
Makalah II2092 Probabilitas  dan Statistik – Sem. I Tahun 2010/2011 
 

Pathfinding Algorithms and Implementations on Grid Map 
 

Steven Andrew / 13509061 
Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  

andy165@students.itb.ac.id 
 
 
 

Abstract—This paper explains some pathfinding 
algorithms such as: depth-first search, breadth-first search, 
Floyd–Warshall algorithm, Dijkstra’s algorithm, best-first 
search,  and A* algorithm, and also their implementations 
on a grid map that are commonly used in real-time strategy 
and role-playing games. Experiments show that A* 
algorithm results in the best path and is efficient in 
performance. 

 
Index Terms —A* algorithm, graph, grid map, heuristic, 

pathfinding. 
 
 

I.   INTRODUCTION 
In most kind of games, such as real-time strategy and 

role-playing games, there are many problems dealing with 
a game character. A problem we’re trying to solve is to 
get a game object from the starting point to a goal. 
Depending on distance and obstacles, there are many 
ways to find a path. But, the best path we want to find is 
the shortest path. 

Pathfinding is a process to find the object the shortest 
path. It is complex [3]. Consider the situation as shown in 
Fig. 1. 

 
Fig. 1. Path from start towards goal, passing a concave 
obstacle 

The unit at start point wants to get to the goal. Naively, 
it prefers to move straight towards the goal. When it 
detects an obstacle, it turns and follow the red path. In 
contrast, a pathfinder would have scanned a larger area 
(shown in light blue) and found a shorter path (blue). 

Pathfinders let us look ahead and make plans rather 

than seeking the goal directly. Planning with pathfinders 
is slower but gives better results [3]. 

There are many algorithms we can use to do 
pathfinding. We will discuss about some pathfinding 
algorithms and do experiments with them to see results. 
We will also compare experiment results and determine 
which pathfinding algorithm is the best. 

 
II.  GRID MAP REPRESENTATION AND DATA 

STRUCTURE 

 
Fig. 2. A sample map on a role-playing game 

There are some map representations we can apply, one 
of them is grid map. A grid map, as in Fig. 2, uses a 
uniform subdivision of the world into small regular 
shapes sometimes called “tiles” [4]. Common grids in use 
are square, triangular, and hexagonal, but in this paper we 
focus on square grids. 

Data structure used on grid maps are commonly two-
dimensional array (or table). Array elements represent 
properties of tiles (such as tile types and passages). For 
example, we can use boolean elements to represent 
passage of tiles, 1 means passable and 0 means 
impassable by the object. We may call it a passage table, 
as shown in Fig. 3. 



Makalah II2092 Probabilitas  dan Statistik – Sem. I Tahun 2010/2011 
 

 
Fig. 3. Passage table of a sample map 

Or we can use a directional passage table that uses 
more than one boolean variables in one element, 1 means 
passable and 0 means impassable by the object for each 
one direction. 

Maps using this data structure have common 
properties: width and height, both are map dimensions. 
Cells have properties x-position (or column index) and y-
position (or row index), i.e., two-dimensional array 
indices. 

Graph implementation on grid map. A graph can be 
established from a grid map, with map cells as 
vertices/nodes. Edges are made based on cell passages, as 
shown in Fig. 4a (4-directional movement) and Fig. 4b 
(8-directional movement, with diagonal movements). 

 
(a) 

 
(b) 

Fig. 4. Graph established from a grid map for (a) 4-
directional movement and (b) 8-directional movement 

 
III.  PATHFINDING ALGORITHMS 

There are many ways to find a path. 
 

A. Depth-first Search 
Imagine that we want to examine all rooms in a big 

building by visiting them as many as possible. Consider 
that we can always remember rooms already visited so we 
will never visit them again. Then we will backtrack (go 
back to previously visited room) if unvisited neighbor 
rooms aren't found. This is how depth-first search (DFS), 
a graph search algorithm works. The result of the search 
can be a spanning tree. 

The algorithm is described as the following steps [8]: 
1. Set initial node as current node. 
2. Mark current node as visited. 
3. If the current node has any neighbors which 

have not been visited, select an unvisited 
neighbor and set it as current node, and then go 
to step 2; otherwise backtrack the current node 
record and back to step 2. 

Algorithm performance. For explicit graphs traversed 
without repetition, time performance of depth-first search 



Makalah II2092 Probabilitas  dan Statistik – Sem. I Tahun 2010/2011 
 

is O(|V| + |E|). 
Power and weakness in “pathfinding”. Depth-first 

search requires less memory, only previous node records. 
It doesn’t use sets of nodes and doesn’t calculate 
distances like other pathfinding algorithms. However, 
depth-first search seems not to be a pathfinder since it 
doesn’t make shortest path. Although it can be optimized 
by heuristic method, it still doesn’t work as well as the 
others. 

 
B. Breadth-first Search 
Unlike depth-first search, breadth-first search explores 

all neighboring nodes. Then for each of those nearest 
nodes, it explores their unexplored neighbor nodes, and 
so on, until it finds the goal. The result of the search can 
be also a spanning tree. 

The algorithm is described as the following steps [7]: 
1. Set initial node as current node and enqueue it to 

a queue. 
2. Dequeue a node from the queue and set it as 

current node. Terminate the search if it is goal 
node. 

3. Enqueue all unvisited neighbors of current node 
and mark them as visited. 

4. If queue is not empty, back to step 2. 
Algorithm performance. Given a branching factor b 

and graph depth d, time performance of breadth-first 
search is 1 + b + b2 + ... + bd = O(bd). 

Power and weakness in pathfinding. Breadth-first 
search produces a shortest path for a non-weighted graph, 
but not always for a weighted graph. It is slow since it 
works very hard to do expansion from starting node. 

 
C. Floyd–Warshall Algorithm 
Floyd–Warshall algorithm is a graph analysis 

algorithm  for finding shortest paths in a weighted graph 
(with positive or negative edge weights). A single 
execution of the algorithm will find the lengths (summed 
weights) of the shortest paths between all pairs of vertices 
though it does not return details of the paths themselves 
[10]. 

Consider a graph G with vertices V, each numbered 1 
through N. Consider also a function shortestPath(i, j, k) 
that returns the shortest possible path from i to j using 
vertices only from the set {1,2,...,k} as intermediate 
points along the way. Now, given this function, our goal 
is to find the shortest path from each i to each j using only 
vertices 1 to k + 1. 

shortestPath(i, j, k) can be defined in terms of the 
following recursive formula [10]: 

 
shortestPath(i, j, k) = min(shortestPath(i, j, k-1), 

 shortestPath(i, k, k-1) – shortestPath(k, j, k-1)) (1) 
 

shortestPath(i, j, 0) = cost of edge between i and j (2) 
 

Algorithm performance. Time performance of Floyd–

Warshall algorithm is O(|V|3) and it is fixed. 
Power and weakness in pathfinding. Floyd–Warshall 

algorithm is guaranteed to find a shortest path for all 
cases. However it is very slow, much slower than the 
others do. Furthermore, for example a 20×15 grid map, 
which has 300 cells/nodes, takes about 3003 = 27 million 
path calculations. 

 
D. Dijkstra’s Algorithm 
Dijkstra’s algorithm, conceived and published by 

Edsger W. Dijkstra, a computer scientist, in 1959, is a 
graph search algorithm that finds shortest path for 
vertices in a graph, producing a shortest path tree [9]. 

The algorithm is described as the following steps: 
1. Assign to every node a distance value. Set it to 0 

for initial node and to Infinity for all other 
nodes. 

2. Create empty open set and add initial node to it. 
3. Find a node in open set whose distance value is 

smallest, set it as current node and remove it 
from open set. 

4. For current node, consider all its neighbors and 
calculate their tentative distance (from the initial 
node) with formula: 

 
Tentative distance = Current node distance + 

 Length of edge connecting them to current node (3) 
 

If this distance is less than the previously 
recorded distance (infinity in the beginning, zero 
for the initial node) or they aren’t in open set, 
overwrite the distance, add them to open set, and 
set their previous node record as current node. 

5. If open set is empty, finish. Otherwise, back to 
step 3. 

Usage of Dijkstra’s algorithm on other purposes. 
For graph coloring (i.e., for bitmaps), Dijkstra’s 
algorithm can be used to color all nodes having the same 
color with target source node. Neighbors to select are 
adjacent nodes that have same color with current node. In 
this purpose, we call the algorithm flood-fill. 

Dijkstra’s algorithm can be used to find and construct a 
minimum spanning tree, where starting point is selected 
to be a node of minimum-cost edge of the graph. In this 
purpose, we call it Prim’s algorithm. 

Algorithm performance. Time performance of 
Dijkstra’s algorithm depends on implementation of open 
set. Let |E| number of edges and |V| number of 
vertices/nodes. The simplest implementation of the 
Dijkstra's algorithm stores vertices of set Q in an ordinary 
linked list or array, and extract minimum from Q is 
simply a linear search through all vertices in Q. In this 
case, the worst-case time performance is O(|V|2 + |E|) = 
O(|V|2). If we use implementation of open set more 
efficiently, worst-case time performance can be down to 
O(|E| + |V| log |V|). 

Power and weakness in pathfinding. Dijkstra’s 



Makalah II2092 Probabilitas  dan Statistik – Sem. I Tahun 2010/2011 
 

algorithm is guaranteed to find a shortest path for all 
cases. However, it works as hard as breadth-first search 
does to do expansion. 

  
E. Best-first Search 
Best-first search (BFS) is a graph search algorithm 

which explores and follows neighboring nodes that is 
closer to the goal, using heuristic function. We may call 
this a greedy process. 

Judea Pearl described best-first search as estimating the 
promise of node n by a "heuristic evaluation function f(n) 
which, in general, may depend on the description of n, the 
description of the goal, the information gathered by the 
search up to that point, and most important, on any extra 
knowledge about the problem domain." [6] 

Heuristic distance. Heuristic distance from a node to 
the goal is an estimated distance that can be used to 
predict how close the end of a path is to a solution. For a 
grid map, we can calculate heuristic distance using either 
following formulas: 

 

 Euclidean distance heuristic = 22 )Δ()Δ( yx +  (4) 

 Manhattan distance heuristic = yx ΔΔ +  (5) 
 
where ∆x and ∆y are absolute value of x-position and y-
position of the node and the goal, respectively. 

The algorithm is described as the following steps: 
1. Create empty open set and add initial node to it. 
2. Create empty closed set. 
3. Remove the best node from open set, call it n, 

add it to closed set. 
4. If n is goal node terminate the search and build a 

path. 
5. For each successor do: 

a. If it is not in closed set: evaluate it, add it to 
open set, and record its parent. 

b. Change recorded parent if this new path is 
better than previous one. 

6. If queue is not empty, back to step 3. 
Power and weakness in pathfinding. Guided by 

heuristic distance, BFS explores towards the goal and 
thus it does less exploration. However, in case of concave 
obstacles, because of greedy behavior, BFS results in a 
worse path. How good resulting path is depends on what 
heuristic function is used. 

 
F. A* Algorithm 
A* is a graph search algorithm that can potentially 

search a huge area of the map. It is like Dijkstra’s 
algorithm in that it can be used to find a shortest path. It 
also behaves greedy like best-first search that uses 
heuristic function to get closer to the goal [3]. 

To combine behavior of Dijkstra’s and BFS, A* uses 
distance function with formula: 

 

 f(x) = g(x) + h(x) (6) 
 
where g(x) is path cost from initial node to node x as 
calculated by Dijkstra’s algorithm and h(x) is heuristic 
cost of node x to goal node. 

The algorithm is described as the following 
pseudocode [5]: 

 
Algorithm performance. Time performance of A* 

depends on the used heuristic. It also varies for some 
cases. 

Advantages in pathfinding. Behaving like Dijkstra’s 
and BFS, A* produces shortest path and works 
efficiently. However, it may depend on the heuristic used 
on it. 

 
 

IV.   EXPERIMENTS AND RESULTS 
I apply pathfinding algorithms as discussed in the 

previous section (except Floyd–Warshall algorithm) on 
the grid map by programming using Game Maker, a game 
engine. 

The test map is a 20×15 map with concave obstacle, 
starting position and goal position as shown in Fig. 5–10. 
Explored nodes will be highlighted with gray color and 
green highlight indicates the path. 

Experiments show the path results for 4-directional 
movement and 8-directional movement in each two 
figures. 

 
A. Depth-first Search 
On a grid map, depth-first search scans nodes (cells) by 

selecting each one neighbor node. In experiment, DFS 
selects a neighbor node based on priority: west, east, 
north, and south neighbor, respectively. This results in 
path as shown in Fig. 5. 



Makalah II2092 Probabilitas  dan Statistik – Sem. I Tahun 2010/2011 
 

 
Fig. 5. Path result using depth-first search 

The path in Fig. 5 seems too long. To make the path 
shorter, I use heuristic method (estimate distance from 
node to the goal) that prioritizes neighbor node with 
smallest heuristic distance. This leads the path to be as 
shown in Fig. 6a (for 4-direction movement) and Fig. 6b 
(for 8-direction movement). 

 
(a) 

 
(b) 

Fig. 6 Path result using depth-first search, improved with 
heuristic method, for (a) 4-directional movement and (b) 
8-directional movement 

 
B. Breadth-first Search 
As in Fig. 7a and Fig. 7b, experiment shows that 

breadth-first search works very hard but results in a 
short(est) path. 



Makalah II2092 Probabilitas  dan Statistik – Sem. I Tahun 2010/2011 
 

 
(a) 

 
(b) 

Fig. 7. Path result using breadth-first search for (a) 4-
directional movement and (b) 8-directional movement 

 
C. Dijkstra’s Algorithm 
Experiment shows that Dijkstra’s algorithm works as 

hard as breadth-first search to produce shortest path, as 
shown in Fig. 8a and Fig. 8b. 

 
(a) 

 
(b) 

Fig. 8. Path result using Dijkstra's algorithm for (a) 4-
directional movement and (b) 8-directional movement 

 
D. Best-first Search 
Experiment shows that BFS prefers to explore towards 

the goal, as shown in Fig. 9a and Fig. 9b, because of its 
greedy behavior. Here BFS uses Euclidean distance 
heuristic. 



Makalah II2092 Probabilitas  dan Statistik – Sem. I Tahun 2010/2011 
 

 
(a) 

 
(b) 

Fig. 9. Path result using best-first search for (a) 4-
directional movement and (b) 8-directional movement 

 
F. A* Algorithm 
Experiment shows that A* results in shortest path but it 

doesn’t work too hard, as shown in Fig. 10a and Fig. 10b. 
A* also uses Euclidean distance heuristic here. 

 
(a) 

 
(b) 

Fig. 10 Path result using A* algorithm (8-directional 
movement) 

 
V.   CONCLUSION 

From experiments, breadth-first search and Dijkstra’s 
algorithm search the goal by doing expansion from 
starting position and produce shortest path. A* algorithm 
also does expansion and produce shortest path but it is 
guided with heuristic, so it tends to move towards the 
goal and thus it does less exploration than breadth-first 
search and Dijkstra’s do. The result of experiments have 
confirmed that A* is the best pathfinding algorithm. 

 
REFERENCES 

[1] David M. Bourg, Glenn Seeman, AI for Game Developers. 
Gravenstein Highway North, Sebastopol: O'Reilly, 2004, ch. 7. 

[2] Jobe Makar, Macromedia® Flash™ MX Game Design 
Demystified: The Official Guide to Creating Games with Flash. 
Berkeley, CA: Peachpit Press, 2002, ch. 9. 

[3] http://theory.stanford.edu/~amitp/GameProgramming/AStarComp
arison.html, accessed in 11/30/2010. 

[4] http://theory.stanford.edu/~amitp/GameProgramming/MapRepres
entations.html, accessed in 11/30/2010. 

[5] http://en.wikipedia.org/wiki/A*_search_algorithm, accessed in 
11/30/2010. 



Makalah II2092 Probabilitas  dan Statistik – Sem. I Tahun 2010/2011 
 

[6] http://en.wikipedia.org/wiki/Best-first_search, accessed in 
11/30/2010. 

[7] http://en.wikipedia.org/wiki/Breadth-first_search, accessed in 
11/30/2010. 

[8] http://en.wikipedia.org/wiki/Depth-first_search, accessed in 
11/30/2010. 

[9] http://en.wikipedia.org/wiki/Dijkstra's_algorithm, accessed in 
11/30/2010. 

[10] http://en.wikipedia.org/wiki/Floyd–Warshall_algorithm, accessed 
in 11/30/2010. 

 
 

PERNYATAAN 
Dengan ini saya menyatakan bahwa makalah yang saya 
tulis ini adalah tulisan saya sendiri, bukan saduran, atau 
terjemahan dari makalah orang lain, dan bukan plagiasi. 

 
Bandung, 17 Desember 2010    

 

 
Steven Andrew / 13509061 


