Pengkajian Metode dan Implementasi AES

Hans Agastyra 13509062

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

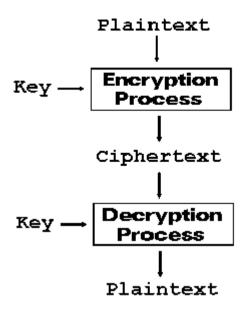
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

solvethistrick@yahoo.com

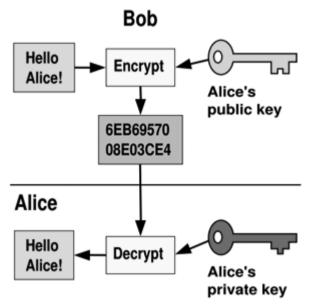
Abstrak: Dunia kriptografi teruslah berkembang dalam rangka pemenuhan kebutuhan akan melindungi informasi yang merupakan hal yang amat krusial di era global seperti saat ini. Informasi adalah sebuah hal penting yang layaknya sebuah harta yang juga harus terlindungi, privasi memang sangat dibutuhkan untuk tidak menimbulkan kekacauan serta melindungi hak, oleh karena itulah kriptografi menjadi salah satu hal yang berkembang dengan sangat pesat untuk mendukung kebutuhan akan hal itu. Salah satu metode kriptografi adalah algoritma kunci simetris yang salah satu jenisnya adalah menggunakan algoritma enkripsi Advanced Encryption Standard (AES) vang sudah sangat mendunia. Makalah ini akan menganalisis dan juga membahas tentang metode serta aplikasi dari algoritma enkripsi AES tersebut yang sebelumnya akan mengenalkan terlebih dahulu hal-hal dasar yang terkait dengan hal tersebut antara lain adalah kriptografi, enkripsi, dekripsi, dan algoritma kunci simetris.

Kata Kunci: Advanced Encryption Standard, kriptografi, enkripsi, dekripsi, algoritma kunci simetris

I. PENDAHULUAN


Sebelum lebih jauh membahas seperti apa metode yang digunakan dalam algoritma kriptografi Advanced Encryption Standard (yang seterusnya akan disingkat dengan AES) ada baiknya mengenal beberapa hal yang berkaitan erat dengan perkembangan serta munculnya algoritma tersebut sebagai salah satu solusi dari permasalahan di dunia kriptografi.

Hal pertama yang penting diketahui adalah mengenai kriptografi. Kriptografi adalah sebuah ilmu untuk menyembunyikan informasi. Seperti yang didefinisikan oleh Wikipedia. Kriptografi masuk ke dalam disiplin ilmu dari matematika, sains komputer, dan teknik elektro. Awalnya ilmu kriptografi digunakan dan diperkenalkan dalam dunia perang sejak tahun 400 SM oleh tentara Sparta di Yunani, setelah itu pun ilmu ini kerap digunakan dalam peperangan-peperangan seperti perang dunia II karena sifatnya yang khas yaitu melindungi atau menyembunyikan informasi yang merupakan hal penting dalam sebuah peperangan. Seiring berkembangnya zaman dan teknologi informasi. Kriptografi tidak lagi hanya digunakan dalam peperangan. Semua hal yang berkaitan dengan informasi digital yang ada sekarang hampir semuanya berkaitan dengan kriptografi hal ini karena komputer hanya dapat mengolah suatu informasi dalam bentuk biner. Selain komputer, contoh lain dalam penggunaan ilmu kriptografi adalah pada kartu ATM dan privasi dalam email.


Kriptografi sendiri dibagi menjadi beberapa kategori metode penyusunannya , antara lain : Algoritma kunci simetris, algoritma kunci asimetris, dan fungsi hash. Semuanya memiliki keunggulan, kekurangan, dan karakteristik yang unik yang menjadi ciri khas dari masing-masing metode tersebut sehingga dapat digunakan untuk tujuan yang berbeda-beda sesuai kebutuhan.

Setelah secara umum dijelaskan mengenai kriptografi, sekarang hal lebih lanjut dari kriptografi adalah metode dasar di dalamnya, yaitu enkripsi dan dekripsi, kedua hal inilah yang mendasari adanya kriptografi. Sebuah teks biasa yang biasanya mempunyai istilah plainteks yang akan dijadikan kode akan dienkripsi menjadi sebuah kode yang biasa disebut chiperteks dan chiperteks ini nantinya akan didekripsi agar dapat menjadi sebuah plainteks lagi dan dibaca oleh orang lain. Seperti itulah prinsip dasar dari kriptografi. Dengan kata lain ekripsi adalah sebuah proses yang merubah plainteks menjadi chiperteks dan dekripsi adalah sebuah proses yang mengubah chiperteks menjadi plainteks. Dalam melakukan fungsinya, agar privasi dapat terjaga, proses enkripsi dan dekripsi diberi sebuah kunci agar dapat bekerja, kunci inilah yang mendasari perbedaan antara algoritma kunci simetris dengan algoritma kunci asimetris. Dalam algoritma kunci simetris, kunci yang digunakan pada proses enkripsi sama dengan kunci yang digunakan dalam proses dekripsi dan dalam algoritma kunci asimetris, kunci yang digunakan dalam proses enkripsi dan proses dekripsi adalah dua buah kunci yang berbeda.

Seperti apa yang telah dijelaskan, kunci simetris sifatnya lebih ke public karena si pengirim dan penerima akan sama-sama bisa melihat konten dari informasi yang dienkripsi, berbeda dengan kunci asimetris yang terdapat kunci publik dan kunci pribadi dimana si pengirim memiliki dua buah kunci yang satu untuk mengenkripsi dan yang satu lagi adalah untuk mendekripsi sehingga membuat kunci asimetris memiliki kerahasiaan yang lebih dari kunci simetris dan hal ini sangat berguna di kehidupan sehari-hari yang memanfaatkan sifat tersebut.

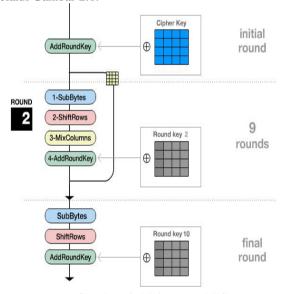
Gambar 1.1 Ilustrasi Enkripsi dan Dekripsi

Gambar 1.2 Kunci Asimetris

Gambar 1.1 dan 1.2 memperlihatkan ilustrasi bagaimana kriptografi, enkripsi, dan dekripsi bekerja serta memberikan penjelasan tentang kunci dalam proses tersebut. Setelah membahas mengenai apa itu kriptografi dan jenis-jenisnya dan sebelum masuk ke dalam pembahasan utama mengenai metode AES, hal lain yang perlu diketahui adalah tentang bagaimana AES ini terbentuk.

AES diumumkan pertama kali pada 26 November 2001 oleh Institut Nasional Standard an Teknologi (NIST) yang diperuntukkan sebagai Standar Pemrosesan Informasi Federal (FIPS). Ada 15 desain yang diajukan pada saat itu untuk dikaji dan diperiksa. Algoritma yang terpilih dan cocok dijadikan sebagai standar adalah

algoritma Rijndael. Oleh karena itu algoritma Rijndael sekarang lebih dikenal dengan sebutan AES karena sudah ditetapkan sebagai standar ekripsi internasional.

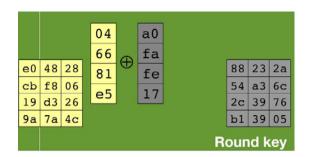

II. METODE

AES adalah sebuah standar enkripsi yang diadopsi oleh Amerika Serikat. Hal ini menjadikan Hal ini membuat algoritma Rijndael lebih spesial karena memiliki kedudukan tersebut. Algoritma ini dipilih bukan karena tanpa alasan, hal ini dikarenakan Rijndael memiliki sebuah metode yang dapat diandalkan serta efektif.

AES memiliki beberapa macam tipe size kunci dan digolongkan menjadi AES-128, AES-192, dan AES-256. Ketiganya memiliki ukuran blok chiper 128 bits dan yang membedakan adalah ukuran kuncinya yaitu 128 bits untuk AES-128, 192 bits untuk AES-192, dan 256 bits untuk AES-256. Blok chiper tersebut dalam pembahasan ini akan diasumsikan sebagai sebuah kotak.

Setiap plainteks akan dikonversikan terlebih dahulu ke dalam blok-blok tersebut dalam bentuk heksadesimal. Barulah kemudian blok itu akan diproses dengan metode yang akan dijelaskan.

Secara umum metode yang digunakan dalam pemrosesan enkripsi dalam algoritma ini dapat dilihat melalui Gambar 2.1.



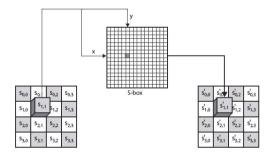
Gambar 2.1 Diagram AES

Terlihat dari Gambar 2.1 terdapat beberapa istilah asing yang perlu dijelaskan agar membuat semuanya lebih terjelaskan. Istilah-istilah tersebut adalah Add Round Key, Sub Bytes, Shift Rows, dan Mix Columns.

A. ADD ROUND KEY

Add Round Key pada dasarnya adalah mengkombinasikan chiper teks yang sudah ada dengan chiper key yang chiper key dengan hubungan XOR. Bagannya bisa dilihat pada gambar 2.1.1.

Gambar 2.1.1 Add Round Key

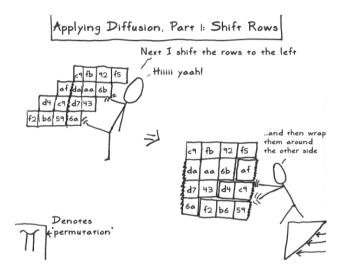

Pada gambar tersebut di sebelah kiri adalah chiper teks dan sebelah kanan adalah round key nya. XOR dilakukan per kolom yaitu kolom-1 chiper teks di XOR dengan kolom-1 round key dan seterusnya.

B. SUB BYTES

Prinsip dari Sub Bytes adalah menukar isi matriks/tabel yang ada dengan matriks/tabel lain yang disebut dengan Rijndael S-Box. Di bawah ini adalah contoh Sub Bytes dan Rijndael S-Box.

	x 0	x1	x2	x 3	x4	x 5	x6	x 7	x 8	x 9	xa	xb	xc	xd	xe	xf
0×	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
1x	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
2x	b7	fd	93	26	36	3f	£7	CC	34	a5	e5	f1	71	d8	31	15
3x	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
4x	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
5×	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
6x	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
7x	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
8x	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
9x	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	d0	db
ax	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
bx	e7	08	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
CX	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
dx	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
ex	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
fx	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

Gambar 2.2.1 Rijndael S-Box


Gambar 2.2.2 Ilustrasi Sub Bytes

Gambar 2.2.1 adalah contoh dari Rijndael S-Box, di sana terdapat nomor kolom dan nomor baris. Seperti yang telah disebutkan sebelumnya, tiap isi kotak dari blok chiper berisi informasi dalam bentuk heksadesimal yang terdiri dari dua digit, bisa angka-angka, angka-huruf, ataupun huruf-angka yang semuanya tercantum dalam Rijndael S-Box. Langkahnya adalah mengambil salah satu isi kotak matriks, mencocokkannya dengan digit kiri sebagai baris dan digit kanan sebagai kolom. Kemudian dengan mengetahui kolom dan baris, kita dapat mengambil sebuah isi tabel dari Rijndael S-Box. Langkah

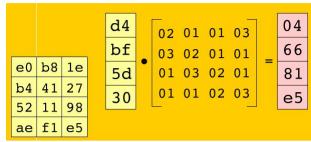
terakhir adalah mengubah keseluruhan blok chiper menjadi blok yang baru yang isinya adalah hasil penukaran semua isi blok dengan isi langkah yang disebutkan sebelumnya.

C. SHIFT ROWS

Shift Rows seperti namanya adalah sebuah proses yang melakukan shift atau pergeseran pada setiap elemen blok/tabel yang dilakukan per barisnya. Yaitu baris pertama tidak dilakukan pergeseran, baris kedua dilakukan pergeseran 1 byte, baris ketiga dilakukan pergeseran 2 byte, dan baris keempat dilakukan pergeseran 3 byte. Pergeseran tersebut terlihat dalam sebuah blok adalah sebuah pergeseran tiap elemen ke kiri tergantung berapa byte tergesernya, tiap pergeseran 1 byte berarti bergeser ke kiri sebanyak satu kali. Ilustrasi dari Tahap ini diperlihatkan oleh gambar di bawah ini.

Gambar 2.3.1 Ilustrasi dari Shift Row

Seperti yang terlihat pada Gambar 2.3.1, tahap shift row sama sekali tidaklah rumit, karena ini adalah proses standar yang hanya berupa pergeseran. Langkah terakhir adalah Mix Column.


D. MIX COLUMNS

Yang terjadi saat Mix Column adalah mengalikan tiap elemen dari blok chiper dengan matriks yang ditunjukkan oleh Gambar 2.4.1. Tabel sudah ditentukan dan siap pakai. Pengalian dilakukan seperti perkalian matriks biasa yaitu menggunakan dot product lalu perkalian keduanya dimasukkan ke dalam sebuah blok chiper baru. Ilustrasi 2.4.2 akan menjelaskan mengenai bagaimana perkalian ini seharusnya dilakukan. Dengan begitu seluruh rangkaian proses yang terjadi pada AES telah dijelaskan dan selanjutnya adalah menerangkan mengenai penggunaan tiap-tiap proses tersebut.

03	02	01	01
01	03	02	01
01	01	02	03

Gambar 2.4.1 Tabel untuk Mix Columns

Gambar 2.4.2 Ilustrasi Mix Columns

E. DIAGRAM ALIR AES

Kembali melihat diagram yang ditunjukkan oleh Gambar 2.1. Seperti yang terlihat semua proses yang telah dijelaskan sebelumnya terdapat pada diagram tersebut. Yang artinya adalah mulai dari ronde kedua, dilakukan pengulangan terus menerus dengan rangkaian proses Sub Bytes, Shift Rows, Mix Columns, dan Add Round Key, setelah itu hasil dari ronde tersebut akan digunakan pada ronde berikutnya dengan metode yang sama. Namun pada ronde kesepuluh, Proses Mix Columns tidak dilakukan, dengan kata lain urutan proses yang dilakukan adalah Sub Bytes, Shift Rows, dan Add Round Key, hasil dari Add Round Key inilah yang dijadikan sebagai chiperteks dari AES. Lebih jelasnya bisa dilihat dengan Gambar 2.5.1 dan 2.5.2 yang akan menerangkan mengenai kasus tersebut.

	Round 2	Round 3	Round 4	Round 5	Round 6
	49 45 75 77	ac ef 13 45	52 85 e3 f6	e1 e8 35 97	a1 78 10 4c
After	de db 39 02	73 e1 b5 23	50 a4 11 ef	4f fb c8 6c	63 4f e8 d5
SubBytes	d2 96 87 53	cf 11 d6 5a	2f 5e c8 6a	d2 fb 96 ae	a8 29 3d 03
	89 f1 la 3b	7b df b5 b8	28 d7 07 94	9b ba 53 7c	fc df 23 fe
After	49 45 7£ 77	ac ef 13 45	52 85 e3 f6	e1 e8 35 97	a1 78 10 4c
	db 39 02 de	e1 b5 23 73	a4 11 cf 50	fb c8 6c 4f	4f e8 d5 63
ShiftRove	87 53 d2 96	d6 5a cf 11	c8 6a 2f 5e	96 ae d2 fb	3d 03 a8 29
	3b 89 fl la	b8 7b df b5	94 28 d7 07	7c 9b ba 53	fe fc df 23
	58 1b db 1b	75 20 53 bb	0f 60 6f 5e	25 bd b6 4e	4b 2e 33 37
After	4d 4b e7 6b	ec 0b c0 25	d6 31 c0 b3	d1 11 3a 4c	86 4a 9d d2
MixColumns	ca 5a ca b0	09 63 cf d0	da 38 10 13	a9 d1 33 c0	8d 89 f4 18
	f1 ac a8 e5	93 33 7c de	a9 bf 6b 01	ad 68 8e b0	6d 80 e8 d8
Round Key	£2 7a 59 73	3d 47 1e 6d	ef as b6 db	d4 7e ca 11	6d 11 db ca
	e2 96 35 59	80 16 23 7a	44 52 71 0b	d1 83 £2 £9	88 0b 19 00
	95 b9 80 f6	47 fe 7e 88	a5 5b 25 ad	c6 9d b8 15	a3 3e 86 93
	£2 43 7a 7£	7d 3e 44 3b	41 7f 3b 00	f8 87 be be	7a fd 41 fc
	aa 61 82 68	48 67 4d d6	e0 c8 d9 85	f1 e1 7e 5d	26 3d e8 fd
After	8f dd d2 32	6c 1d e3 5f	92 63 b1 b8	00 92 c8 b5	0e 41 64 d2
AddRoundKey	5f e3 4a 46	4e 9d b1 58	7f 63 35 be	6f 4c 8b d5	2e b7 72 8b
	03 ef d2 9a	ee 0d 38 e7	e8 c0 50 01	55 ef 32 0c	17 7d a9 2

Gambar 2.5.1Ilustrasi Ronde 2 hingga Ronde 6

	Round 7	Round 8	Round 9	Round 10
	f7 27 9b 54	be d4 0a da	87 f2 4d 97	e9 cb 3d af
After	ab 83 43 b5	83 3b e1 64	ec 6e 4c 90	09 31 32 2e
SubBytes	31 a9 40 3d	2c 86 d4 f2	4a c3 46 e7	89 07 7d 2c
	f0 ff d3 3f	c8 c0 4d fe	8c d8 95 a6	72 5f 94 b5
	£7 27 9b 54	be d4 0a da	87 f2 4d 97	e9 cb 3d af
After	83 43 b5 ab	3b e1 64 83	6e 4c 90 ec	31 32 2e 09
ShiftRows	40 3d 31 a9	d4 f2 2c 86	46 e7 4a c3	7d 2c 89 07
	3f f0 ff d3	fe c8 c0 4d	a6 8c d8 95	b5 72 5f 94
	14 46 27 34	00 bl 54 fa	47 40 a3 4c	
After	15 16 46 2a	51 c8 76 lb	37 d4 70 9f	
ixColumns	b5 15 56 d8 bf ec d7 43	2f 89 6d 99 d1 ff cd ea		
	bf ec d7 43	d1 ff cd ea	ed a5 a6 bc	
	4e 5f 84 4e	ea b5 31 7f	ac 19 28 57	d0 c9 e1 b6
	54 5f a6 a6	d2 8d 2b 8d	77 fa d1 5c	14 ee 3f 63
Round Key	f7 c9 4f dc	73 ba f5 29	66 dc 29 00	f9 25 0c 0c
	0e f3 b2 4f	21 d2 60 2f	f3 21 41 6e	a8 89 c8 a6
	5a 19 a3 7a	ea 04 65 85	eb 59 8b 1b	39 02 dc 19
After	41 49 e0 8c	83 45 5d 96	40 2e al c3	25 dc 11 6a
ddRoundKey	42 dc 19 04	5c 33 98 b0	f2 38 13 42	84 09 85 0b
	bl lf 65 0c	f0 2d ad c5	1e 84 e7 d2	1d fb 97 32

Gambar 2.5.2 Ilustrasi Ronde 7 hingga Ronde 10

Dengan mengetahui semua proses yang ada pada AES, maka kita dapat menggunakannya dalam berbagai contoh kasus yang muncul di kehidupan sehari-hari.

III. IMPLEMENTASI AES

AES atau algoritma Rijndael sebagai salah satu algoritma yang penting tentu memiliki berbagai kegunaan yang sudah diaplikasikan atau diimplementasikan di kehidupan sehari-hari yang tentu saja membutuhkan suatu perlindungan atau penyembunyian informasi di dalam prosesnya.

Salah satu contoh penggunaan AES adalah pada kompresi 7-Zip. Salah satu proses di dalam 7-Zip adalah mengenkripsi isi dari data dengan menggunakan metode AES-256. Yang kuncinya dihasilkan melalui fungsi Hash. Perpaduan ini membuat suatu informasi yang terlindungi dan tidak mudah rusak terutama oleh virus yang merupakan salah satu musuh besar dalam dunia komputer dan informasi karena sifatnya adalah merusak sebuah data.

Hal yang serupa digunakan pada WinZip sebagai salah satu perangkat lunak yang digunakan untuk melakukan kompresi. Tapi prinsip kompresi pun tidak sama dengan prinsip enkripsi. Karena kompresi adalah mengecilkan ukuran suatu data, biasanya digunakan kode Huffman dalam melakukan hal tersebut.

Contoh penggunaan lain adalah pada perangkat lunak DiskCryptor yang kegunaannya adalah mengenkripsi keseluruhan isi disk/partisi pada sebuah komputer. Metode enkripsi yang ditawarkan adalah menggunakan AES-256, Twofish, atau Serpent.

IV. KESIMPULAN

Algoritma Rijndael yang ditetapkan sebagai AES memiliki karakteristik yang istimewa yang menjadikannya mendapat status tersebut. Dalam hal ini pula maka algoritma ini perlu lah untuk dipelajari karena

penggunaannya di kehidupan sehari-hari sudah sangatlah banyak dan hal ini akan berguna dalam pengembangan dari teknologi kriptografi agar dapat menemukan terobosan-terobosan baru. Tujuan utama dari kriptografi adalah melindungi sebuah informasi, begitu pula dengan AES yang dengan serangkaian tahap atau ronde yang dilakukan dengan menggunakan kunci simetris. Penggunaan AES pun bukan hanya digunakan dalam hal yang sederhana melainkan perannya sangatlah krusial dalam sebuah perangkat lunak ataupun dalam hal lain dimana AES tersebut digunakan.

REFERENSI

- [1] Munir, Rinaldi, *Matematika Diskrit (Edisi Ketiga)*, Penerbit Informatika, Bandung, hal. 203-210.
- [2] http://www.nonfictioncomics.net/category/technology/page/2/, waktu akses 16 Desember 2010.
- [3] http://en.wikipedia.org/wiki/Cryptography , waktu akses 16 Desember 2010.
- [4] http://en.wikipedia.org/wiki/Symmetric-key_algorithm , waktu akses 16 Desember 2010.
- [5] http://en.wikipedia.org/wiki/Advanced_Encryption_Standard waktu akses 16 Desember 2010.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 17 Desember 2010

ttd

Hans Agastyra 13509062