
IF2091 Discrete Structure – Sem. I Tahun 2011/2012 Paper

Huffman Coding For Digital Photography

Raydhitya Yoseph 13509092

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13509092@std.stei.itb.ac.id

raydhitya.yoseph@gmail.com

Abstract—This paper contains explanation of Huffman

coding algorithm in encoding, decoding, and its application in

JPEG compression. All the explanation prove Huffman coding

is useful to achieve smaller file size and storing more files.

Index Terms—coding, digital, Huffman, JPEG, photography.

I. INTRODUCTION

There are many wonderful sceneries on the earth. There

also many ways of enjoying them, seeing by own eyes is

one of the ways. People then started to reproduce the

scenery to enjoy the scenery in a medium such as

paintings and photographs.

Photography is the art, science, and practice of creating

durable images by recoding light or other

electromagnectic radiation, either electronicallyby means

of and image sendsor or chemically by means of a light-

sensitive material such as photographic film.

Photography history started by Aristotle and Euclid

who described pinhole camera in the 5th and 4th century

BC. During early days of photography, photographs, or

generally images, were produced using physics and

chemistry. Many processes and inventions were done

before in 1884 George Eastman developed technology of

film as used by film cameras today.

Traditional photography using films burdened

photographers without easy access to processing facilities

and competition which pressures photographer to deliver

photograph with greater speed for news. As technology

improves and information age come into place, digital

photography, new form of photography, was being

inveted.

In digital photography images is captured using

electronic image sensor as a set of electronic data rather

than as chemical changes on film. Digital photography

made photography easier than before. Everyone uses

digital photography to capture their daily life. Nowadays

even digital photography can be found inside a mobile

phone.

Easier method to take photographs means more clicks

being made each second and more photographs being

taken each second. This leads to bigger storage medium to

store the photographs.

Another concern is a standard. Digital image file is a

form of data, or more primitively bits, grouped to a file.

That means it needs a standard. So, people can say a file is

a digital image file if the mentioned file structure is the

same as the standard.

Responding two concerns above various standards and

compression methods arise. The most popular and widely

used standard is coming from Joint Photographic Expert

Group named the same as the group or commonly known

as JPEG. This paper will give brief explanation about the

standard, Huffman coding, and those two application in

digital images

II. JOINT PHOTOGRAPHIC EXPERT GROUP

The name “JPEG” stands for Joint Photographic Expert

Group, the name of the committe that created the JPEG

standard. JPEG is a commonly used method of lossy

compression for digital photography.

The JPEG compr ession algorithm is at its best on

photographs and painting of realistic scenes with smooth

variations of tone and color. As the typical use of JPEG is

a lossy compresion method, which somewhat reduces the

image fidelity, it should not be used in scenarios where

the exact reproduction of the data is required.

The idea of lossy compression is discarding some of the

data. In digital images it is based on the idea that human

eyes cannot see very detailed color and respon more to the

images brightness. For example a photograph of the sky

which contains many blue pixels. Each of the pixel

actually different in color by only a little. Human eyes

cannot see the little difference so by compression the

pixels with little difference being made into identical

pixels. This compression will not change the perception of

humans seeing the images because the will perceive it as

the same image, which is a photograph of the sky.

There are several step to compress an image using

JPEG standard compression.

1. The representation of the colors in the image is

converted from RGB to Y‟CbCr, consisting of one

luma component (Y‟), representing brightness, and

two chroma components (Cb and Cr) representing

color. This step cometimes skipped.

2. The resolution of the chroma data is reduced,

usually by a factor of 2. This reflects the fact that

mailto:13509092@std.stei.itb.ac.id
mailto:raydhitya.yoseph@gmail.com

IF2091 Discrete Structure – Sem. I Tahun 2011/2012 Paper

the eye is less sensitive to fine color details than to

fine brightness details.

3. The image is split into blocks of 8x8 pixels, and

for each block each of the Y, Cb, and Cr data

undergoes a discrete cosine transform (DCT). A

DCT is similiar to a Fourier transform in the sense

that it produces a kind of spatial frequency

spectrum.

4. The amplitudes of the frequency components are

quantized. Human vision is much more sensitive to

small variations in color or brightness over large

areas than to the strength of high-frequency

brightness variations. Therefore, the magnitudes of

the high-frequency component are stored with a

lowe accuracy than the low-frequency components.

5. The resulting data for all 8x8 blocks is further

compressed with a lossless algorithm, a variant of

Huffman encoding.

III. HUFFMAN CODING

Huffman coding is a very popular coding to represent

data with minimum memory needed to store the data.

Huffman coding was created to reduce data redundancy in

a file. Huffman coding was developed by David A.

Huffman while he was a Ph.D., student at MIT, and

published in the 1952 paper “A Method for the

Construction of Minimum-Redundancy Codes.

A. Character Encoding

One file compromised of many bits to represent its

content. That bits is grouped into sets of bits. This

grouped bits represent something that understandable in

human language. For example the character 'a' is

represented by 01000001. Changing the representation of

bits into character is called character encoding scheme.

Representation of the human readable character is highly

dependent at the coding used. For example ASCII and

UNICODE have different representation of the character

„a‟ in bits.

B. Statistical Data Redundancy

A character can be inside the file multiple times. For

example in the string “sunny”, the data of character 'n' is

inside the string twice and therefore stored twice. Storing

a character more than once is what we called statistical

data redundancy. It is redundant and wasting space to

store the same data more than once, even though, the

character needs to be more than once to complete the

information. This what the Huffman coding accomplishes

which is storing an information in a efficient way using

minimum memory.

C. Huffman Encoding

The idea of Huffman coding is using the frequency of

data inside a file. Data which has the highest frequency

being assigned by the shortest bit and data which has the

lowest frequency being assigned by the longest bit. This

means using variable-length data as opposed to fixed-

length data in the raw information. Fixed-length all data

have same length whether the data is frequent or not. This

will cause an information needs larger space.

Bit assigning is determined by making a tree structure

data first. Each node from top to bottom will contain data

from the most frequent to the least frequent data. The

consensus is left child assigned by '0' and right child by

'1'. The tree will continue to span until it reaches a leaf

that contains one data. So, a node in Huffman tree will

always have two children.

Bit assigning also depends on the amount of unique

data. If there are two data, we only need '0' and '1'. If there

are three data, we need '0', “10”, and “11”. The more the

data are, the longer the bit needed. Compared to 8 bit

extended ACII binary code which often used, Huffman

coding save many wasted space.

Given a string there are 4 step to do the coding:

1. Count the frequency of each character in the string;

2. Form the Huffman tree based on the character

frequency from bottom up using greedy algorithm;

3. Assign each character in the tree according to the

convention bit;

4. Convert the given string old bits representation into

new bits representation using the Huffman code for

each charcter.

An example of above algorithm using following

information

Table 1 Huffman Table 1

Symbol A B C D E

Frequency 15/39 7/39 6/39 6/39 5/39

Two nodes which have the lowest frequency are D and

E. So, those two nodes combined together and D assigned

'0' and also E assigned with '1'. The first step will make

the table

Table 2 Huffman Table 2

Symbol A B C DE

Frequency 15/39 7/39 6/39 11/39

Two nodes with the lowest frequency are B and C.

Therefore the previous action being done again and will

make the table

Table 3 Huffman Table 3

Symbol A BC DE

Frequency 15/39 13/39 11/39

Now, two nodes with the lowest frequency are BC node

and DE node. Therefore we make a node by combining

those two and will make the table

IF2091 Discrete Structure – Sem. I Tahun 2011/2012 Paper

Table 4 Huffman Table 4

Symbol A BCDE

Frequency 15/39 24/39

The last action will combine node A and node BCDE

into ABCDE node with the frequency 39/39. All the

process will be better if represented in a tree.

Figure 1 Huffman Tree

The Huffman encoding will given symbol with

following code

Table 5 Huffman Encoding Result

Symbol ASCII Code Huffman Code

A 0100 0001 0

B 0100 0010 100

C 0100 0011 101

D 0100 0100 110

E 0100 0101 111

If we used fixed-length data, we need 8*39 = 312 bit. If

we used variable-length data as the Huffman code, we

only need 1*15 + 3*7 + 3*6 + 3*6 + 3*5 = 87 bit.

Huffman coding saved 312-87 = 225 bit, which is a huge

72.11% of space. Averagely Huffman coding will save

20% to 30% of space.

D. Huffman Decoding

Above process is called coding which is to convert

information into another form of representation, in

Huffman code case into a tree structure data. This process

is done for the information to get communicated. To

recognize the information again, we need the reverse

process which is called decoding. Decoding converts the

information back into its original representation so it

could be recognized by the receiver.

Decoding an information coded with Huffman coding

can be achieved by two means. First is to traverse the tree,

write the symbol found during the traversal, traverse again

from the tree's root. The first method is a modified version

of deep first search algorithm. Second is to use a lookup

table which contains all symbols and its bit code. To

compare the two methods we'll use previous example and

try to decode “01100111” into “ADAE”.

1. Traversing Huffman Tree

The idea of the first method is to traverse the Huffman

tree bit by bit and write the symbol found. To decode

“01100111” we traverse the string and find '0'. Like DFS

we begins from root node. In here the implementation is

better to implements recursive DFS. We only doing

recursive into the child node with coresponding bit with

the string. So we are doing recursive into the root's child

assigned by '0'. There we find a symbol which is A

therefore we write 'A' and back again to the tree's root.

Second traversal we find the bit '1' so we do recursive

to the right child from the root node. At the right child we

don't find a symbol therefore we traverse into the next bit

which is '1' and again move to the right child. The second

right child also doesn't contain a symbol so we move to

the next bit which is '0'. Moving to the left child will get

us a symbol which is 'D'. We write 'D' and again come

back to tree's root.

Repeating the process will get us 'A' and 'E' as the next

symbol. After the last symbol, there is no next bit so the

bit stream “01100111” finished decoded into “ADAE”.

This search is better implemented recursively because

we will always find the goal in the branch we are

traversing and do not need the other branch.

Notice that we don't record anything from the bit stream

we simply traversing it which is different with the second

method.

2. Lookup Table

The idea of the second method is to provide a lookup

table which contains all the symbols and the bit assigned

to that symbol. The process is to traverse only the bit

stream not including the Huffman tree.

First we make a lookup table that contains all symbol

with their respective bit assignment. The table basically is

Table 5. Next we traverse the bit stream and traversing the

bit stream will net us '0' as the first bit. We record the bit

and then search the table whether there is or not a symbol

IF2091 Discrete Structure – Sem. I Tahun 2011/2012 Paper

assigned by the bit '0'. We found 'A' is assigned by '0' in

the table so we write the symbol 'A' and can search for the

next symbol.

The difference between the first method we only

traversing to the next bit and don't come back to the tree's

root. The next bit we net is '1', we record it and search the

table. There is no symbol assigned by '1' so we traverse

the next bit. Again we find '1', we record it which made

our current bit stream become “11”. Do the second search

with “11” will also net us with nothing. Traversing the

next bit our current bit stream become “110”. Searching

that will get us the 'D' symbol. We write the symbol and

can start to search for the next symbol. Repeating the

process will make us decode “01100111” bit stream into

“ADAE”. Notice that the second difference between the

first method is we record the bit we currently search the

symbol for.

Modifying the second method, we could also save the

bit assigned to a symbol length. We then can use that

information to modify the traversal. Traversing our bit

stream again will get us the first '0' and the first 'A'. The

next bit will be '1'. Notice that all bit assigned to a symbol

beside the symbol 'A' have the length 3. So, when we get a

'1' after we found a symbol, we traverse the stream three

times while recording each bit. After that, we search the

table to find the symbol. Back to the bit stream we will get

“110” and can then search the table to find the symbol 'D'.

Repeating the process, once again we decode the

“01100111” bit stream into “ADAE”.

Figure 2 Huffman Decoding

Both code will have their use in different ways.

Traversing the bit stream and Huffman tree is more

complex than traversing only the bit stream. Searching a

table with too many data is also troublesome. In the end

what we want to decode that matters. Whether the

information is long or not and whether the information is

being build by many data or not.

IV. HUFFMAN CODING INSIDE JPEG

The Huffman encoding is used at the end of JPEG

compression. The images went through a lossy

compression at first until the quantization. After that, the

quantization bits went through a lossless compression

method of Huffman encoding.

The Huffman coding result depends on the photographs

itself. Photographs with similiar color will have smaller

size than photographs with many colors. For example a

person photographs will have a smaller size than a scenery

photographs.

V. WHEN SIZE DOES MATTER

People nowadays has many photographs because of the

easiness of taking picture. When size does matter further

compression of the photographs can be done using

DEFLATE algorithm to make ZIP files. DEFLATE

algorithm is a lossless compression using Huffman code.

Here is the files I used for my experiments

Above pictures total size is 24 446 550 bytes. The

pictures were similiar. Using DEFLATE algorithm to

compress the files, I got 24 392 979 bytes. That is 53 571

bytes less than the original files.

VI. CONCLUSION

The conclusion of the explanation

1. Huffman coding is used in JPEG compression and

useful for digital photography;

2. Huffman coding is useful when there is many data

that has big probability in the file;

3. Huffman coding is useful for further compression.

REFERENCES

[1] http://en.wikipedia.org/wiki/Photography retrieved at 11

December 2011 10:18

[2] http://en.wikipedia.org/wiki/Information_Age retrieved at 11

December 2011 10:58

[3] http://en.wikipedia.org/wiki/JPEG retrieved at 11 December 2011

11:55

[4] http://en.wikipedia.org/wiki/Lossy_compression retrieved at 11

December 2011 12:35

[5] Raydhitya Yoseph, “Greedy And DFS In Huffman Coding”,

unpublished.

[6] Raydhitya Yoseph, “Huffman Coding For Your Hearing

Pleasure”, unpublished.

http://en.wikipedia.org/wiki/Photography
http://en.wikipedia.org/wiki/Information_Age
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/Lossy_compression

IF2091 Discrete Structure – Sem. I Tahun 2011/2012 Paper

DECLARATION

I hereby declare the paper is my own writing, not an

adaptation, nor translation from another person paper, and

not a form of plagiarism.

Bandung, 11
th

 December 2011

Raydhitya Yoseph 13509092

