may be a problem that must be
solved by politicians and city planners, but it may take
more than a decade for any real major long-term change
to materialize. Practically, citizens would benefit from
just a way to navigate through city traffic and get home
from work in an efficient manner. Doing so would have to
take into account not just distance, but also traffic, as a
factor in determining the most optimal route. Such a route
can be generated automatically using computers.

The task of finding a route between two points is called
pathfinding. Pathfinding in general is used in a lot of
applications, from airplane routing to intelligent robots.
Most applications of pathfinding utilize a branch of
discrete mathematics called graph theory. The same idea
can be applied to the traffic jam problem. We first
represent the city map that includes our origin and
destination points as a graph, then we calculate the
optimal path based on that graph.

One of the most common ways of finding such an
optimal path in graphs is using a graph search algorithm
called Dijkstra’s algorithm. This paper shall discuss how
Dijkstra’s algorithm can be applied in pathfinding through
urban traffic.

II. THEORIES

A. City Maps
A city map is a large-scale thematic map of a city (or

part of a city) created to enable the fastest possible
orientation in an urban space. [1] A city map generally
contains the city’s transport network, in the form of roads,
highways, as well as railroads, tram networks, monorails
and other forms of public transportation. Generally, roads
are symbolized by lines with their thickness representing
the size of the road, i.e. highways and artery roads are
thicker than streets in residential areas. Likewise,
crisscrossing lines represent intersections. Public
transportation lines are generally represented with other
forms of lines, but they are outside the context of this
paper. Buildings and open green spaces are denoted as the
spaces between roads.

In the context of this paper, three types of objects
within city maps are of interest: buildings, roads and
intersections. Buildings are used as start and end points
for the traveller. Roads are used as the basis for the route,

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

because simply, cars can only travel through roads.
Intersections split roads into sections of roads, which will
be the unit of calculation, as we will see in Chapter III.
Lengths of sections of roads can then be inferred from
measuring the distance between intersections on the map
and applying the appropriate scale.

Besides distance, we also need to take into account the
amount of traffic going through a section of road. This
data can be represented in many ways, but for this paper,
we shall measure the traffic through a section of road in
terms of the average speed of the cars travelling through
the section of road. We shall measure such speed in
kilometers per hour (km/h).

B. Graph Theory
A graph is an abstract representation of a set of objects

where some pairs of the objects are connected by links.
The interconnected objects are represented by
mathematical abstractions called vertices, and the links
that connect some pairs of vertices are called edges.
Typically, a graph is depicted in diagrammatic form as a
set of dots for the vertices, joined by lines or curves for
the edges. [2]

There are multiple types of graphs, depending on how
to categorize them. A graph may be undirected, that is,
there is no distinction between the two vertices connected
by an edge, or it may be directed from one vertex to
another. An example of an undirected graph would be
people shaking hands, where each person is represented
by a vertex and their shaking hands represented by an
edge. When two people shake hands, there is no
distinction between the two, and thus, it is a symmetric
act, therefore an undirected graph. A purchase at the
market, however, would be asymmetric, as there would be
a seller and a buyer. This is an example of a directed
graph. Mixed graphs are graphs in which some edges are
directed and some aren’t. Below is an example of a
directed graph.

Another distinction among graphs is between weighted

and non-weighted graphs. In non-weighted graphs, there
is no distinction between one edge and another in terms of
significance. Every edge is considered equal; the only
difference is the vertices they connect. In weighted
graphs, however, numbers are assigned to each edge.
These numbers may represent cost, distance, and

capacities, among others, depending on the problem at
hand.

There are also simple graphs and multigraphs. In
simple graphs, two vertices can only be connected by one
edge, whereas in multiple graphs, multiple edges are
allowed.

Besides edges and vertices, there are also other useful
concepts in graph theory. One particular concept of use in
this paper is paths. A path in a graph is a sequence of
vertices such that from each of its vertices there is an edge
to the next vertex in the sequence. A path may be infinite,
but a finite path always has a first vertex, called its start
vertex, and a last vertex, called its end vertex. Both of
them are called terminal vertices of the path. The other
vertices in the path are internal vertices. [3] In weighted
graphs, the weight of a path is the sum of the weights of
all the edges that the path consists of.

Applications in graph theory range from city planning
to electronic circuit design, including, as this paper will
show, pathfinding through urban traffic.

C. Dijkstra’s Algorithm
As explained before, in weighted graphs, the weight of

a path can be calculated as the sum of the weights of the
edges inside the path. Finding the shortest path between
two vertices is called the shortest path problem. Several
algorithms exist to solve different variations of the
shortest path problem; of which one is Dijkstra’s
algorithm.

Dijkstra’s algorithm was conceived by Dutch computer
scientist Edsger Dijkstra in 1956 and published in 1959.
For a given source vertex (node) in the graph, the
algorithm finds the path with lowest cost (i.e. the shortest
path) between that vertex and every other vertex. It can
also be used for finding costs of shortest paths from a
single vertex to a single destination vertex by stopping the
algorithm once the shortest path to the destination vertex
has been determined. [4]

The algorithm
Let the node at which we are starting be called the

initial node. Let the distance of node Y be the distance
from the initial node to node Y. Dijkstra’s algorithm will
then run as follows:

1. Assign a tentative distance value to every node.
Set it zero for the initial node, and infinity for
every other node.

2. Mark all nodes as unvisited. Set the initial node as
current. Create a set of the unvisited nodes and call
it the unvisited set.

3. For the current node, consider all of its unvisited
neighbors and calculate their tentative distances.
For example, if the current node X is marked with
a distance of 4 (from the initial node), and the edge
connecting it with neighbor Y has length 3, then
the distance to B will be 4+3=7. If this distance is
less than the previously recorded distance, then
overwrite that distance. Even though a neighbor

A	

B	

C	
 D	

E	

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

has been examined, it is not marked as visited at
this time, and it remains the unvisited set.

4. Once every neighbor of the current node has been
considered, mark the current node as visited and
remove it from the unvisited set. A visited node
will never be checked again; its distance recorded
now is final and minimal.

5. If the destination node has been marked as visited
or if the smallest tentative distance among the
nodes in the unvisited set is infinity, then the
algorithm has finished.

6. Set the unvisited node marked with the smallest
tentative distance as the next current node and go
back to step 3 [4].

In pseudocode, Dijkstra’s algorithm can be described
as follows:

function	
 Dijkstra	
 (G:	
 Graph,	
 S:	
 Vertex)	
 →	

real	

{	
 G	
 is	
 a	
 Graph	
 with	
 each	
 edge	
 E	
 in	
 the	

form	
 of	
 (v1,	
 v2)	
 and	
 vertices	
 V.	
 S	
 is	

the	
 source	
 vertex.	
 }	

	

DECLARATIONS	

	

dist:	
 array	
 of	
 real	
 {	
 array	
 of	
 distances	

from	
 the	
 source	
 to	
 each	
 vertex	
 }	

prev:	
 array	
 of	
 pointer	
 to	
 Vertex	
 {	
 array	

of	
 pointers	
 to	
 preceding	
 	
 vertices	
 }	

i:	
 integer	
 {	
 loop	
 index	
 }	

F:	
 list	
 of	
 Vertex	
 {	
 finished	
 vertices	
 }	

U:	
 list	
 of	
 Vertex	
 {	
 unfinished	
 vertices	
 }	

	

ALGORITHM	

	

{	
 Init:	
 set	
 every	
 distance	
 to	
 ∞	
 }	

iterate	
 [0..(abs(G.V)–1)]	

	
 dist[i]	
 =	
 ∞	

	
 prev[i]	
 =	
 Nil	

{	
 end	
 iterate	
 }	

	

{	
 The	
 distance	
 from	
 the	
 source	
 to	
 the	

source	
 is	
 defined	
 to	
 be	
 zero	
 }	

dist[S]	
 =	
 0	

	

while	
 (F	
 is	
 missing	
 a	
 vertex)	
 do	

	
 V	
 ←	
 the	
 vertex	
 in	
 U	
 with	
 the	
 shortest	

path	
 to	
 S	

	
 Insert(F,	
 V)	

	

	
 foreach	
 edge	
 of	
 V	
 as	
 (v1,	
 v2)	

	
 	
 if	
 (dist[v1]	
 +	
 length(v1,	
 v2)	
 <	

dist[v2])	
 then	

	
 	
 	
 dist[v2]	
 =	
 dist[v1]	
 +	

length(v1,	
 v2)	

	
 	
 	
 prev[v2]	
 =	
 v1	

	
 	
 {	
 end	
 if	
 }	

	
 {	
 end	
 foreach	
 }	

{	
 end	
 while	
 }	

{	
 [5]	
 }	

Dijkstra's original algorithm does not use a min-priority

queue and runs in O(|V|2). The idea of this algorithm is
also given in (Leyzorek et al. 1957). The common
implementation based on a min-priority queue
implemented by a Fibonacci heap and running in O(|E| +
|V| log |V|) is due to (Fredman & Tarjan 1984). This is
asymptotically the fastest known single-source shortest-
path algorithm for arbitrary directed graphs with
unbounded nonnegative weights. [4]

III. METHODS

A. Representation of a City Map as a Graph
The first step in pathfinding would be to represent the

city map as a graph. However, there is a fundamental
difference between maps and graphs. Maps are basically
continuous representations of the streets inside a city,
which themselves are also continuous. A graph on the
other hand is a discrete structure with discrete concepts of
vertices and edges. Thus, we need to convert elements of
a city map into discrete objects so the map can be
represented as a graph. These elements are intersections,
roads, and buildings. Intersections are the only possible
places where drivers can turn and change roads, thus we
shall represent each intersection as a node or vertex in a
graph. Since intersections are also entry and exit points
for traffic, the traffic between two intersections can be
assumed to be uniform and represented by a single
measurement, thus justifying the intersections’
representation as vertices. Since a person would start his
or her route from a building, we shall also define two
additional vertices at the origin and destination buildings.

For roads, however, additional detail is required, since
there are different types of roads, and additional variables
are associated to each road. Some roads are one-way,
while others are bidirectional. Roads also have distances
and traffic patterns. For traffic patterns, some roads have
different traffic patterns in each direction; in other cases
they are uniform. Thus, our graph shall be a mixed
weighted multigraph. Bidirectional roads with uniform
traffic patterns, such as residential streets, shall be
represented as undirected edges. One-way roads between
two intersections shall be represented as a single directed
edge. For two-way roads between two intersections but
different traffic patterns in each direction, we shall
represent them with two oppositely directed edges.

The next thing we need to do is assign numbers as
weights for each of these edges. Since our basic goal here
is to find the most efficient route between two points,
meaning that we need to look for the most timesaving
path, the weight of an edge would need to represent the
time needed to go through the section of road. Let T(E) be
a function of edge E that represents the weight of the
edge, and thus, the time needed for a vehicle to pass
through it. As has been explained in subchapter IIA, two
variables are of importance here: distance and traffic. The

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

calculation of T would have to involve these two
variables. Let D(E) be a function of edge E that represents
the length of road between two intersections connected by
E, and let F(E) be a function of edge E that represents the
average speed of vehicles passing through the section of
road represented by E. For distance, D, it is easily
understood that the longer the distance between two
points, the more time needed, thus T is directly
proportionate to D. For traffic, F, since the data we use
shall be in the form of the average speed of cars going in
the section of road, T shall be inversely proportionate to
F. Because our measurement of traffic in F(E) is the
average speed of cars going through a section of road, F
already factors in any possible cause of traffic congestion:
road breadth, road quality, car volume, etc.

Thus, we may summarize T as the following formula:

𝑇(𝐸) =
𝐷(𝐸)
𝐹(𝐸)

(1)

According to this interpretation, the weight of a path

would then represent the time needed to go through the
roads inside a route. Thus, using Dijkstra’s algorithm to
find the shortest path between the origin and final vertices
would be equivalent to finding the most efficient route
between the origin and destination locations.

B. Obtaining Data
Once we have understood how to represent a city map

as a graph, we need to obtain data to be able to generate a
useful graph. This data involves the city map itself, which
includes the distance of roads, as well as traffic data,
measured by the average speed of cars. This subchapter
shall discuss the possible methods for obtaining such data.

City maps are freely available for download on many
websites, including but not limited to Google Maps and
Bing Maps. In this paper, we shall use a map of Bandung
between lower Cisitu and ITB as a case study.

Traffic data is collected by many institutions, although
not all provide the data we need publicly. In Indonesia,
for example, one such institution is the National Traffic
Management Centre of the Indonesian Police (NTMC
POLRI). Generally, however, we may assume that traffic
data does exist for major roads, as public policy planners
in urban cities would most likely install traffic-monitoring
cameras in key areas as part of their policy development
strategy.

For residential or suburban areas, however, traffic data
is generally unavailable, thus we shall assume a mean
speed of 20 km/h in these areas.

As a matter of fact, since the formula in equation (1) is
in the form of a ratio, using scaled-down measurements
(such as cm or pixels for distance) would still result in the
same route, provided that the same scale is used
throughout the graph.

C. Case Study
As a case study, we shall examine the region of

Bandung between upper Cisitu and ITB. This is an area
frequented by ITB students, with several possible routes
between upper Cisitu and the ITB campus. Each of these
different routes exhibit different traffic patterns. Our
challenge would be to map the fastest route between a
point near Cisitu to the front gate of ITB.

We shall first obtain the map for the area. We shall use
Google Maps as the source for this map.

This map, however, contains discrepancies originating

from Google’s conversion of satellite imagery into digital
maps. This map also contains many roads and streets
which will be of no use to us, such as dead ends and roads
which are highly unlikely to be travelled through by
student cars. We eliminate these elements, then overlay
this map with vertices and edges that represent
intersections and roads, respectively, with white dots
representing vertices (aside from the origin and
destination nodes) and black lines representing edges. The
red dot shows our point of origin (Cisitu), and the blue
dot shows our destination point (ITB). The resulting
image would be:

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

In the image above, we can see how most of the edges

are undirected, except for the edges between vertices F
and G as well as G and J. This is so because only the
roads represented by those edges are one-way; the other
roads are two-way. We can also see how the shape of the
edges may trace out the original path of the road, as seen
in the edge between K and M, or exhaustively simplify
the path, as seen in the edge between B and D. Because
graphs are merely abstractions, however, the shape of the
edge does not matter, because the actual distance between
the intersections shall be represented by numerical data.

We then feed this graph with distance and traffic data,
based on the following table. This data is an
oversimplification of the actual conditions in the mapped
area, but our underlying work should still apply.

Edge Distance (D) Traffic (F) Time (T)
A-B 10 m 5 km/h 2
B-C 30 m 10 km/h 3
B-D 70 m 10 km/h 7
C-E 50 m 20 km/h 2.5
C-D 50 m 20 km/h 2.5
E-H 250 m 10 km/h 25
D-F 210 m 15 km/h 1.4
F-G 20 m 20 km/h 1
G-H 30 m 5 km/h 6

G-J 30 m 20 km/h 1.5
H-I 50 m 40 km/h 0.8
J-K 20 m 20 km/h 1
I-K 50 m 30 km/h 0.6
I-L 100 m 40 km/h 2.5

L-M 70 m 40 km/h 1.75
K-N 300 m 40 km/h 7.5
M-O 70 m 10 km/h 7
N-O 50 m 10 km/h 5

Incorporating the above data and removing the map

underneath results in the following graph:

This graph is now complete; all relevant elements have

been represented and all variables have been incorporated.
We are now ready to execute Dijkstra’s algorithm on this
graph.

Using Dijkstra’s algorithm, the shortest path would be
the sequence of vertices A-C-D-F-G-J-K-I-L-M-O. This
is equivalent to turning left to Jalan Dago Asri 2, then
continuing to Jalan Alpina and then Jalan Cisitu Lama,
then Turning left at Jalan Siliwangi, turning right to Jalan
Sumur Bandung, continuing left to Jalan Tamansari and
taking the first left to Jalan Dayang Sumbi. The route then
continues through Jalan Dago, turning right at Jalan
Ganesha, arriving at the ITB front gate.

Makalah IF2091 Struktur Diskrit – Sem. I Tahun 2011/2012

IV. DISCUSSION

The case study above shows plausible results. Albeit
oversimplified data, the study shows that it is indeed
possible to determine the most efficient route by first
representing a portion of a city map as a graph and then
applying Dijkstra’s algorithm to find the shortest path.

In real-life application, pathfinding would involve a far
greater number of vertices and edges spanning a wider
area of the city. Say, for example, if the map used in our
case study was not simplified, we would have at least
twice the number of vertices. More data would be
required regarding traffic, and more precise
measurements of distance would help improve the quality
of the process.

With regards to algorithm complexity, pathfinding
using the method described above runs in the same
amount of time as Dijkstra’s algorithm, added with the
arithmetic of calculating T(E). If V is the number of
vertices in the resulted graph and E is the number of
edges, then our method would run in O(|V|2) + O(E).
Since the algorithm complexity follows a quadratic
pattern, applying this method in a real-life situation would
require significantly more computation that our case
study.

However, it should be noted that Dijkstra’s algorithm is
the most efficient algorithm for finding the shortest path
for graphs with non-negative weights, thus this method
would be relatively the most efficient method of
pathfinding using graph theory.

V. CONCLUSION

From the explanation above, it can be concluded that it
is possible to route the most efficient route through traffic
by means of using Dijkstra’s algorithm.

REFERENCES

[1] City map,
http://en.wikipedia.org/w/index.php?title=City_map&oldid=46161
6441 (last visited Dec. 7, 2011).

[2] Graph (mathematics),
http://en.wikipedia.org/w/index.php?title=Graph_(mathematics)&o
ldid=463999352 (last visited Dec. 7, 2011).

[3] Path (graph theory),
http://en.wikipedia.org/w/index.php?title=Path_(graph_theory)&ol
did=450267728 (last visited Dec. 11, 2011).

[4] Dijkstra's algorithm,
http://en.wikipedia.org/w/index.php?title=Dijkstra%27s_algorithm
&oldid=465227482 (last visited Dec. 11, 2011).

[5] http://www.cprogramming.com/tutorial/computersciencetheory/dij
kstra.html

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 10 Desember 2011

Tubagus Andhika Nugraha
13510007

