
ThumbsUp - A Secure Voting System: Design and
Implementation with Shamir's Secret Sharing

Leveraging Homomorphic Property of Lagrange
Interpolation

Christopher Jeffrey - 13520055
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): christopherjeffrey492@gmail.com

Abstract—ThumbsUp is a secure voting system designed to
keep secret voters vote to everyone but themself, while still
allowing the voting to happen. Using Shamir's Secret Sharing
and the homomorphic properties of Lagrange interpolation this
goal can be achieved with some other benefits such as adding
encryption to provide data integrity. Traditional voting systems
often expose voters to privacy risks and potential biases. The
system facilitates voting on binary yes/no questions and is
implemented with Firebase and NextJS, providing real-time
capabilities. Although ThumbsUp enhances security, it has
limitations, including vulnerability to man-in-the-middle attacks
and restriction to binary voting. Despite these constraints, the
system demonstrates the potential for a more secure and robust
voting mechanism with further development and refinement.

Keywords—Voting, Secret Sharing, Realtime, Homomorphic
Secret Sharing, Web Application, Firebase

I. EASE OF USE

The implementation of this voting system would leverage
Shamir’s Secret Sharing. The implementation of this system
leverages shamir’s secret sharing, homomorphic encryption.

A. Shamir's Secret Sharing
Secret sharing algorithm is a cryptographic technique, used

for hiding information by splitting it into multiple secrets. We
call these secrets shares. The idea is that you need all the
shares to recover the secret information. It’s very easy to
visualize this using a treasure map. Imagine there’s a secret
map that can be used to find the location of the treasure.This
map then would be splitted into multiple parts, and then
hidden away in multiple locations across the world. The idea
is that the person who wants to find the treasure needs to find
all the hidden pieces in order to find the hidden treasure. If
someone only has one part of it, they wouldn’t be able to find
the treasure.

We will refer to this information as ‘secret’, which is the
information that we’re trying to hide. We would then use this
secret to create shares. We refer to this action as generating.
We turn shares back to secret, as reconstructing. The

implementation can be done in several ways. One of the way
to do it is using lagrange interpolation

B. Threshold Scheme
Let’s say an information is splitted into 5 shares. You

would need all 5 of the shares to be able to recover the
information. But sometimes, you just want at least, for
example, 3 shares. This would be useful if for example this
information is a key to other information, and you want the
majority to agree to unlock that information. We refer to this
as threshold schemes. Threshold scheme is a scenario where
you split the secret information into, let’s say, n shares. Then
you need at t shares in order to reconstruct the secret
information, where t is less than or equal to n. This mechanism
was created by Shamir in 1979, called the Shamir Threshold
Scheme.

C. Homomorphic Encryption
Homomorphic encryption is the encryption of information

(into cipher text), that we would still be able to analyze and
work with by doing mathematical computation such as
addition and multiplication. Some famous encryption that we
use daily in this modern age support this feature, but typical
encryption doesn’t necessarily support this. There are two
types of homomorphic encryption. Partially homomorphic
encryption, and fully homomorphic encryption. Partially
homomorphic encryption. Partially homomorphic encryption
only one operation. That can either be addition, or
multiplication. Fully homomorphic encryption supports both
addition and multiplication operation.

II. QUICK SMALL SCALE VOTING

The idea is you want to be able to do computation on a
data that is represented using a number, without revealing the
number. For example two parties (party A and party B) each
give their number, like 12 and 23. They want to compute the
sum. Typically, this can be done by giving the information to
one of the parties, for example to party A. But such
implementation can’t be done in this scenario, as party A
would know the number form party B. Another way of doing
this is by using the service of a trusted third party. Such

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2023/2024



implementation would suffice, if there actually is a third party
where all the parties involved in the ‘number summing’ event
can be trusted. But that wouldn’t always be the case.

Another reason why you would want to hide people’s vote
is to prevent human biases. For example, if a class wants to
decide the class leader out of two candidates, they can simply
raise their hand. This would lead to fast decision making, and
easy counting. But it has a downside. People might get
persuaded when someone they trust, their close friends, or the
majority for people has the same vote. This would lead to a
less objective voting, with questionable results.

The idea is to create a system where all the information
that is exposed in public is sufficient to calculate the result,
without revealing any of the voters’ vote.

III. DESIGN OF THUMBSUP

An implementation is created to demonstrate a secure
voting system, which is called ThumbsUp. This
implementation uses a yes no question, and would leverage
lagrange interpolation partial homomorphic property.

ThumbsUp would be implemented in rooms. Each room is
created for a one time voting purpose with their own voters.

Image 1. An illustration of 3 voting rooms. Each room has 2 voters.
source: writer’s archive

There are two roles, room creator and voter. Room creator
would be responsible for handling the room which includes
the flow of the voting. The second one is the voter.

Here’s the flow of the voting

1. Room creator creates the room. They would define:
a. Room name. This part will be displayed on

the room list. People would use this to
identify the room they want to join.

b. People included in that voting room. This
number has to be exact. So it’s not the
maximum number of people that’s allowed
to join or the minimum number of people
that is needed to start the voting, it’s the
exact amount of people that has to join to
allow the voting to happen. The minimum
number of people needed is two, while the
theoretical maximum is unlimited. The
limiting factor for the maximum number of
people would tend induced by the practical
things, such as the hardware of the network

c. Question shown in the voting room. This
information would be the number one guide
information that is used by the voter to
determine the context of the voting.

2. Voters find the room and Voters join the room. Voters
would then go to a page with a list of rooms where
they can choose to join.

3. After all voters join the room, the room creator starts
the voting. The voting can only be started once the
number of participant is exactly the same amount of
voters stated previously.

4. Voters do the voting, it’s a yes or no question. The
question would be shown on top, to guide the voters.

5. When all voters have done the voting, the calculation
can be started. Calculation will be explained more
later in this paper.

6. Last, the result will be shown to each voter. Each
voter would do the calculation locally on their device.

The voting is done with a binary output, which is yes and no.
This binary information would need to be translated into some
form that allows addition and multiplication. The binary vote
would be encoded into a number. For example we can use 1
for yes, and 0 for no.

When the calculation is started, shares would be generated
from each secret. The number of shares would follow the
number of voters. If there’s 10 voters, each vote would
generate 10 shares.

Image 2. A room with three voters. Each secret would generate 3
shares.

source: writer’s archive

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2023/2024



Number of threshold (t) would be the same as the number
of shares (n).

Each voter would keep a single share. This share would
never leave them, so that the secret can’t be constructed back.
The other shares can be sent to the server.

Image 3. The shares that is generated would be shared together,
while each of the voter keep 1 share to themselves.

source: writer’s archive
After everyone has computed their shares and sent their

shares, we can continue to the next step which is computing
the sum.

The calculation has to be done by every voter. They would
grab a single share from each other voter, which corresponds
with the index of their kept secret. The homomorphic part
comes to play here. Shares from every other voter would be
added together. We call this the sum.

Image 4. Shares of the same index by the other will be taken and
added with the share that is kept secret, each generating a sum.

source: writer’s archive
After every voter calculated their sum, this information

would then be shared to the server.

Last, we just need to combine all the sums into a new
secret. This new secret is the sum of all secrets.

Image 5. Each sum then would be gathered together and combine to
create a single share that would represent the whole sum of the vote.

source: writer’s archive
The sum of all the secrets then translated back to the

number of votes yes and no, according to the encoding. A
video demonstration can be seen here to help illustrate the
steps.

A. Rules
To be able to pull this off, there are some rules that need to be
followed.

● First, everyone has to join first before the voting
starts. The number of people is fixed, and can’t be
changed in the middle of the voting. This is due to the

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2023/2024



number of voters who would determine the number
of shares, which can’t be changed on the fly.

● Everyone has to do the vote first before the
calculation of the vote is being done. Calculations
require all the shares to be created first.

● The encryption has to be done using the same
encryption key. This is done to ensure the
homomorphic property of lagrange interpolation.

● To add obfuscation, the secret is going to be slightly
changed between all the voters. This is done to make
sure the encrypted shares are not the same between
each voter. This can be done by simply adding the
index of the voter.

B. Real time and Polling
For the implementation of ThumbsUp, the system needs to

update the condition of the system as soon as possible. There
are two main ways to achieve this, using realtime websocket,
or polling. Realtime would be more ideal for this, as polling is
worse for the internet.

C. Database Consideration
1. Redis

Redis is a noSQL database which focuses on speed. It
was previously used as caching, but it’s actually stable enough
to be used as a primary storage solution. One of the features
that redis has which is very suited for this application, is
expiration. This would be useful when we want to remove the
room automatically after a certain time. But this route would
force polling.

2. GunJS
GunJS is a decentralized database library. Key

advantage from GunJS is that it allows peer to peer. This
would increase the security of the system, as the information
wouldn’t be centralized. However, this route would force
polling.

3. MongoDB
MongoDB is a NoSQL database. MongoDB

describes itself as a document database that can be used for
many use cases. Though it’s very flexible, it can’t be
implemented on the client side. Because of this, this would
require a separate backend service. This would increase the
complexity quite much. If polling is used, race conditions
might also happen.

4. Firebase
Firebase is a backend cloud computing services and

application development platform provided by Google. It has a
plethora of services, from authentication to database. For this
application, the most interesting service is the real time
database. It has a noSQL structure, and like the name suggests,
would allow the system to have real time experience. This
would provide a better experience for the user, and would
allow the system to be easy on the network. The library that is
created by Firebase also is very well established for the
NodeJS library.

IV. STACK USED

The implementation of ThumbsUp uses Firebase. This
implementation is relatively easy, and allows real time

connection directly from the Application’s frontend. The
Application uses NextJS. This would ensure that no special
hardware is required, platform agnostic, and would allow the
app to be run pretty much everywhere. The usage of
framework would also help the implementation to focus on the
cryptographic side instead of the web app side, as many things
has been covered already by the framework.

Shamir’s Secret Sharing would be implemented using a
library https://pypi.org/project/shamirs/ in python. Since the
library is in Python, this would force the design to be splitted
into smaller pieces, backend and frontend. The backend would
be used as a wrapper for the Shamir’s Secret Sharing
Algorithm. To help ease up the implementation, a framework
called FastAPI would be used. It’s intended for python and has
lots of features to reduce boilerplate which would make it easy
to focus on the implementation of the Shamir’s Secret Sharing.

V. THUMBS UP IN PRACTICE
First, the number of pages and use cases needs to be defined.
For the room creator, the use cases would be:

1. Create a room
2. Close a room
3. Trigger start voting
4. trigger start calculate

For the voter, the use cases would be:
1. Find a room
2. Join a room
3. Cast a vote
4. Do calculation
5. See the result

We then use this information to determine pages needed:
1. Landing and Join Room

Landing would be placed at route /, which would be
the typical first page to open. This page would be the
entry point for both voter and room creator. If they’re
room creators, they can choose the “Create Room”
button. If they’re a voter, they can click the “Join
Room” button.

Image 6. Landing page and join-room page.
source: writer’s archive

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2023/2024

https://pypi.org/project/shamirs/


If they click Join Room, a list of rooms will show up.
They then can choose the room they want to join.

2. Room Creators’ Room

Image 7. Page for creating room, and controlling the flow
of the voting.

source: writer’s archive
Room creator would control the flow of the program. The
main flow controlled by the room creator is:

- Waiting for the people to join,
- start the voting,
- trigger the calculation, and
- lastly deleting the room.
3. Voting Room

Image 8. Voting Room
source: writer’s archive

After all the voters have joined the room, the room creator can
start the voting. The voter will be shown a Yes and No
question. After all that has finished the result of the voting will
be shown.

VI. CODES AND ANALYSIS

Image 6. example code for calculating the Sum, and
combining all the shares back.

source: writer’s archive

This implementation relies on every voter to finish the
calculation before being able to continue the calculation. So
the flow of the program is a huge deal and requires lots of
attention. Realtime helps a lot by providing a callback as an
entrypoint for starting the next step in the flow. Many libraries
are used to help achieve this, such as Jotio for global state
management, and shadcn/ui for the base of the UI. Tailwind is
also used to speed up the styling process.
Most of the code is implemented in TypeScript, with tsx
format. TypeScript is a superset of JavaScript, which is the
primary language used in web applications. It offers
everything that javascript supports, with additional features
that focus on type safety and linting. This feature would help
so much during the development, by catching early mistakes
that are made by the programmer.

VII. FUTURE IMPROVEMENT

There are many rooms for improvement based on this
implementation, few that sticks out the most are:

1. This implementation is relatively weak. The share
that is held back can be interpreted if the sum is
known by all the people.

2. Current implementation allows everyone to read all
the sum, and all the shares. This can be avoided by
using peer-to-peer from all nodes to every other node,
though it’s quite heavy on the network. But if a
person spies on all the connections, they could still be
able to decipher the secret.

3. Current implementation only supports Yes and No
questions. This can be expanded to a voting scheme
which relies on non categorical information, such as
rating.

VIII. CONCLUSION

Here are conclusions that can be derived while
implementing ThumbsUp:

1. It has really good potential. It might still be relying
on the implementation, but it adds one more layer of
obfuscation.

2. If there's a man in the middle using this
implementation, it can still guess the vote that is
casted by everyone.

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2023/2024



GITHUB LINK
The program that implements ThumbsUp is shared

publicly, which can be seen here
https://github.com/christojeffrey/thumbsup

VIDEO LINK AT YOUTUBE

A video demonstrating ThumbsUp can be seen here
https://youtu.be/Ao4lPbHvBPo

ACKNOWLEDGMENT

Thank you to Dr. Ir. Rinaldi Munir, MT who has helped so
much for the material for this paper, and for the love and
knowledge he has shared.

REFERENCES

[1] https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/3
5-Skema-Pembagian-Data-Rahasia-2024.pdf

[2] https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/3
8-Enkripsi-homomorfik-2024.pdf

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Christopher Jeffrey 13520055

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2023/2024

https://youtu.be/Ao4lPbHvBPo
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/35-Skema-Pembagian-Data-Rahasia-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/35-Skema-Pembagian-Data-Rahasia-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/38-Enkripsi-homomorfik-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/38-Enkripsi-homomorfik-2024.pdf

