Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung

Nama	:															
NIM	:															
T.tangar	1:															

Jawaban Kuis ke-1 IF2091 Struktur Diskrit (3 SKS) - Logika, Himpunan, Relasi dan Fungsi Dosen: Rinaldi Munir & Harlili Kamis, 1 September 2010 Waktu: 60 menit

- 1. Diberikan pernyataan "Untuk mendapatkan satu kupon undian, Anda cukup membeli dua produk senilai Rp. 50.000,-".
 - a. Nyatakan pernyataan di atas dalam bentuk proposisi "jika p, maka q".
 - b. Tentukan ingkaran, konvers, invers, dan kontraposisi dari pernyataan tersebut.

Jawaban:

- a. **Jika** Anda membeli dua produk senilai Rp. 50.000,-, **maka** Anda mendapatkan satu kupon undian"
- b. Ingkaran:

$$p \to q \Leftrightarrow \sim p \lor q$$

$$\sim (p \to q) \Leftrightarrow \sim (\sim p \lor q)$$

$$\Leftrightarrow p \land \sim q$$
 [Hukum de Morgan]

"Anda membeli dua produk senilai Rp. 50.000,- **dan** Anda **tidak** mendapatkan satu kupon undian"

Konvers:

"Jika Anda mendapatkan satu kupon undian, maka Anda membeli dua produk Rp. 50.000,-"

Invers:

"Jika Anda tidak membeli dua produk senilai Rp. 50.000,-, maka Anda tidak mendapatkan satu kupon undian"

Kontraposisi:

"Jika Anda tidak mendapatkan satu kupon undian, maka Anda tidak membeli dua produk senilai Rp. 50.000,-"

2. Periksa apakah proposisi berikut merupakan tautologi:

"belajar mengakibatkan tidak pintar, adalah syarat cukup untuk tidak belajar, berlaku jika dan hanya jika pintar atau tidak belajar"

Jawaban:

Misal p: pintar dan b: belajar

Proposisi pada soal dapat diubah menjadi $((b \rightarrow \neg p) \rightarrow \neg b) \Leftrightarrow (p \lor \neg b)$

Selanjutnya, kita uji kebenarannya dengan tabel kebenaran

p	b	~p	b→~p	~b	(b→~p) →~b	p∨~b	$(p\lor\sim b) \Leftrightarrow ((b\rightarrow\sim p)\rightarrow\sim b)$
T	T	F	F	F	Т	T	T
T	F	F	T	T	Т	T	T
F	T	Т	T	F	F	F	T
F	F	T	T	T	Т	T	T

Terlihat bahwa proposisi $((b \rightarrow \sim p) \rightarrow \sim b) \Leftrightarrow (p \vee \sim b)$ selalu benar, sehingga **merupakan suatu tautologi**.

3. Diketahui A, B, dan C merupakan suatu himpunan. Jika diketahui $(A \cap B) = (A \cap C)$, jelaskan apakah berarti bahwa selalu B = C? Berikan suatu *counter example*.

Jawaban:

Tidak selalu, salah satu counter examplenya yaitu misalkan B merupakan himpunan bagian dari C dan $C - B \neq \{\}$.

- 4. Misalkan A, B, dan C adalah himpunan. Gunakan hukum-hukum aljabar himpunan dan prinsip dualitas untuk menentukan hasil dari operasi himpunan
 - a. $(A \cap B) \cup (\overline{A} \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B})$
 - b. $(A \cup B) \cap (\overline{A} \cup B) \cap (A \cup \overline{B}) \cap (\overline{A} \cup \overline{B})$

Jawaban:

a.
$$(A \cap B) \cup (\overline{A} \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B})$$

$$= ((A \cap B) \cup (\overline{A} \cap B)) \cup ((A \cap \overline{B}) \cup (\overline{A} \cap \overline{B}))$$

$$= (B \cap (A \cup \overline{A})) \cup (\overline{B} \cap (A \cup \overline{A}))$$

$$= (B \cap U) \cup (\overline{B} \cap U)$$

$$= (B \cap U) \cup (\overline{B} \cap U)$$

$$= U \cap (B \cup \overline{B})$$

$$= U \cap U$$

- 5. Misalkan R menyatakan relasi "2x/y adalah anggota bilangan bulat" dengan x dan y anggota bilangan riil selain nol. Tentukan apakah relasi R:
 - a. Refleksif
 - b. Tolak-setangkup
 - c. Menghantar

Jawaban:

- a. Untuk setiap x=y=a berlaku $2x/y = 2a/a = 2 \Rightarrow$ bilangan bulat
 - \therefore R **refleksif** karena (a,a) \in R
- b. Ambil x=a dan y=2a, kita dapatkan $2x/y = 2a/2a = 1 \rightarrow$ bilangan bulat Ambil x=2a dan y=a, kita dapatkan $2x/y = 4a/a = 4 \rightarrow$ bilangan bulat
 - \therefore R tidak tolak-setangkup karena terdapat bilangan x dan y dengan $x \neq y$ tetapi $(x,y) \in R$ dan $(y,x) \in R$
- c. Pilih suatu x, y, z dengan ketentuan, 2x/y dan 2y/z adalah bilangan bulat ganjil. Sehingga kita miliki $(x,y) \in R$ dan $(y,z) \in R$ Selanjutnya kita periksa (x,z):

2x/z = 2x/y. $y/z = \frac{1}{2}(2x/y)$. $(2y/z) = \frac{1}{2}$ (suatu bil. ganjil).(suatu bil. ganjil) \Rightarrow bukan bilangan bulat

- \therefore R tidak menghantar karena terdapat suatu x, y, dan z sehingga $(x,y) \in R$ dan $(y,z) \in R$ tetapi $(x,z) \notin R$
- 6. Didefinisikan relasi R pada N dengan $(x, y) \in R$ jika dan hanya jika x y adalah kelipatan 5. Jelaskan apakah relasi tersebut merupakan relasi kesetaraan.

Jawaban:

Suatu relasi merupakan relasi kesetaraan jika ia refleksif, setangkup dan menghantar.

- Relasi tersebut jelas merupakan relasi refleksif, karena untuk setiap a pada N maka 5|a-a atau 5|0. Sehingga untuk setiap a berlaku (a,a) ∈ R.
- Relasi tersebut merupakan relasi setangkup, karena jika $(a,b) \in R$ maka $(b,a) \in R$ juga. Hal ini dapat diketahui dari, misalkan 5|(a-b), maka kita juga dapat menyimpulkan bahwa 5|-(a-b) atau dalam kata lain 5|(b-a).
- Relasi tersebut merupakan relasi menghantar, karena jika (a,b) ∈ R dan (b,c) ∈ R maka (a,c) ∈ R. Hal ini dapat diketahui dari :

Misalkan a-b=5m, dan b-c = 5n, dengan m,n \in N, maka dengan mengurangi kedua persamaan tersebut diperoleh a-c=5m-5n \Leftrightarrow a-c = 5(m-n) atau dalam kata lain 5|a-c. Sehingga (a,c) juga terdapat pada relasi R

- ∴ karena relasi tersebut memenuhi ketiga syarat diatas, maka relasi tersebut merupakan relasi kesetaraan.
- 7. Diketahui sebuah fungsi $f: N \rightarrow N$ yang memiliki sifat f(a + b) = bf(a) + af(b) + ab. Jika diketahui bahwa f(1) = 1, tentukan f(11).

Jawaban:

$$f(2) = f(1+1) = 1.f(1) + 1.f(1) + 1.1 = 3$$

$$f(4) = f(2+2) = 2.f(2) + 2.f(2) + 2.2 = 16$$

$$f(8) = f(4+4) = 4.f(4) + 4.f(4) + 4.4 = 144$$

$$f(10) = f(8+2) = 8.f(2) + 2.f(8) + 8.2 = 328$$

$$f(11) = f(10+1) = 10.f(1) + 1.f(10) + 10.1 = 368$$
Jadi, $f(11) = 368$

.