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Abstract—Getting from place to place is a problem for 
citizens of urban cities that worsens every day due to the 
inevitable increase in vehicle ownership leading to more 
traffic on roads and the impending traffic jams that come 
with them. Efficient urban travel requires a route that is not 
only short in terms of distance, but also takes less time by 
avoiding the worst traffic. This paper discusses how 
Dijkstra’s algorithm can be used to find the optimal path for 
travelling inside a city. 

 
Index Terms—Dijkstra’s algorithm, graph theory, 

pathfinding, traffic 
 
 

I.   INTRODUCTION 

Citizens of Jakarta, the populous, metropolitan capital 
of Indonesia would describe living in the city as “getting 
old on the road”. Traffic jams have become an increasing 
problem for the citizens of not only Jakarta, but also other 
metropolitan cities in the world. As an example, analysts 
have predicted that by the year 2050, traffic in Jakarta 
will be congested up to the point of freezing entirely. 

The traffic jam problem may be a problem that must be 
solved by politicians and city planners, but it may take 
more than a decade for any real major long-term change 
to materialize. Practically, citizens would benefit from 
just a way to navigate through city traffic and get home 
from work in an efficient manner. Doing so would have to 
take into account not just distance, but also traffic, as a 
factor in determining the most optimal route. Such a route 
can be generated automatically using computers.  

The task of finding a route between two points is called 
pathfinding. Pathfinding in general is used in a lot of 
applications, from airplane routing to intelligent robots. 
Most applications of pathfinding utilize a branch of 
discrete mathematics called graph theory. The same idea 
can be applied to the traffic jam problem. We first 
represent the city map that includes our origin and 
destination points as a graph, then we calculate the 
optimal path based on that graph. 

One of the most common ways of finding such an 
optimal path in graphs is using a graph search algorithm 
called Dijkstra’s algorithm. This paper shall discuss how 
Dijkstra’s algorithm can be applied in pathfinding through 
urban traffic. 

 
  

II.  THEORIES 

A. City Maps 
A city map is a large-scale thematic map of a city (or 

part of a city) created to enable the fastest possible 
orientation in an urban space. [1] A city map generally 
contains the city’s transport network, in the form of roads, 
highways, as well as railroads, tram networks, monorails 
and other forms of public transportation. Generally, roads 
are symbolized by lines with their thickness representing 
the size of the road, i.e. highways and artery roads are 
thicker than streets in residential areas. Likewise, 
crisscrossing lines represent intersections. Public 
transportation lines are generally represented with other 
forms of lines, but they are outside the context of this 
paper. Buildings and open green spaces are denoted as the 
spaces between roads. 

 

 
 

In the context of this paper, three types of objects 
within city maps are of interest: buildings, roads and 
intersections. Buildings are used as start and end points 
for the traveller. Roads are used as the basis for the route, 
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because simply, cars can only travel through roads. 
Intersections split roads into sections of roads, which will 
be the unit of calculation, as we will see in Chapter III. 
Lengths of sections of roads can then be inferred from 
measuring the distance between intersections on the map 
and applying the appropriate scale. 

Besides distance, we also need to take into account the 
amount of traffic going through a section of road. This 
data can be represented in many ways, but for this paper, 
we shall measure the traffic through a section of road in 
terms of the average speed of the cars travelling through 
the section of road. We shall measure such speed in 
kilometers per hour (km/h). 
 

B. Graph Theory 
A graph is an abstract representation of a set of objects 

where some pairs of the objects are connected by links. 
The interconnected objects are represented by 
mathematical abstractions called vertices, and the links 
that connect some pairs of vertices are called edges. 
Typically, a graph is depicted in diagrammatic form as a 
set of dots for the vertices, joined by lines or curves for 
the edges. [2] 

There are multiple types of graphs, depending on how 
to categorize them. A graph may be undirected, that is, 
there is no distinction between the two vertices connected 
by an edge, or it may be directed from one vertex to 
another. An example of an undirected graph would be 
people shaking hands, where each person is represented 
by a vertex and their shaking hands represented by an 
edge. When two people shake hands, there is no 
distinction between the two, and thus, it is a symmetric 
act, therefore an undirected graph. A purchase at the 
market, however, would be asymmetric, as there would be 
a seller and a buyer. This is an example of a directed 
graph. Mixed graphs are graphs in which some edges are 
directed and some aren’t. Below is an example of a 
directed graph. 

 

 
 
Another distinction among graphs is between weighted 

and non-weighted graphs. In non-weighted graphs, there 
is no distinction between one edge and another in terms of 
significance. Every edge is considered equal; the only 
difference is the vertices they connect. In weighted 
graphs, however, numbers are assigned to each edge. 
These numbers may represent cost, distance, and 

capacities, among others, depending on the problem at 
hand.  

There are also simple graphs and multigraphs. In 
simple graphs, two vertices can only be connected by one 
edge, whereas in multiple graphs, multiple edges are 
allowed. 

Besides edges and vertices, there are also other useful 
concepts in graph theory. One particular concept of use in 
this paper is paths. A path in a graph is a sequence of 
vertices such that from each of its vertices there is an edge 
to the next vertex in the sequence. A path may be infinite, 
but a finite path always has a first vertex, called its start 
vertex, and a last vertex, called its end vertex. Both of 
them are called terminal vertices of the path. The other 
vertices in the path are internal vertices. [3] In weighted 
graphs, the weight of a path is the sum of the weights of 
all the edges that the path consists of. 

Applications in graph theory range from city planning 
to electronic circuit design, including, as this paper will 
show, pathfinding through urban traffic. 
 

C. Dijkstra’s Algorithm 
As explained before, in weighted graphs, the weight of 

a path can be calculated as the sum of the weights of the 
edges inside the path. Finding the shortest path between 
two vertices is called the shortest path problem. Several 
algorithms exist to solve different variations of the 
shortest path problem; of which one is Dijkstra’s 
algorithm. 

Dijkstra’s algorithm was conceived by Dutch computer 
scientist Edsger Dijkstra in 1956 and published in 1959. 
For a given source vertex (node) in the graph, the 
algorithm finds the path with lowest cost (i.e. the shortest 
path) between that vertex and every other vertex. It can 
also be used for finding costs of shortest paths from a 
single vertex to a single destination vertex by stopping the 
algorithm once the shortest path to the destination vertex 
has been determined. [4] 

 
The algorithm 
Let the node at which we are starting be called the 

initial node. Let the distance of node Y be the distance 
from the initial node to node Y. Dijkstra’s algorithm will 
then run as follows: 

1. Assign a tentative distance value to every node. 
Set it zero for the initial node, and infinity for 
every other node. 

2. Mark all nodes as unvisited. Set the initial node as 
current. Create a set of the unvisited nodes and call 
it the unvisited set. 

3. For the current node, consider all of its unvisited 
neighbors and calculate their tentative distances. 
For example, if the current node X is marked with 
a distance of 4 (from the initial node), and the edge 
connecting it with neighbor Y has length 3, then 
the distance to B will be 4+3=7. If this distance is 
less than the previously recorded distance, then 
overwrite that distance. Even though a neighbor 

A	
  

B	
  

C	
  D	
  

E	
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has been examined, it is not marked as visited at 
this time, and it remains the unvisited set. 

4. Once every neighbor of the current node has been 
considered, mark the current node as visited and 
remove it from the unvisited set. A visited node 
will never be checked again; its distance recorded 
now is final and minimal. 

5. If the destination node has been marked as visited 
or if the smallest tentative distance among the 
nodes in the unvisited set is infinity, then the 
algorithm has finished. 

6. Set the unvisited node marked with the smallest 
tentative distance as the next current node and go 
back to step 3 [4]. 

In pseudocode, Dijkstra’s algorithm can be described 
as follows: 

 
function	
  Dijkstra	
  (G:	
  Graph,	
  S:	
  Vertex)	
  →	
  
real	
  
{	
  G	
  is	
  a	
  Graph	
  with	
  each	
  edge	
  E	
  in	
  the	
  

form	
  of	
  (v1,	
  v2)	
  and	
  vertices	
  V.	
  S	
  is	
  
the	
  source	
  vertex.	
  }	
  

	
  
DECLARATIONS	
  
	
  
dist:	
  array	
  of	
  real	
  {	
  array	
  of	
  distances	
  

from	
  the	
  source	
  to	
  each	
  vertex	
  }	
  
prev:	
  array	
  of	
  pointer	
  to	
  Vertex	
  {	
  array	
  

of	
  pointers	
  to	
  preceding	
  	
  vertices	
  }	
  
i:	
  integer	
  {	
  loop	
  index	
  }	
  
F:	
  list	
  of	
  Vertex	
  {	
  finished	
  vertices	
  }	
  
U:	
  list	
  of	
  Vertex	
  {	
  unfinished	
  vertices	
  }	
  
	
  
ALGORITHM	
  
	
  
{	
  Init:	
  set	
  every	
  distance	
  to	
  ∞	
  }	
  
iterate	
  [0..(abs(G.V)–1)]	
  
	
   dist[i]	
  =	
  ∞	
  
	
   prev[i]	
  =	
  Nil	
  
{	
  end	
  iterate	
  }	
  
	
  
{	
  The	
  distance	
  from	
  the	
  source	
  to	
  the	
  

source	
  is	
  defined	
  to	
  be	
  zero	
  }	
  
dist[S]	
  =	
  0	
  
	
  
while	
  (F	
  is	
  missing	
  a	
  vertex)	
  do	
  
	
   V	
  ←	
  the	
  vertex	
  in	
  U	
  with	
  the	
  shortest	
  

path	
  to	
  S	
  
	
   Insert(F,	
  V)	
  
	
  
	
   foreach	
  edge	
  of	
  V	
  as	
  (v1,	
  v2)	
  
	
   	
   if	
  (dist[v1]	
  +	
  length(v1,	
  v2)	
  <	
  

dist[v2])	
  then	
  
	
   	
   	
   dist[v2]	
  =	
  dist[v1]	
  +	
  

length(v1,	
  v2)	
  
	
   	
   	
   prev[v2]	
  =	
  v1	
  
	
   	
   {	
  end	
  if	
  }	
  
	
   {	
  end	
  foreach	
  }	
  
{	
  end	
  while	
  }	
  

{	
  [5]	
  }	
  
 
Dijkstra's original algorithm does not use a min-priority 

queue and runs in O(|V|2). The idea of this algorithm is 
also given in (Leyzorek et al. 1957). The common 
implementation based on a min-priority queue 
implemented by a Fibonacci heap and running in O(|E| + 
|V| log |V|) is due to (Fredman & Tarjan 1984). This is 
asymptotically the fastest known single-source shortest-
path algorithm for arbitrary directed graphs with 
unbounded nonnegative weights. [4] 

 
III.   METHODS 

A. Representation of a City Map as a Graph 
The first step in pathfinding would be to represent the 

city map as a graph. However, there is a fundamental 
difference between maps and graphs. Maps are basically 
continuous representations of the streets inside a city, 
which themselves are also continuous. A graph on the 
other hand is a discrete structure with discrete concepts of 
vertices and edges. Thus, we need to convert elements of 
a city map into discrete objects so the map can be 
represented as a graph. These elements are intersections, 
roads, and buildings. Intersections are the only possible 
places where drivers can turn and change roads, thus we 
shall represent each intersection as a node or vertex in a 
graph. Since intersections are also entry and exit points 
for traffic, the traffic between two intersections can be 
assumed to be uniform and represented by a single 
measurement, thus justifying the intersections’ 
representation as vertices. Since a person would start his 
or her route from a building, we shall also define two 
additional vertices at the origin and destination buildings. 

For roads, however, additional detail is required, since 
there are different types of roads, and additional variables 
are associated to each road. Some roads are one-way, 
while others are bidirectional. Roads also have distances 
and traffic patterns. For traffic patterns, some roads have 
different traffic patterns in each direction; in other cases 
they are uniform. Thus, our graph shall be a mixed 
weighted multigraph. Bidirectional roads with uniform 
traffic patterns, such as residential streets, shall be 
represented as undirected edges. One-way roads between 
two intersections shall be represented as a single directed 
edge. For two-way roads between two intersections but 
different traffic patterns in each direction, we shall 
represent them with two oppositely directed edges. 

The next thing we need to do is assign numbers as 
weights for each of these edges. Since our basic goal here 
is to find the most efficient route between two points, 
meaning that we need to look for the most timesaving 
path, the weight of an edge would need to represent the 
time needed to go through the section of road. Let T(E) be 
a function of edge E that represents the weight of the 
edge, and thus, the time needed for a vehicle to pass 
through it. As has been explained in subchapter IIA, two 
variables are of importance here: distance and traffic. The 
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calculation of T would have to involve these two 
variables. Let D(E) be a function of edge E that represents 
the length of road between two intersections connected by 
E, and let F(E) be a function of edge E that represents the 
average speed of vehicles passing through the section of 
road represented by E. For distance, D, it is easily 
understood that the longer the distance between two 
points, the more time needed, thus T is directly 
proportionate to D. For traffic, F, since the data we use 
shall be in the form of the average speed of cars going in 
the section of road, T shall be inversely proportionate to 
F. Because our measurement of traffic in F(E) is the 
average speed of cars going through a section of road, F 
already factors in any possible cause of traffic congestion: 
road breadth, road quality, car volume, etc. 

Thus, we may summarize T as the following formula: 
 

𝑇(𝐸) =
𝐷(𝐸)
𝐹(𝐸) 

(1) 
 
According to this interpretation, the weight of a path 

would then represent the time needed to go through the 
roads inside a route. Thus, using Dijkstra’s algorithm to 
find the shortest path between the origin and final vertices 
would be equivalent to finding the most efficient route 
between the origin and destination locations. 

 
B. Obtaining Data 
Once we have understood how to represent a city map 

as a graph, we need to obtain data to be able to generate a 
useful graph. This data involves the city map itself, which 
includes the distance of roads, as well as traffic data, 
measured by the average speed of cars. This subchapter 
shall discuss the possible methods for obtaining such data. 

City maps are freely available for download on many 
websites, including but not limited to Google Maps and 
Bing Maps. In this paper, we shall use a map of Bandung 
between lower Cisitu and ITB as a case study. 

Traffic data is collected by many institutions, although 
not all provide the data we need publicly. In Indonesia, 
for example, one such institution is the National Traffic 
Management Centre of the Indonesian Police (NTMC 
POLRI). Generally, however, we may assume that traffic 
data does exist for major roads, as public policy planners 
in urban cities would most likely install traffic-monitoring 
cameras in key areas as part of their policy development 
strategy. 

For residential or suburban areas, however, traffic data 
is generally unavailable, thus we shall assume a mean 
speed of 20 km/h in these areas. 

As a matter of fact, since the formula in equation (1) is 
in the form of a ratio, using scaled-down measurements 
(such as cm or pixels for distance) would still result in the 
same route, provided that the same scale is used 
throughout the graph. 
 

C. Case Study  
As a case study, we shall examine the region of 

Bandung between upper Cisitu and ITB. This is an area 
frequented by ITB students, with several possible routes 
between upper Cisitu and the ITB campus. Each of these 
different routes exhibit different traffic patterns. Our 
challenge would be to map the fastest route between a 
point near Cisitu to the front gate of ITB. 

We shall first obtain the map for the area. We shall use 
Google Maps as the source for this map. 

 

 
 
This map, however, contains discrepancies originating 

from Google’s conversion of satellite imagery into digital 
maps. This map also contains many roads and streets 
which will be of no use to us, such as dead ends and roads 
which are highly unlikely to be travelled through by 
student cars. We eliminate these elements, then overlay 
this map with vertices and edges that represent 
intersections and roads, respectively, with white dots 
representing vertices (aside from the origin and 
destination nodes) and black lines representing edges. The 
red dot shows our point of origin (Cisitu), and the blue 
dot shows our destination point (ITB). The resulting 
image would be: 
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In the image above, we can see how most of the edges 

are undirected, except for the edges between vertices F 
and G as well as G and J. This is so because only the 
roads represented by those edges are one-way; the other 
roads are two-way. We can also see how the shape of the 
edges may trace out the original path of the road, as seen 
in the edge between K and M, or exhaustively simplify 
the path, as seen in the edge between B and D. Because 
graphs are merely abstractions, however, the shape of the 
edge does not matter, because the actual distance between 
the intersections shall be represented by numerical data. 

We then feed this graph with distance and traffic data, 
based on the following table. This data is an 
oversimplification of the actual conditions in the mapped 
area, but our underlying work should still apply. 

 
Edge Distance (D) Traffic (F) Time (T) 
A-B 10 m 5 km/h 2 
B-C 30 m 10 km/h 3 
B-D 70 m 10 km/h 7 
C-E 50 m 20 km/h 2.5 
C-D 50 m 20 km/h 2.5 
E-H 250 m 10 km/h 25 
D-F 210 m 15 km/h 1.4 
F-G 20 m 20 km/h 1 
G-H 30 m 5 km/h 6 

G-J 30 m 20 km/h 1.5 
H-I 50 m 40 km/h 0.8 
J-K 20 m 20 km/h 1 
I-K 50 m 30 km/h 0.6 
I-L 100 m 40 km/h 2.5 

L-M 70 m 40 km/h 1.75 
K-N 300 m 40 km/h 7.5 
M-O 70 m 10 km/h 7 
N-O 50 m 10 km/h 5 

 
Incorporating the above data and removing the map 

underneath results in the following graph: 
 

 
 
This graph is now complete; all relevant elements have 

been represented and all variables have been incorporated. 
We are now ready to execute Dijkstra’s algorithm on this 
graph. 

Using Dijkstra’s algorithm, the shortest path would be 
the sequence of vertices A-C-D-F-G-J-K-I-L-M-O. This 
is equivalent to turning left to Jalan Dago Asri 2, then 
continuing to Jalan Alpina and then Jalan Cisitu Lama, 
then Turning left at Jalan Siliwangi, turning right to Jalan 
Sumur Bandung, continuing left to Jalan Tamansari and 
taking the first left to Jalan Dayang Sumbi. The route then 
continues through Jalan Dago, turning right at Jalan 
Ganesha, arriving at the ITB front gate. 
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IV.   DISCUSSION 

The case study above shows plausible results. Albeit 
oversimplified data, the study shows that it is indeed 
possible to determine the most efficient route by first 
representing a portion of a city map as a graph and then 
applying Dijkstra’s algorithm to find the shortest path. 

In real-life application, pathfinding would involve a far 
greater number of vertices and edges spanning a wider 
area of the city. Say, for example, if the map used in our 
case study was not simplified, we would have at least 
twice the number of vertices. More data would be 
required regarding traffic, and more precise 
measurements of distance would help improve the quality 
of the process. 

With regards to algorithm complexity, pathfinding 
using the method described above runs in the same 
amount of time as Dijkstra’s algorithm, added with the 
arithmetic of calculating T(E). If V is the number of 
vertices in the resulted graph and E is the number of 
edges, then our method would run in O(|V|2) + O(E). 
Since the algorithm complexity follows a quadratic 
pattern, applying this method in a real-life situation would 
require significantly more computation that our case 
study. 

However, it should be noted that Dijkstra’s algorithm is 
the most efficient algorithm for finding the shortest path 
for graphs with non-negative weights, thus this method 
would be relatively the most efficient method of 
pathfinding using graph theory. 

 
V.   CONCLUSION 

From the explanation above, it can be concluded that it 
is possible to route the most efficient route through traffic 
by means of using Dijkstra’s algorithm. 
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