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Abstract 

 

In several disciplines of sciences there are 

needs to create systems which elicit behaviors 

that can be expressed in terms of logical 

expressions. This paper will give a method to 

obtain an expression that uses only not, and, or, 

and xor operations and is comparatively more 

efficient than the traditional sum-of-product or 

product-of-sum methods. This paper develops a 

strict bound on the number of such operators in 

term of N, the number of free variables that is in 

the expression. 

Section 1 will talk about the motivation 

behind the research. Section 2 will talk about the 

terminologies used in the paper. Section 3 will 

formally presents the problem. Section 4 will 

revolve around the method used to obtain the 

corresponding expression. Section 5 will talk 

about the complexity. Section 6 compares the 

actual performance of this method to the generic 

sum-of-product method. Finally, Section 7 

concludes the paper. 

 

1. Introduction 

 

The two most widely used methods when 

we talk about generating expressions in class are 

sum-of-product and product-of-sum. Both are 

very simple and greatly benefits from their 

simplicity. However, both often use much more 

operations than is perceived as acceptable 

(Section IV). This paper tries to perform a trade-

off between these benefit. It gives a less simple 

method which will perform better than the usual 

simple methods. 

The author conjectured that the extra 

complexity will be dominated by the benefits. In 

addition to the complexity that arises because of 

the complexity of the expression, there may be 

more delay that occurred in the hardware layer of 

the expression that may not coincide with what 

the designer had in mind. In addition, the 

algorithm given in this paper can be implemented 

easily within a computer so that the complexity of 

computing such expressions can be effectively 

hidden. 

 

2. Terminology 

 

This paper will use a notion that is loosely 

based on [1]. A proposition is a statement whose 

value is either true or false. We let 1 denotes a 

true proposition and 0 denotes a false proposition. 

Free variable is a proposition whose value is not 

known. A unary operator for the purpose of this 

paper will be a logical operator that operates on a 

single proposition, and whose result is another 

proposition. There are one unary operator that 

will be used in this paper : NOT (negation 

operator). For the sake of conciseness it will often 

be represented with the symbol ! (as in [2]). 

whose behavior is summarized below (A is a 

proposition). 

 

A !A 

0 1 

1 0 

Table 2.1 : Truth table for negation. 

 

A binary operator for the purpose of this 

paper will be a logical operator that operates on 

two propositions, and whose result is another 

proposition.  There are three binary operators 

that will be used throughout the paper : OR 

(disjunction), AND (conjunction), and XOR 



(symmetric difference). For the sake of 

conciseness they will be represented by the 

symbols (&, |, and ^) as in [2]. Their behaviors are 

summarized in the following tables (A and B are 

both propositions) : 

 

A B A & B  A | B A ^ B 

0 0 0 0 0 

0 1 0 1 1 

1 0 0 1 1 

1 1 1 1 0 

Table 2.2 : Truth table for binary operators. 

 

This paper will not discuss further about 

operator precedence, interested readers may 

consult [1].  Instead, we will extensively use 

parentheses to denote which operator precedes 

which so as to not find any ambiguity. The only 

exception is when there are both unary operator 

and a binary operator on the same level, the 

unary operator must be resolved first. 

 A truth table displays the relationships 

between the truth values of propositions [1]. 

  

3. Problem 

 

Given the truth values for an expression 

(possibly in the form of a truth table), derive an 

expression that has the same truth values, 

contains only negation, conjunction, disjunction, 

and symmetric difference operators. 

For example, suppose we are given the 

following truth table. 

 

A B T 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Table 3.1 : Example truth table 

 

One of the optimal solutions is A | B. 

 

4. Solution 

 

Without loss of generality, we will assume 

that there are at least two free variables in the 

expression (the case that there is only one or zero 

free variable is trivial). We will construct the 

expression recursively using induction-like steps. 

We start with the basis step : 

 

BASIS STEP:  2 free variables 

We construct the basis step by a case-by-

case analysis. 

 

Result when A&B is <AB> Expression 

<00> <01> <10> <11> 

0 0 0 0 0 

0 0 0 1 A & B 

0 0 1 0 A & !B 

0 0 1 1 A 

0 1 0 0 !A & B 

0 1 0 1 B 

0 1 1 0 A ^ B 

0 1 1 1 A | B 

1 0 0 0 !A & !B 

1 0 0 1 !A ^ B or A ^ !B 

1 0 1 0 !B 

1 0 1 1 A | !B 

1 1 0 0 !A 

1 1 0 1 !A | B 

1 1 1 0 !A | !B 

1 1 1 1 1 

Table 4.1 : Basis step table 

 

INDUCTIVE STEP:  

Assume that an expression that contains 

N free variables can be formulated with this 

method. In an expression with (N+1) free 

variables, we pick one (X). Now we have N free 

variables and by the inductive step we can create 

any expression that we want that that contains 

only these free variables. We create two of these, 

Exp1 and Exp2 (the values picked will be 



described later). Now, we construct the 

expression with (N+1) free variables as follows. 

 

Expression = (Exp1 & X) | (Exp2 & !X) (e4.1) 

 

All that left is to pick the values of Exp1 

and Exp2 in such way that the expression above 

corresponds to the truth values of the original 

expression. There are 2^(N+1) entries in this truth 

table. Now we group these entries into 2^(N) 

pairs, where each pair consists of two entries that 

differs only at the value of X. We call the other 

non-X part is A. It can be seen that A differs for all 

the pairs for otherwise there will be multiple 

identical entries in the truth table. We can then 

associate a value for both Exp1 and Exp2 

independent between pairs (they corresponds to 

A for each pair, which we have claimed to be 

distinct). Now, there are four cases. 

 

X Entry_Result Exp1 Exp2 

0 0  0 

0 1  1 

1 0 0  

1 1 1  

Table 4.2 Exp1 and Exp2 case table 

 

 By the inductive step, we can create both 

Exp1 and Exp2. Hence, the method is complete. 

 

5. Complexity 

 

We will now bound the number of both 

unary and binary operations found in the 

expression generated by the method above. 

 

(Definition 5.1) B(N) : Upper bound on the 

number of binary operators for an expression 

with N free variables. 

(Definition 5.2) U(N) : Upper bound on 

the number of unary operators for an expression 

with N free variables. 

 

 Clearly, B(2) = 1 (e5.1) and U(2) = 2 (e5.2). 

Now, we will find B(N) through the inductive step 

in Section 4. The following recurrence relation can 

then be deduced. 

  

 B(N+1) <= 2 * B(N) + 3  (e5.3) 

 U(N+1) <= 2 * U(N) + 1  (e5.4) 

 

Solving the recurrence relation, we find  

 

B(N) <= 2^(N) – 3  (e5.5) 

U(N) <= 3 * 2^(N-2) – 1  (e5.6) 

 

Summing up, the total number of operators are 

bounded by : 

 

 O(N) <= 2^(N) + 3 * 2^(N-2) – 4 (e5.7) 

 

Now, we will compute the average number of 

binary operators and unary operators found in 

the expression generated by this method. We 

have the same recurrence relation as in (e5.1) and 

(e5.2) but with different basis. For completeness, 

we will restate all of them : 

 

(Definition 5.3) EB(N) : Expected number 

of binary operators for an expression with N free 

variables. 

(Definition 5.4) EU(N) : Expected number 

of unary operators for an expression with N free 

variables. 

 

 EB(2) = 10/16   (e5.8) 

 UB(2) = 10/16   (e5.9) 

EB(N+1) <= 2 * B(N) + 3  (e5.10) 

 EU(N+1) <= 2 * U(N) + 1  (e5.11) 

 

 Solving them we have 

 

 EB(N) <= 29/32 * 2^N – 3 (e5.12) 

 UB(N) <= 13/32 * 2^N – 1 (e5.13) 



 Finally, the expected total number of 

operators is : 

  

 EO(N) <= 21/16 * 2^N – 4 (e5.14) 

 

6. Performance Comparison 

 

We will compare their performance 

through both the worst case and expected 

number of operators. We have calculated both 

values for our method in Section 5. The 

calculation of both for the sum-of-product is 

simpler and below we their values. 

 

Worst Case 

SoP_O(N) = N * 2^N + 0.5 * N * 2^N + 

(2^N-1)     (e6.1) 

Expected 

SoP_EO(N) = N * 2^N * 0.5 + 0.25 * N * 

2^N + (0.5 * 2^N – 1)   (e6.2) 

 

 It can be seen that in both case our 

method exceeds the performance of the regular 

Sum-of-Product approach. Our algorithm 

outperforms the regular Sum-of-Product 

approach by a factor of N. 

 

7. Conclusion 

 

We have presented an algorithm that can 

be used as an alternative to generating an logical 

expression. We also realize that our algorithm is 

not easy to compute without a computer. 

However, although at the time of the writing of 

this paper we haven’t realized this idea, we 

realize that it is entirely feasible to author a 

computer program that can implement this 

method. 

 

 

 

 

References 

 

[1] Rosen, Kenneth H. “Discrete Mathematics and 

Its Applications Fifth Edition.” 2003. McGraw-Hill 

[2] Stroustrup, Bjarne. “The C++ Programming 

Language Special Edition”. 1997. Addison Wesley 

 


