
Makalah II2092 Probabilitas dan Statistik – Sem. I Tahun 2010/2011

The Scheduling Problem in Manufacturing

Hanny Fauzia (13509042)1
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

113509042@std.stei.itb.ac.id

Abstract—Nowadays, manufacturing setting is very
complex, involving multiple lines of product, each requiring
many different machines and multiple stages for
completing many tasks. These facts must be considered by
the decision maker for the manufacturing plan to
successfully manage resources in order to produce products
as efficient as possible. This problem is often called
Scheduling Problem, which involves many problems
concerning minimizing or maximizing job completion
aspect (completion time, number of processors needed to
complete jobs, etc.). This paper will focus mainly on
discussing how to minmize job completion time, and
minimize number of processors required for completng the
job. We will see how we can use graphs to solve those two
problems.

Index Terms—Graphs Application in Scheduling

Problem, Job Completion Time Minimization,
Manufacturing Setting, Number of Processor required for
Job Completion Minimization.

I. INTRODUCTION

These days, industry world has grown very rapidly.

This fact cause many manufacturing plants are build
worldwide. The advancement of technology also
contibute to increase the efficiency of jobs completion in
manufacturing plants. Although that advancement no
mistakingly make job completion in manufacturing
industry easier, it also makes other problems arise. The
main problem is the growing complexity of
manufacturing setting that will make it really difficult to
successfully manage resources in order to produce
products as efficient as possible. There will be countless
job assignment variation because there are so many
aspects to be considered, such as number of tasks,
number of processors, kind of tasks each processors can
complete, and many more.

That kind of problem is widely known as scheduling
problem. Scheduling problems, just like its name,
consists of deciding how tasks should be scheduled. The
tasks are performed by a number of identical processors,
which can be machines, humans, etc. The goals in
solving this scheduling problem are rich in variety, such
as achieving as short time as possible to complete a job,

minimizing the total “lateness” of jobs, minimizing the
maximum waiting time, or optimizing performance
according to some other criterion. In this paper, author
will only focus on these two problems: minimizing job
completion time, and minimizing number of processors
needed to complete the job.

Those two problems seem easy to solve, but they are
really difficult actually, because there are so many
aspects that should be taken into account. In this paper,
we shall disuss how to solve that problems using critical
path method (for minimizing job completion time), and
First-Fit algorithm (for minimizing number of processors
required for job completion), as we will see in chapter II.

A. Job Completion Time Minimization (Scheduling
Problem)
Manufacturing is basically an activity to create goods

or products. In order to create a product (a job), several
tasks need to be completed by using various processors
(machines, humans, etc.). Each task has an accosiative
length of time required for its completion. The faster a
product is created, the more products quantity that can be
achieved, and the more profitable it will be for the
manufacturer. Therefore, it is often of interest to find the
optimal task assignments for each processors available in
order to finish the job as soon as possible. The naive
approach to solve the problem is to list all of possible
task arrangements, and choose one arrangement that has
the shortest job completion time, which is known as
exhaustive search method. But, as we will see in the next
paragraphs, this method is not preferable and rarely used
in the real industry world.

Now, we will see an example that use exhaustive
search for the optimal task assignments. In any
manufacturing plant, where there are many tasks and
various processors capable of completing certain tasks,
there will be also many variety of task assignments in
order to complete a job. For example, there are 8 tasks
that should be done for completing a job. Each task has
various completion time, for example, task A required 10
minutes to complete, whereas task B required only 4
minutes to complete, and so on. Those tasks may have
dependence toward other tasks, for example, task A

Makalah II2092 Probabilitas dan Statistik – Sem. I Tahun 2010/2011

should be done first before doing task B, and task C
should be done before doing task D, etc. Then, if in a
manufacturing plant there consists only 3 processors that
able to complete those tasks, how many work
assignments are there for such criterias (8 tasks (each has
various dependencies toward other tasks), and 3
processors)? The answer is: It is so many that it is very
inefficient to list all possible assignments. We can assign
all tasks completion to the processor 1 while other
processors are idle, or we can use all processors together
with various work assignments for each processor, and
many more.

That’s why, it is very inefficient to use exhaustive
search method as described in previous paragraphs to
find the best work assignment in order to complete a job
as fast as possible. The more preferable method to solve
this problem is critical path method (CPM) that will be
discussed further in chapter II.

B. Number of Processor required for Job
Completion Minimization (Bin Packing Problem)
Other than minimizing the time required for

completing a job, it is also of interest to minimize the
number of processors required for completing a job. Just
imagine it, if by using 8 processors, a job can be
completed in 1 day, but the cost for using each processors
is 40$/day and the profit for that day is only 200$, is it
worth it? But of course, by minimizing the numbers of
processors available to complete a job, the job completion
time may also takes longer than before. Each decision
have its negative and positive effects, so the decision on
deciding what aspects should be minimized depends on
what problems that a decision maker in manufacturing
plant face.
 This kind of problem, rather than called one of
scheduling problems, are widely known as Bin Packing
Problems. Bin packing problems mainly discuss how
objects of different volumes must be packed into a finite
number of bins of capacty V in a way that minimizes the
number of bins used. In manufacturing schduling
problems, those bins are processors, volume is the
deadline for completing the job, and objects with
different volumes are tasks with various completion
times. In other words, we want to find task assignment
for each processor such that it will minimize number of
processors needed to complete a job, given a deadline
time to finish all tasks.
 This problem, again, can be solved by using
exhaustive search method as described in point A. There
is another method that can solve that problem, which is
called First-Fit Algorithm. Although it doesn’t always
give the best optimal result, the result is fairly well, and
much more efficient than exhaustive search method. We
will see the use of this algorithm in order to solve bin
packing problems in the next chapter.

II. SOLVING THE PROBLEMS

In this chapter, author will give one example for each
problem in previous chapters. Each example will have a
solution by using one method. First example is about
minimizing job completion time by using CPM (Critical
Path Method), and next example is about solving bin
packing problem by using First-Fit Algorithm.

A. Critical Path Method
The critical path method (CPM) is a mathematically

based algorithm for scheduling a set of project activities.
This method, although seems easy and trivial as we will
see later, is very useful and flexible because it can be
used in all forms of projects, such as construction,
software development, plant maintanace, product
manufacturing, and many more.

The essential requirement before we can use CPM is to
construct a model of the project that includes the
following:

1. A list of all activities required to complete the
project

2. The time (duration) that each activity will take to
completion

3. The dependencies between each activities
We called an activity depend on other activities if that
activity cannot start until the other activities that they
depend on has been completed. For example, task U
which consists of transporting all products to distributor
cannot start before task T, which is testing for the quality
of the products. In this case, task T is a precedent or a
predecessor of task U. This kind of dependence is very
common in real manufacturing world, and should be
taken into account.
 Actually, we can easily construct this model by using
direected graph structure to easily conduct this critical
path method. Duration for each activity take to
completion is stored in a vertex which named after their
task name. The dependencies between two tasks are
represented by directed edge that connect two nodes
(activities/tasks).
 To fully understand how to construct such graph,
which is often called order requirements digraph, let’s
see an example of such graphs (Figure 1) derived on
information described in Table 1.

Table I. Tasks Information for Figure 1
Task Completion Time

(in minutes)
Precedence(s)

A 1 none
B 1 none
C 1 none
D 1 none
E 10 none
F 10 none

Makalah II2092 Probabilitas dan Statistik – Sem. I Tahun 2010/2011

G 10 none
H 3 A
I 3 A
J 3 A
K 3 A
L 10 H,I,J,K

Figure 1. Order requirements digraph derived from

Table I
As we can see, it is easier to read task information from
Figure 1 rather than from Table I. The graph can be
simplified (optionally), by eliminating an edge from node
J to K if there is a different directed path from J to K, so
that the graph will be less complicated and easier to
understand. We won’t lose any precedence information
because the dependencies between J and K can still be
implied by the alternative directed path from J to K.
 After constructing such graph from tasks information,
we shall search the critical path of the graph. A critical
path in an order requirements digraph is a directed path
such that the sum of the completion times for the vertices
in the path is the largest possible. For Figure 1, as we can
see, the critical path is A-H-I-J-K-L, not A-H-L, nor A-I-
L, A-J-L, and A-K-L, because L’s precedendes are
H,I,J,K. That’s why, L cannot start before H,I,J,K are
done. Other than A-H-I-J-K-L, A-I-J-K-H-L, A-K-H-I-J-
L, are also critical paths, because sum of times for their
vertices are the same (1+3+3+3+3+10 = 23 minutes).
The total sum of times for their vertices are the shortest
time possible for completing the job.
 Why is it so? Note that the earliest starting time for
any task T is the largest sum of times on a order
requirements digraph to that task. Every precedent of T
will be on a directed path to T. Seeking the longest such

directed path means that all precedents of T will be
finished before we start T. Thus, critical path gives us a
lower bound for the completion time for the whole
project. But, this method only applies when the number
of processors available is unlimited—which means that it
is not necessary to wait until a processor is available.
After understanding this method, we shall see an
example how to apply this CPM into a case.
 For simplicity in our discussion, lets make some
assumptions. We will assume that any processors can
complete any tasks, no processor can be idle if there is
some task it can be doing, and once a processor has
begun a task, it alone must continue to process that task
until it is finished. If those assumptions are not
considered, then this discussion will be far more complex
and not appropriate for beginners.
 Example I : Suppose in a manufacturing plant, in
order to complete a job, 5 tasks must be completed, with
tasks information as described in Table II below. Find the
shortest time possible for this job to be completed by
using CPM!

Table II. Tasks Information for Example I
Task Completion Time

(in minutes)
Precedence(s)

A 30 none
B 40 A
C 10 A
D 30 A,C
E 50 A,B,C,D

From information derived from Table I, we make order
requirements digraph in Figure 2. This figure is the
simplified version (one edge that connects 2 nodes can be
erased if there is another alternative path that still
connect those edges).

Figure 2. Order requirements digraph derived from

Table II

After creating such graphs, now we have to find its
critical path. The possible path available from figure 2 is
A-B-E, A-C-E, and A-C-D-E. Then, we found that
critical paths from graph in figure 2 are A-C-D-E and A-
B-E which each completion time is 120 minutes. Then,
from that two paths, we can make the optimal schedule

Makalah II2092 Probabilitas dan Statistik – Sem. I Tahun 2010/2011

in the form of Table as we can see in Table III. This
optimal schedule isn’t unique because there is other
possible arrangements, such as in Table IV. But one
criteria that isn’t unique is that each optimal schedule
always required 120 minutes for completing all tasks.
One thing to be considered again, this method only
applies if there is unlimited processors available for
completing the job, which means it won’t be necessary to
wait for other processors to be available in order to
complete a task. For example, if available processor for
completing the job is only one, then this optimal schedule
is not valid, because for example in Table III, in order to
start task B, it has to wait until all tasks in processor 1
are done, and so does for task E. This will make the
required job completion time much longer (160 minutes).

Table III. One possible optimal schedule for example I
Time
(minutes)

0 30 40 70 120

Processor
1

A C D Idle

Processor
2

Idle B E Idle

Table IV. Another possible optimal schedule for

example I
Time
(minutes)

0 30 40 70 120

Processor
1

A B E Idle

Processor
2

Idle C D Idle

 Simple, but very useful are some words that can
describe this method. But, unfortunately, this method
doesn’t always give the best result. For example, we’ve
found that one of critical paths from figure I is A-H-I-J-
K-L which gives 23 minutes for job completion. For
realizing this schedule, we need 4 processors, and the
schedule is described in Table V. The numbers above and
below the table represents time in minutes.

Table V. Critical Path Schedule from Figure 1

But unfortunately, in this case, that table is not the
optimal schedule for figure 1. The optimal schedule is
the one in Table VI. Again, the numbers above and
below the table represents time in minutes.

Table VI. Optimal Schedule from Figure 1

This one example shows the flaw of finding optimal
schedule with critical path method. Even so, this method
is fairly useful and easy to use, so, this method is often
used in the real manufacturing world to find the optimal
schedule for completing a job.

B.First-Fit Algorithm

 One of heuristic approach to solve bin packing
problem is by using First-Fit Algorithm. This Algorithm,
though doesn’t always give the best result, is very easy to
conduct and fast to be done, with Θ(n log n), where n is
the number of elements to be packed. The basic idea of
this algorithm in solving bin packing problem
concerning manufacturing scheduling problem, is to
assign each tasks available into the first processors that
still can complete the task before the deadline. Thus,
there is limitation in order to use this algorithm in
scheduling problem, which is, the tasks must be
independent. Meaning, there is no dependencies between
any task, and the order requirements digraph shouldn’t
have any edges. So, the graph should only consists of
nodes. The algorithm in pseudo-code notation is listed in
figure 3.

Fig. 3.First-fit Algorithm

 Before we can apply this algorithm to solve previous
problem, we should make a list that consists of each
completion time for all tasks. For example, for tasks

First-fit Algorithm.
procedure FF(W: an arbitrary list w1, . ,wn)
{b1, . . . is the list of bins; object Oi has weight wi; L(bj) =
total weight placed in bj}
k := 1
{k is number of bins opened}
for i := 1 to n
begin
{find first available bin}
j := 1
while Oi not packed and j ≤ k
begin
if L(bj) + wi ≤ d then pack Oi in bj
j := j + 1
end
if j=k+1 then open bj and pack Oi in bk+1
end

Makalah II2092 Probabilitas dan Statistik – Sem. I Tahun 2010/2011

information on Table VII, the list for first-fit algorithm is
8 7 6 5 2 3.

Table VII. Tasks Information
Task Completion Time

(in minutes)
Precedence(s)

A 8 none
B 7 none
C 6 none
D 5 none
E 2 none
F 3 none

 The reason why this algorithm doesn’t always give
the best result is that the algorithm depends heavily on
the order of the weights (completion time for each task)
in list such as in Table VII, as we can see in Example II.

 Example II : Suppose in a manufacturing plant, in
order to complete a job, 25 tasks must be completed, with
tasks information as described in Table VII below. There
is no dependency between each task. Find the minimum
number of processor required for this job to be completed
by using First-Fit Algorithm, given the job must be
completed in 100 minutes!

Table VIII. Tasks Information for Example II
Task Completion Time

(in minutes)
Precedence(s)

A 7 none
B 7 none
C 7 none
D 7 none
E 7 none
F 12 none
G 12 none
H 12 none
I 12 none
J 12 none
K 15 none
L 15 none
M 15 none
N 36 none
O 36 none
P 36 none
Q 36 none
R 36 none
S 52 none
T 52 none
U 52 none
V 52 none
W 52 none
X 52 none
Y 52 none

 First, we have to make a completion time list for all
tasks. One arbitrary choice to make this list is:
7 7 7 7 7 12 12 12 12 12 15 15 15 36 36 36 36 36 52 52
52 52 52 52 52
 The first-fit algorithm yields the following schedule,
stored in Table IX (produced on next page), which needs
11 processors. This is not the optimal result that we
want. The actual minimum number of processors
required is 7, just like the schedule in Table X (also
produced on next page) shows. This is the optimal result,
because the sum for all tasks completion time is 684
minutes, and, in order to complete all tasks in only 100
minutes, means that at least 684/100 = 6.84 or 7
processors are required.
 Such result is possible to attain with a bit modification
in before using First-Fit-Algorithm. This modification
leads to the new algorithm, which is called First-Fit-
Decreasing Algorithm. The Algorithm is exactly like the
First-Fit Algorithm. The difference is, before we apply
the algortihm to the list, we should sort it in decreasing
weights order. Then, let’s apply this new Algorithm to
the example II.
 The list for example II, if it’s sorted in decreasing
weights order is:
52 52 52 52 52 52 52 36 36 36 36 36 15 15 15 12 12 12
12 12 7 7 7 7 7
 If we apply the same algorithm (First-Fit Algorithm) to
the list above, then the schedule it results will be the one
in Table X, the optimal result which only need 7
processors for job completion. But actually, this
algorithm also doesn’t always give the best result. The
method that will guarantee us to give the best result is
still the exhaustive search method. But the results
derived from First-Fit Algorithm and First-Fit-
Decreasing Algorithm are satisfying concerning the easy
steps that should be completed.
 As we can see in example II, First-Fit Decreasing
algorithm gives more satisfying results than First-Fit
Algorithm. But actually, in real manufacturing process,
sometimes First-Fit Algorithm is more preferable than
the First-Fit Decreasing Algorithm. This is true mainly
in case of loading goods to the trucks. It is often
impossible to weight all of goods first before loading it
into the truck. Thus, sorting the goods in decreasing
weights order is also not possible in that case. That’s
why, the more efficient and fast algorithm in is First-Fit
Algorithm, in case we want to minimize number of
processors required faster. If we want to get the
minimum number of processors required, where time is
not of concern, then the First-Fit Decreasing algorithm
might be more preferable.

Makalah II2092 Probabilitas dan Statistik – Sem. I Tahun 2010/2011

Table IX. Schedule Derived from First-Fit Algorithm for Example II

Table X. Schedule Derived from First-Fit Decreasing Algorithm for Example II

III. CONCLUSION

 In order to solve the main problem in a manufacturing
process—scheduling problem, concerning on minimizing
job completion time or minimizing number of processors
required for job completion—, we can use Critical Path
Method (CPM) and First-Fit Algorithm (FF). CPM is
used when we are interested in finding the optimal
schedule with the shortest possible job time completion,
while FF is used when we want to minimize number of
processors required for completing a job. Those methods,
although doesn’t always give the best result, is far more
efficient than the exhaustive search method.

IV. ACKNOWLEDGMENT

In the Name of Allah, the Most Gracious, the Most
Merciful.

The Author would like to give sincere thanks to all the
people who have contributed to the creating of this paper
in this section. First praise is to Allah, the Almighty, on
whom ultimately the author depended on for showing
inner peace and for all my blessings. A special word of
gratitude to my mother, father, and sister. Without their
support, this paper could not have been achieved. A word
of thanks must also go to Mr. Rinaldi Munir for his
guidance during the course work for this degree Discrete
Mathematic Education. The last, but not the least, thank

you to all of my friends who helped me work my way
through the academic and technical dimensions of this
paper.

REFERENCES
[1] M. Robert, “Applications of Discrete Mathematics,”, updated

ed., M.G. John and H.R. Kenneth, Ed. New York: McGraw-
Hill, 2007 , pp.187-199.

[2] Bin Packing Problem. (2010, December 14). In Wikipedia,
The Free Encyclopedia. Retrieved 04:27, December 14, 2010,
from http://en.wikipedia.org/wiki/Bin_packing_problem

[3] Critical Path Method. (2010, December 13). In Wikipedia,
The Free Encyclopedia. Retrieved 10:30, December 13, 2010,
from http://en.wikipedia.org/wiki/Critical_path_method

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 14 Desember 2010

Hanny Fauzia (13509042)

