
An O(2^N) Expression Generator

Irvan Jahja / 13509099

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

December 16, 2010

Abstract

In several disciplines of sciences there are

needs to create systems which elicit behaviors

that can be expressed in terms of logical

expressions. This paper will give a method to

obtain an expression that uses only not, and, or,

and xor operations and is comparatively more

efficient than the traditional sum-of-product or

product-of-sum methods. This paper develops a

strict bound on the number of such operators in

term of N, the number of free variables that is in

the expression.

Section 1 will talk about the motivation

behind the research. Section 2 will talk about the

terminologies used in the paper. Section 3 will

formally presents the problem. Section 4 will

revolve around the method used to obtain the

corresponding expression. Section 5 will talk

about the complexity. Section 6 compares the

actual performance of this method to the generic

sum-of-product method. Finally, Section 7

concludes the paper.

1. Introduction

The two most widely used methods when

we talk about generating expressions in class are

sum-of-product and product-of-sum. Both are

very simple and greatly benefits from their

simplicity. However, both often use much more

operations than is perceived as acceptable

(Section IV). This paper tries to perform a trade-

off between these benefit. It gives a less simple

method which will perform better than the usual

simple methods.

The author conjectured that the extra

complexity will be dominated by the benefits. In

addition to the complexity that arises because of

the complexity of the expression, there may be

more delay that occurred in the hardware layer of

the expression that may not coincide with what

the designer had in mind. In addition, the

algorithm given in this paper can be implemented

easily within a computer so that the complexity of

computing such expressions can be effectively

hidden.

2. Terminology

This paper will use a notion that is loosely

based on [1]. A proposition is a statement whose

value is either true or false. We let 1 denotes a

true proposition and 0 denotes a false proposition.

Free variable is a proposition whose value is not

known. A unary operator for the purpose of this

paper will be a logical operator that operates on a

single proposition, and whose result is another

proposition. There are one unary operator that

will be used in this paper : NOT (negation

operator). For the sake of conciseness it will often

be represented with the symbol ! (as in [2]).

whose behavior is summarized below (A is a

proposition).

A !A

0 1

1 0

Table 2.1 : Truth table for negation.

A binary operator for the purpose of this

paper will be a logical operator that operates on

two propositions, and whose result is another

proposition. There are three binary operators

that will be used throughout the paper : OR

(disjunction), AND (conjunction), and XOR

(symmetric difference). For the sake of

conciseness they will be represented by the

symbols (&, |, and ^) as in [2]. Their behaviors are

summarized in the following tables (A and B are

both propositions) :

A B A & B A | B A ^ B

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Table 2.2 : Truth table for binary operators.

This paper will not discuss further about

operator precedence, interested readers may

consult [1]. Instead, we will extensively use

parentheses to denote which operator precedes

which so as to not find any ambiguity. The only

exception is when there are both unary operator

and a binary operator on the same level, the

unary operator must be resolved first.

 A truth table displays the relationships

between the truth values of propositions [1].

3. Problem

Given the truth values for an expression

(possibly in the form of a truth table), derive an

expression that has the same truth values,

contains only negation, conjunction, disjunction,

and symmetric difference operators.

For example, suppose we are given the

following truth table.

A B T

0 0 0

0 1 1

1 0 1

1 1 1

Table 3.1 : Example truth table

One of the optimal solutions is A | B.

4. Solution

Without loss of generality, we will assume

that there are at least two free variables in the

expression (the case that there is only one or zero

free variable is trivial). We will construct the

expression recursively using induction-like steps.

We start with the basis step :

BASIS STEP: 2 free variables

We construct the basis step by a case-by-

case analysis.

Result when A&B is <AB> Expression

<00> <01> <10> <11>

0 0 0 0 0

0 0 0 1 A & B

0 0 1 0 A & !B

0 0 1 1 A

0 1 0 0 !A & B

0 1 0 1 B

0 1 1 0 A ^ B

0 1 1 1 A | B

1 0 0 0 !A & !B

1 0 0 1 !A ^ B or A ^ !B

1 0 1 0 !B

1 0 1 1 A | !B

1 1 0 0 !A

1 1 0 1 !A | B

1 1 1 0 !A | !B

1 1 1 1 1

Table 4.1 : Basis step table

INDUCTIVE STEP:

Assume that an expression that contains

N free variables can be formulated with this

method. In an expression with (N+1) free

variables, we pick one (X). Now we have N free

variables and by the inductive step we can create

any expression that we want that that contains

only these free variables. We create two of these,

Exp1 and Exp2 (the values picked will be

described later). Now, we construct the

expression with (N+1) free variables as follows.

Expression = (Exp1 & X) | (Exp2 & !X) (e4.1)

All that left is to pick the values of Exp1

and Exp2 in such way that the expression above

corresponds to the truth values of the original

expression. There are 2^(N+1) entries in this truth

table. Now we group these entries into 2^(N)

pairs, where each pair consists of two entries that

differs only at the value of X. We call the other

non-X part is A. It can be seen that A differs for all

the pairs for otherwise there will be multiple

identical entries in the truth table. We can then

associate a value for both Exp1 and Exp2

independent between pairs (they corresponds to

A for each pair, which we have claimed to be

distinct). Now, there are four cases.

X Entry_Result Exp1 Exp2

0 0 0

0 1 1

1 0 0

1 1 1

Table 4.2 Exp1 and Exp2 case table

 By the inductive step, we can create both

Exp1 and Exp2. Hence, the method is complete.

5. Complexity

We will now bound the number of both

unary and binary operations found in the

expression generated by the method above.

(Definition 5.1) B(N) : Upper bound on the

number of binary operators for an expression

with N free variables.

(Definition 5.2) U(N) : Upper bound on

the number of unary operators for an expression

with N free variables.

 Clearly, B(2) = 1 (e5.1) and U(2) = 2 (e5.2).

Now, we will find B(N) through the inductive step

in Section 4. The following recurrence relation can

then be deduced.

 B(N+1) <= 2 * B(N) + 3 (e5.3)

 U(N+1) <= 2 * U(N) + 1 (e5.4)

Solving the recurrence relation, we find

B(N) <= 2^(N) – 3 (e5.5)

U(N) <= 3 * 2^(N-2) – 1 (e5.6)

Summing up, the total number of operators are

bounded by :

 O(N) <= 2^(N) + 3 * 2^(N-2) – 4 (e5.7)

Now, we will compute the average number of

binary operators and unary operators found in

the expression generated by this method. We

have the same recurrence relation as in (e5.1) and

(e5.2) but with different basis. For completeness,

we will restate all of them :

(Definition 5.3) EB(N) : Expected number

of binary operators for an expression with N free

variables.

(Definition 5.4) EU(N) : Expected number

of unary operators for an expression with N free

variables.

 EB(2) = 10/16 (e5.8)

 UB(2) = 10/16 (e5.9)

EB(N+1) <= 2 * B(N) + 3 (e5.10)

 EU(N+1) <= 2 * U(N) + 1 (e5.11)

 Solving them we have

 EB(N) <= 29/32 * 2^N – 3 (e5.12)

 UB(N) <= 13/32 * 2^N – 1 (e5.13)

 Finally, the expected total number of

operators is :

 EO(N) <= 21/16 * 2^N – 4 (e5.14)

6. Performance Comparison

We will compare their performance

through both the worst case and expected

number of operators. We have calculated both

values for our method in Section 5. The

calculation of both for the sum-of-product is

simpler and below we their values.

Worst Case

SoP_O(N) = N * 2^N + 0.5 * N * 2^N +

(2^N-1) (e6.1)

Expected

SoP_EO(N) = N * 2^N * 0.5 + 0.25 * N *

2^N + (0.5 * 2^N – 1) (e6.2)

 It can be seen that in both case our

method exceeds the performance of the regular

Sum-of-Product approach. Our algorithm

outperforms the regular Sum-of-Product

approach by a factor of N.

7. Conclusion

We have presented an algorithm that can

be used as an alternative to generating an logical

expression. We also realize that our algorithm is

not easy to compute without a computer.

However, although at the time of the writing of

this paper we haven’t realized this idea, we

realize that it is entirely feasible to author a

computer program that can implement this

method.

References

[1] Rosen, Kenneth H. “Discrete Mathematics and

Its Applications Fifth Edition.” 2003. McGraw-Hill

[2] Stroustrup, Bjarne. “The C++ Programming

Language Special Edition”. 1997. Addison Wesley

